16
Edinburgh Research Explorer Comprehensive behavioral analysis of heterozygous Syngap1knockout mice Citation for published version: Nakajima, R, Takao, K, Hattori, S, Shoji, H, Komiyama, NH, Grant, SGN & Miyakawa, T 2019, 'Comprehensive behavioral analysis of heterozygous Syngap1knockout mice', Neuropsychopharmacology Reports. https://doi.org/10.1002/npr2.12073 Digital Object Identifier (DOI): 10.1002/npr2.12073 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Neuropsychopharmacology Reports General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. May. 2020

Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

Edinburgh Research Explorer

Comprehensive behavioral analysis of heterozygousSyngap1knockout mice

Citation for published version:Nakajima, R, Takao, K, Hattori, S, Shoji, H, Komiyama, NH, Grant, SGN & Miyakawa, T 2019,'Comprehensive behavioral analysis of heterozygous Syngap1knockout mice', NeuropsychopharmacologyReports. https://doi.org/10.1002/npr2.12073

Digital Object Identifier (DOI):10.1002/npr2.12073

Link:Link to publication record in Edinburgh Research Explorer

Document Version:Publisher's PDF, also known as Version of record

Published In:Neuropsychopharmacology Reports

General rightsCopyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)and / or other copyright owners and it is a condition of accessing these publications that users recognise andabide by the legal requirements associated with these rights.

Take down policyThe University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorercontent complies with UK legislation. If you believe that the public display of this file breaches copyright pleasecontact [email protected] providing details, and we will remove access to the work immediately andinvestigate your claim.

Download date: 24. May. 2020

Page 2: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

Neuropsychopharmacology Reports. 2019;00:1–15.  | 1wileyonlinelibrary.com/journal/nppr

Received:4April2019  |  Revised:19June2019  |  Accepted:19June2019DOI: 10.1002/npr2.12073

O R I G I N A L A R T I C L E

Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice

Ryuichi Nakajima1  | Keizo Takao2,3 | Satoko Hattori1  | Hirotaka Shoji1  | Noboru H. Komiyama4 | Seth G. N. Grant5 | Tsuyoshi Miyakawa1,3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution‐NonCommercial‐NoDerivsLicense,whichpermitsuseanddistributioninanymedium,providedtheoriginalworkisproperlycited,theuseisnon‐commercialandnomodificationsoradaptationsaremade.©2019TheAuthors.Neuropsychopharmacology ReportspublishedbyJohnWiley&SonsAustralia,LtdonbehalfofTheJapaneseSocietyofNeuropsychoPharmacology.

1DivisionofSystemsMedicalScience,InstituteforComprehensiveMedicalScience,FujitaHealthUniversity,Toyoake,Japan2DivisionofAnimalResourcesandDevelopment,LifeScienceResearchCenter,UniversityofToyama,Toyama,Japan3SectionofBehaviorPatterns,CenterforGeneticAnalysisofBehavior,NationalInstituteforPhysiologicalSciences,Okazaki,Japan4CentreforClinicalBrainSciences,ThePatrickWildCentreforResearchintoAutism,FragileXSyndrome&IntellectualDisabilities,TheUniversityofEdinburgh,Edinburgh,UK5GenestoCognitionProgram,CentreforClinicalBrainSciences,UniversityofEdinburgh,Edinburgh,UK

CorrespondenceTsuyoshiMiyakawa,DivisionofSystemsMedicalScience,InstituteforComprehensiveMedicalScience,FujitaHealthUniversity,1‐98Dengakugakubo,Kutsukake‐cho,Toyoake,Aichi470‐1192,Japan.Email:miyakawa@fujita‐hu.ac.jp

Funding informationMinistryofEducation,Culture,Sports,ScienceandTechnology,Grant/AwardNumber:KAKENHIJP16H06276,KAKENHIJP16H06462andKAKENHIJP221S0003;JapanAgencyforMedicalResearchandDevelopment,Grant/AwardNumber:JP18dm0107101;JapanSocietyforthePromotionofScience,Grant/AwardNumber:KAKENHIJP16680015;SimonsInitiativefortheDevelopingBrain,Grant/AwardNumber:R83776

AbstractAims: SynapticRasGTPase‐activatingprotein1(SYNGAP1)regulatessynapticplas‐ticitythroughAMPAreceptortrafficking.SYNGAP1mutationshavebeenfound inhumanpatientswithintellectualdisability(ID)andautismspectrumdisorder(ASD).Almost every individualwithSYNGAP1‐related IDdevelops epilepsy, and approxi‐mately50%haveASD.SYNGAP1‐relatedIDisestimatedtoaccountforatleast1%ofIDcases.InmousemodelswithSyngap1mutations,strongcognitiveandaffectivedysfunctionshavebeenreported,yetsomefindingsareinconsistentacrossstudies.TofurtherunderstandthebehavioralsignificanceoftheSYNGAP1gene,weassessedvariousdomainsofbehaviorinSyngap1heterozygousmutantmiceusingabehavioraltestbattery.Methods: MalemicewithaheterozygousmutationintheSyngap1gene(Syngap1−/+ mice)createdbySethGrant'sgroupweresubjectedtoabatteryofcomprehensivebehavioraltests,whichexaminedgeneralhealth,andneurologicalscreens,rotarod,hotplate,openfield,light/darktransition,elevatedplusmaze,socialinteraction,pre‐pulseinhibition,Porsoltforcedswim,tailsuspension,gaitanalysis,T‐maze,Y‐maze,Barnesmaze,contextualandcuedfearconditioning,andhomecagelocomotoractiv‐ity.TocontrolfortypeIerrorsduetomultiple‐hypothesistesting,P‐valuesbelowthefalsediscoveryratecalculatedbytheBenjamini‐Hochbergmethodwereconsideredasstudy‐widestatisticallysignificant.Results: Syngap1−/+miceshowed increased locomotoractivity,decreasedprepulseinhibition,andimpairedworkingandreferencespatialmemory,consistentwithpre‐cedingstudies. Impairmentofcontext fearmemoryand increasedstartle reflex inSyngap1mutantmicecouldnotbereproduced.Significantdecreases insensitivityto painful stimuli and impairedmotor functionwere observed inSyngap1−/+ mice. Decreasedanxiety‐likebehavioranddepression‐likebehaviorwerenoted,althoughincreasedlocomotoractivityisapotentialconfoundingfactorofthesephenotypes.Increasedhomecagelocomotoractivityindicatedhyperlocomotoractivitynotonlyinspecificbehavioraltestconditionsbutalsoinfamiliarenvironments.

Page 3: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

2  |     NAKAJIMA et Al.

1  | INTRODUC TION

SYNGAPisaGTPasehighlyenrichedatexcitatorysynapsesinthebrain 1,2.SeveralmembersoftheRassuperfamilyofGTPases,includ‐ingRap1/2,Ras,andRab53‒6,are inhibitedbySYNGAP.SYNGAPlevels in the dendritic spine are reduced by neuronal activation 7. ThereductioninSYNGAPleadstoRasactivationandAMPArecep‐torincorporationintothemembrane,bothofwhicharerequiredforlong‐termpotentiation6,8,dendriticspineformation9,andneuronaldevelopment10.

De novo SYNGAP1mutationshavebeenfoundinpatientswithID,epilepsy,orASD11‒20.Inalarge‐scaledevelopmentaldisordersstudy, sevenSYNGAP1mutationswere identified in 940patientswith ID; therefore, the frequency of SYNGAP1 mutations is sug‐gested to be ∼0.74% in patients with ID 19. Currently, 0.7%‐1%of ID patients are estimated to have SYNGAP1‐related ID 18. A study,whichrecruited57malepatientswithSYNGAP1mutationsormicrodeletions,reported55casesof ID21.Thesepatientsalsoshowedepilepsy (98%)anddevelopmentaldelays (96%),and53%oftheparticipantswerediagnosedwithASD21.Thesesymptomswereaccompaniedbyseverelanguageimpairments(21%);highpainthreshold(72%);eatingproblemsincludingoralaversion(68%);hy‐potonia(67%);sleepingproblems(62%);ataxiaorgaitabnormalities(51%);andbehavioralproblems(73%)includingaggression,self‐in‐jury,andtantrums21.

TostudytheeffectsofSYNGAP1mutations,Syngap1knockoutmicehavebeengeneratedbyseveralgroups9,10,22‒24.HomozygousSyngap1knockoutmicediewithinaweekofbirth10,22.Inheterozy‐gousSyngap1knockout(Syngap1−/+)mice,robustchangesinbehav‐ioralphenotypeshavebeenreportedbyseveralgroups(seeTableS4).Syngap1−/+miceshowincreasedlocomotoractivity23,25‒29,de‐creasedanxiety‐likebehavior6,23,25,26,28,29,impairedreferencespa‐tialmemory22,26,27,andimpairedworkingspatialmemory23,26,28,29. Inaddition, increased stereotypicbehavior 25, decreases inmotorfunctions in females 26, elevated startle response and a decreaseinprepulseinhibition25,reducedsocialnoveltypreference25,andimpaired cued fear memory 25 have been reported by precedingstudies. However, some observations are inconsistent across thedifferentstudies.InSyngap1−/+mice,impairmentofcontextualfearmemoryhasbeenreportedbytwogroups23,28,whileanotherre‐portfailedtodetectthisbehavioralchange25.Onestudyobserved

decreasedanxiety‐likebehaviorinthenumberofopen‐armentriesin the elevatedplusmaze 26,whereas another report did not ob‐serve similar findings 25.WhilehumanpatientswithSyngap1 mu‐tationshaveahighpain threshold,eatingproblems,ataxiaorgaitabnormalities,hypotonia,andsleepingproblems21,therehavebeennoreportsofsuchbehavioralphenotypesinSyngap1−/+ mice.

Comparedtopreviousreports6,23,25‒30,onlyafewstudieshaveassessed the behavioral phenotypes of the Syngap1−/+mouse linegeneratedbyKomiyama et al22,29. In the present report,we eval‐uated thebehavioralphenotypesofSyngap1−/+micegeneratedbyKomiyamaet al22 onaC57BL/6Jgeneticbackground,whichhavebeenbackcrossedatleast10generationsfromtheoriginalF2MF1geneticbackground.Tostudythebehavioralphenotypesofgenet‐icallymodifiedmice,itisvaluabletogeneratethemwithacommongenetic background of a well‐understood wild‐type phenotype.TheC57BL/6Jgeneticbackground iswidelyadoptedbyknockoutandtransgenicresearches31.ThisisalsoamajorbackgroundoftheSyngap1−/+mouselinesusedinprecedingbehavioralstudies25,28,30.

In this report,weutilizedacomprehensive setofwell‐definedbehavioral tests 31‒38 and investigated behavioral phenotypes in‐cluding the sensorimotor functions and the cognitive functionsoftheSyngap1−/+mice generated byKomiyama et al on aC57BL/6Jgeneticbackground.

2  | METHODS

2.1 | Animals and experimental design

Syngap1−/+miceweregeneratedaspreviouslydescribed22. The mice werebackcrossed to theC57BL/6Jmice (Charles river,MA,USA),foratleasttengenerations,whichisalsoexpectedtominimizege‐neticdrift.Wild‐type(WT)andSyngap1−/+miceweregeneratedbycrossingmaleSyngap1−/+miceandWTfemalemice.Thesamepopu‐lationofmalemiceolderthan53weeksweresequentiallysubjectedtodifferentbehavioraltests(fortheageofthemiceandorderofthetests,seeTableS1).Micewerehousedtwotofourpercage(onetothreeforeachgenotype)inaroomwitha12‐hourlight/darkcycle(lightsonat7:00am),withaccesstofoodandwateradlibitum.Roomtemperaturewaskeptat23±2°C.Behavioraltestswereperformedbetween9:00am and6:00pm.Before the tests,micewere left inthetestingroomforatleast30minutestoallowacclimation,unless

Conclusion: In Syngap1−/+mice,wecouldreproducemostofthepreviouslyreportedcognitiveandemotionaldeficits.Thedecreasedsensitivitytopainfulstimuliandim‐pairedmotorfunctionthatwefoundinSyngap1−/+miceareconsistentwiththecom‐moncharacteristicsofpatientswithSYNGAP‐relatedID.WefurtherconfirmedthattheSyngap1heterozygotemouserecapitulatesthesymptomsofIDandASDpatients.

K E Y W O R D S

autismspectrumdisorder,intellectualdisability,motorfunction,nociception,SYNGAP1

Page 4: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  3NAKAJIMA et Al.

otherwisenoted.Aftereachtest,thetestingapparatuswascleanedwith superhypochlorouswater toprevent abiasdue toolfactorycues,unlessotherwisenoted.

2.2 | Behavioral tests

Unless otherwise noted, most of the behavioral tests were per‐formedaspreviouslydescribed39‒41.

2.3 | Neurological screen and neuromuscular strength test

Therighting,whiskertwitch,andeartwitchreflexeswereevaluated.Physical features, including the presence ofwhiskers or bald hairpatches,werealsorecorded.Agripstrengthmeter(O’HARA&Co.)wasused toassess forelimbgrip strength.Thepeak forceappliedbytheforelimbsofthemousewasrecordedinNewtons(N).Eachmousewastestedthreetimes,andthegreatestvaluemeasuredwasusedfordataanalysis.Inthewirehangtest,themousewasplacedon awiremesh thatwas then slowly inverted, so that themousegrippedthewireinordernottofalloff.Latencytofallwasrecorded,witha60secondscutofftime.

2.4 | Rotarod test

Motor coordination and balance were tested using the rotarodtest. This test,which uses an accelerating rotarod (UGOBasile),wasperformedbyplacingmiceonrotatingdrums(3cmdiameter),made of polyvinyl chloride (PVC), and measuring the time eachanimalwasabletomaintain itsbalanceontherod.Thespeedoftherotarodwasacceleratedfrom4to40rpmovera5‐minutepe‐riod.All themiceweresubjectedtothetestwithoutanypretesttraining.

2.5 | Hot plate test

Thehotplatetestwasusedtoevaluatesensitivitytoapainfulstimu‐lus.Micewereplacedona55.0°Chotplatewithblackanodizedalu‐minumfloor(ColumbusInstruments),andlatencytothefirstfore‐orhindpawresponsewasrecordedwitha15secondscutofftime.Thepawresponsewasdefinedaseitherapawlickorafootshake.

2.6 | Open field test

Eachmousewasplacedinthecorneroftheopenfieldapparatus(40×40×30cm;AccuscanInstruments)whichconsistsofwhiteplasticfloorandtransparentPlexiglaswall.Theapparatuswasil‐luminatedat100l×.Totaldistancetraveled(cm),verticalactivity,timespentinthecenterarea(20×20cm),andbeam‐breakcountsfor stereotypedbehaviorswere recorded. Immediately after themicewere placed in the arena, their behaviorwas recorded for120minutes.

2.7 | Light/dark transition test

Alight/darktransitiontestwasconductedaspreviouslydescribed42.Theapparatusconsistedofacagewithawhite floormadeofPVC(21×42×25cm)dividedintotwosectionsofequalsizebyapartitionwithadoor(O’HARA&Co.,Tokyo,Japan).Onecham‐berwasbrightlyilluminated(390lux),whereastheotherchamberwasdark (two lux).Micewereplaced into thedark chamberandallowedtomovefreelybetweenthetwochamberswiththedooropen for 10minutes. The total number of transitions, latency tofirstenterthelitchamber,distancetraveled,andtimespentineachchamberwererecordedbyImageLDsoftware(seeSection,“DataAnalysis2.17”).Incaseswiththemicedidnotenterthelightcom‐partmentduringtheentire10‐minutessession,thelatencytolightwasconsideredas600seconds,andthedatawereincludedinthestatisticalanalysis.

2.8 | Elevated plus maze test

Anelevatedplusmazetestwasconductedaspreviouslydescribed43.Theelevatedplusmazeconsistedoftwoopenarms(25×5cm)andtwoenclosedarmsofthesamesizewith15cmhightransparentwalls,andthearmswereconnectedbyacentralsquare(5×5cm)(O’HARA&Co.,Tokyo,Japan).Theopenarmsweresurroundedbyaraisedledge(3mmthickand3mmhigh)toavoidmicefallingoffthearms.Thearmswereelevated55cmabovethefloor.Armsofthesametypewerelocatedoppositefromeachother.Eachmousewasplacedinthecentralsquareofthemaze,facingoneoftheenclosedarms.AllthearmsandwallsweremadeofPVC.Thenumberofen‐triesintotheopenandenclosedarmsandthetimespentintheopenor enclosed arms were recorded during a 10‐minute test period.Percentageof entries intoopen arms, time spent in open arms(s),numberof totalentries,and totaldistance traveled (cm)werecal‐culated.Whenamousefallsfromthemaze,thedatawereexcludedfromthestatisticalanalysisfordistancetraveled,entriesintoopenarms, timeonopenarms,andnumberofentries.Dataacquisitionandanalysiswereperformedautomatically,usingImageEPsoftware(seeSection,“Dataanalysis2.17”).

2.9 | Social interaction test in a novel environment

Inthesocialinteractiontest,twomiceofidenticalgenotypesthatwerepreviouslyhousedindifferentcageswereplacedinawhitePVCplasticboxtogether(40×40×30cm)(O’HARA&Co.)andallowedtoexplorefreelyfor10minutes.Behaviorwasrecordedandanalyzedautomaticallyusing ImageSIprogram(seeSection,“Dataanalysis2.17”).Thetotalnumberofcontacts,totaldurationofactivecontacts,totalcontactduration,meandurationpercon‐tact,andtotaldistancetraveledweremeasured. If thetwomicecontactedeachotherandthedistancetraveledbyeithermousewas longer than10cm, thebehaviorwasclassifiedasan“activecontact.”

Page 5: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

4  |     NAKAJIMA et Al.

2.10 | Crawley's sociability and social novelty preference test

Thistestisawell‐designedmethodtoinvestigatetheeffectofcom‐plexgeneticsonsociabilityandpreferenceforsocialnovelty44,45. Thetestingapparatusconsistedofarectangular,three‐chamberedPVCplasticboxandalidwithaninfraredvideocamera(O’HARA&Co.).Eachchamberwas20×40×47cm,andthedividingwallsweremadefromclearPVCplastic,withsmallsquareopenings(5×3cm)allowing access into each chamber.Wemodified themethodde‐scribedbyref.45asfollows:Ahabituationsessionwasperformedintheapparatusfor10minutesthedaybeforethesociabilitytest,andthewirecagesinthelateralcompartmentswerelocatedinthecornersofeachcompartment.Inthesociabilitytest,anunfamiliarC57BL/6Jmalemouse(stranger)thathadnopriorcontactwiththesubjectmicewasplacedinoneofthesidechambers.Thelocationofthestrangermouse(strangerside)intheleftvsrightsidechamberwassystematicallyalternatedbetweentrials.Thecagewas11cminheight,withabottomdiameterof9cm,andverticalbars0.5cmapart.The subjectmousewas firstplaced in themiddlechamberandallowedtoexploretheentiretestboxfora10‐minutesession.Theamountof timespent ineachchamberanddistancetraveledweremeasuredwithacamerafittedontopofthebox. Intheso‐cialnoveltypreferencetest,eachmousewastestedina10‐minutesessiontoquantifysocialpreferenceforanewstranger.Afterthefirst10‐minute session, a secondunfamiliarmousewasplaced inthechamberthathadbeenemptyduringthefirst10‐minuteses‐sion.Thissecondstrangerwasalsoenclosed inan identical smallwirecage.Theamountoftimespentineachchamberanddistancetraveled during the second 10‐minute sessionweremeasured asdescribedabove.Dataacquisitionandanalysiswereperformedau‐tomaticallyusingImageCSI(seeSection,“Dataanalysis2.17”).

2.11 | Startle response/prepulse inhibition (PPI) test

Astartlereflexmeasurementsystem(O’HARA&Co.)wasusedtomeasureacousticstartleresponseandPPI.Beforethistest,micewerekeptinasoundproofroomseparatefromthetestingroom.AtestsessionbeganbyplacingamouseinatransparentPVCplas‐ticcylinderwhere itwas leftundisturbed for10minutes.Whitenoise (40ms)wasusedas thestartle stimulus forall trial types.Thestartle responsewas recorded for400msstartingwith theonsetofthestartlestimulus.Thebackgroundnoiselevelineachchamberwas70dB.Atestsessionconsistedofsixtrialtypes(ie,two types for startle stimulus‐only trials, and four types forPPItrials). The intensity of the startle stimuluswas 110 or 120 dB.The prepulse sound was presented 100 ms before the startlestimulus,anditsintensitywas74or78dB.Fourcombinationsofprepulse and startle stimuliwere used (74‐110, 78‐110, 74‐120,and78‐120dB).Sixblocksofthesixtrialtypeswerepresentedinapseudo‐randomorder, suchthateachtrial typewaspresentedoncewithin a block. The average inter‐trial intervalwas15 sec‐onds(range10‐20seconds).

2.12 | Porsolt forced swim test

APlexiglascylinder(20cmheight×10cmdiameter)filledwithwater(21‐23°C)uptoaheightof7.5cmwasputinawhiteplasticchamber(31×41×41cm)(O’HARA&Co.).Micewereplacedintothecylinder,andbothimmobilityandthedistancetraveledwererecordedovera10‐minutetestperiod.Imageswerecapturedat2‐framepersec‐ond.Foreachpairofsuccessiveframes,theamountofarea(pixels)withinwhichthemousemovedwasmeasured.Whentheamountofareawasbelowacertainthreshold,mousebehaviorwasclassifiedas “immobile.” Immobility lasting for<2 secondswasnot includedintheanalysis.Dataacquisitionandanalysiswereperformedauto‐matically,usingImageTSsoftware(seeSection,“Dataanalysis2.17”).

2.13 | Gait analysis

Weanalyzedgaitofthemiceduringwalk/trotlocomotionbyventralplane videography as described 46,47 using DigiGait Imaging System(MouseSpecificsInc).Thissystemenablesmicetowalkonamotorizedtransparenttreadmillbelt,andthesoftwareautomaticallyidentifiesthestanceandswingcomponentsofstrideandcalculatesstancewidth,stridelength,stepangle,andpawangle.Briefly,weplacedthemiceonatreadmillbeltthatmovesataspeedof24.7cm/s.Wecollecteddigitalvideoimagesoftheundersideofmiceat150framespersecond.

2.14 | Tail suspension test

The tail suspension testwas performed for a 10‐minute test ses‐sion.Miceweresuspended30cmabovethefloorofawhiteplasticchamber(31×41×41cm)(O’HARA&Co.),andthebehaviorwasre‐cordedovera10‐minutetestperiod.AssimilartothePorsoltforcedswim test, immobility (%)was judged by the application program.Data acquisition and analysiswere performed automatically usingImageTSsoftware(seeSection“Dataanalysis2.17”).

2.15 | T‐maze test

Thespontaneousalternation taskwasconductedusinganauto‐maticT‐mazeapparatus (O’HARA&Co.)aspreviouslydescribed48. ItwasconstructedofwhitePVCplastic runwayswith25‐cmhighwalls.Themazewaspartitionedoff intosixareasbyslidingdoorsthatcanbeopeneddownward.ThestemoftheTwascom‐posedofareaS2(13×24cm),andthearmsofTwerecomposedofareasA1andA2 (11.5×20.5cm).AreasP1andP2were theconnectingpassagewaysfromtherespectivearm(areaA1orA2)tothestartcompartment(areaS1).Miceweresubjectedtoaspon‐taneousalternationprotocolforfivesessions,withatleast1day(2 days maximum) of session‐to‐session intervals. One sessionconsistsof10trialswitha50‐minutecutoff time.Eachtrialhadfirstandsecondruns.Onthefirstrun,themousewasforcedtochooseoneofthearmsoftheT(areaA1orA2).Afterthemousestayedmore than 10 seconds, the door that separated the arm(areaA1orA2) and the connecting passageway (areaP1 or P2)

Page 6: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  5NAKAJIMA et Al.

wouldbeopened,andthemousecouldreturntothestartingcom‐partment(areaS1)viatheconnectingpassageway.Themousewasthengivena3‐seconddelayinareaS1,followedbyafreechoicebetweenbothTarms.Thepercentageoftrialsinwhichmiceen‐teredthearmoppositetotheirforced‐choicerunduringthefreechoicerunwascalculated.Thelocationofthesamplearm(leftorright)variedpseudo‐randomlyacrosstrialsusingtheGellermannschedule so that mice received equal numbers of left and rightpresentations.Dataacquisition,controlofslidingdoors,anddataanalysiswereperformedbyImageTMsoftware(seeSection,“DataAnalysis2.17”).

2.16 | Y‐maze test

Y‐mazetestwasperformedaspreviouslydescribed49.ExploratoryactivitywasmeasuredusingaY‐mazeapparatus(armlength:40cm,armbottomwidth: 3 cm, armupperwidth: 10 cm, height ofwall:12cm).ThefloorofthemazeismadeofwhitePVCplastic,andthewallismadeoftransparentPVCplastic.EachsubjectwasplacedinthecenteroftheY‐mazefield.Thenumberofentriesandalterationswas recorded using amodified version of the ImageYM software.Datawerecollectedforaperiodof10minutes.

2.17 | Barnes maze test

TheBarnesmazetaskwasconductedon“dryland,”1.0mindiam‐eter,with12holesequallyspacedaroundtheperimeter(O’HARA&Co.).Themaze ismadeofPVCplastic.AblackPlexiglasescapebox(17×13×7cm),whichhadpapercagebeddingonitsbottom,waslocatedunderoneoftheholes.Theholeabovetheescapeboxrepresentedthetarget.Thelocationoftheescapebox(target)wasconsistentforagivenmousebutrandomizedacrossmice.Themazewasrotateddaily,withthespatiallocationofthetargetunchangedwithrespecttothedistalvisualroomcues,topreventabiasbasedon olfactory or proximal cueswithin themaze.One trial per daywasconductedforthefirstfivetrials.Fromthesixthtrial,twotrialswereperformedperday.Eachtrialendedwhenthemouseenteredtheescapeboxorafter5minuteshadelapsed.Thenumberofer‐rors (definedby theanimalplacing itsnose inahole thatdidnotleadtotheescapebox),theamountoftimethatthemicetooktoenterthebox,totaldistancetraveledtotargethole,andthenumberofomissionerrors (definedbythevisit to thetargetholewithoutsubsequententryintothetargethole)wererecordedbyImageBMsoftware.Onday7,aprobetestwasconductedwithouttheescapebox, to assessmemorybasedondistal environmental roomcues.Anotherprobetrialwasconducted1monthafterthelasttrainingsessiontoevaluatememoryretention.Thetimespentaroundthetargetholewasrecordedintheseprobetestsbythesoftware.

2.18 | Contextual and cued fear conditioning test

Contextual and cued fear conditioning test was performed aspreviously described 50‒52. Before this test, mice were kept in a

soundproofroomseparatefromthetestingroom.Toassess fear‐relatedlearningandmemory,eachmousewasplacedinanacrylicchamberconsistingofwhite(side)andtransparent(front,rear,andtop)PVCplasticwalls(33×25×28cm)withastainless‐steelgridfloor(0.2cmdiameter,spaced0.5cmapart;O’HARA&CO.),andwasallowedtoexplorefreelyfor2minutes52.Subsequently,acon‐ditionedstimulus(CS;55dBwhitenoise)waspresentedfor30sec‐onds, followed by a mild foot shock (2 seconds, 0.3 mA), whichservedastheunconditionedstimulus(US).TwomoreCS‐USpairingswerepresentedwith2‐minuteinterval.Contexttestwasconducted1dayafterconditioninginthesamechamberfor300secondsoneachmouse.Acuedtestwithanalteredcontextwasconductedinatriangularchamberatleast100minutesafterthecontexttestonthesameday(33×29×32cm;madeofwhiteacrylicplasticwallsand floor,whichwas located in a different room).After a 3‐min‐utefree‐movingperiodinthetriangularchamber,tonestimulusforthecuedtest(55dBwhitenoise)wasappliedfor180seconds.Ineachtest,freezingpercentageanddistancetraveled(cm)werecal‐culatedautomaticallyusing ImageFZsoftware (seeSection,“Dataanalysis2.17”).Aftereachtrialintheconditioningtest,thewallsandgridsof the chamberwerewipedwith superhypochlorouswaterand65%ethanol,respectively.Inthecuedtest,thewallsandfloorwerecleanedwithsuperhypochlorouswater.

2.19 | Social interaction in home cage

Tomonitorsocialbehaviorbetweentwomiceinafamiliarenviron‐ment,asystemthatautomaticallyanalyzessocialbehaviorinhomecagesofmicewasusedaspreviouslydescribed53.Twogeneticallyidentical mice that had been housed separately were placed to‐getherinahomecage(seeSection,“locomotoractivitymonitoringin home cage2.16”). Their social behaviorwas thenmonitored for7days.Outputsfromthevideocameraswerefedintoacomputer.Images fromeach cagewere captured at a rate of one framepersecond.Socialinteractionwasmeasuredbycountingthenumberofparticles ineachframe:Twoparticles indicatedthemicewerenotincontactwitheachother;andoneparticledemonstratedcontactbetween the twomice.Wealsomeasured locomotoractivitydur‐ingtheseexperimentsbyquantifyingthenumberofpixelschangedbetweeneachpairofsuccessiveframes.

2.20 | Locomotor activity monitoring in home cage

Locomotoractivitymonitoringinhomecagewasperformedwithasys‐temthatautomaticallyanalyzesthelocomotoractivityofmiceintheirhomecage53.Thesystemcontainsahomecage(29×18×12cm),afilteredcagetop,andaninfraredvideocamerawhichisattachedtothetopofastand.Eachmousewasindividuallyhousedineachhomecage,andtheirlocomotoractivitywasmonitoredforaweek.Outputsfromthevideocameraswerefed intoacomputer. Imagesfromeachcagewerecapturedatarateofoneframepersecond,anddistancetrave‐ledwasmeasuredautomaticallyusingImageHAsoftware(seeSection,“Dataanalysis2.17”).

Page 7: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

6  |     NAKAJIMA et Al.

2.21 | Data analysis

Behavioral data were obtained automatically through applicationsbasedontheImageJprogram,andtheyweremodifiedforeachtestbyTsuyoshiMiyakawa(availablethroughO’HARA&Co.).TheImageJpl‐ugins,andtheprecompiledpluginsforlight/darktransitiontest(ImageLD),elevatedplusmaze(ImageEP),openfieldtest(ImageOF),fearcon‐ditioningtest(ImageFZ),andT‐maze(ImageTM)arefreelyavailableonthewebsiteof“MousePhenotypeDatabase”(http://www.mouse‐phenotype.org/software.html) 54. Statistical analysis was conducted

usingStatView(SASInstitute).Datawereanalyzedusingtwo‐tailedt test,one‐wayANOVA,two‐wayrepeatedmeasuresANOVA,andchi‐squaredtest.Valuesingraphsareexpressedasmean±SEM.Tocon‐trolfortypeIerrorsduetomultiple‐hypothesistesting,wecalculatedthefalsediscoveryrate(FDR)bytheBenjamini‐Hochbergmethod55. We defined “study‐wide significance” as the statistical significancethatsurvivedFDRcorrection.“Nominalsignificance”wasdefinedastheonethatachievedastatisticalsignificanceinanindex(P<.05)butdidnotsurvivethiscorrection.

3  | RESULTS

StatisticaldatafortheseresultsarepresentedinTablesS2andS3.In the results section,P‐valueswith a study‐wide significance arelabeledwithasterisks(*P<.05,**P<.01,and***P<.001).P‐valueswith“#”indicateanominalsignificance.

3.1 | GeneralcharacterizationofSyngap1−/+ mice

TherewerenosignificantdifferencesbetweentheSyngap1−/+andWTmiceintermsofbodyweight(Figure1A,P = .959),bodytemperature(Figure1B,P = .6062),gripstrength(Figure1C,P = .3232),orlatencytofalloffthewiregrid(Figure1D,P = .4633).AsshowninFigure1E,themutantmiceshowedanimpairedmotorfunction(P = .003**),asassessedbytherotarodtest.Theinteractionbetweengenotypeand

F I G U R E 1  Generalhealthandneurologicalscreen,motorlearning,andpainsensitivitybetweengenotypes.A,Bodyweight;B,bodytemperature;C,gripstrength;D,latencytofallinwirehangtest;E,latencytofallintherotarodtest;andF,latencyofthefirstfore‐orhindpawresponseinthehotplatetest.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsinaone‐wayANOVA(A‐D,andF),ortwo‐wayrepeatedmeasuresANOVA(E)

(E)

(A) (B)

(C) (D)

Hot plate test

General health and neurological screen

Rotarod test

(F)

Bod

y w

eigh

t (g)

Bod

y te

mpe

ratu

re (

°C)

Grip

str

engt

h (N

)

Wire

Han

g la

tenc

y (s

)

Late

ncy

(s)

Late

ncy

(s)

Controls (n = 16)Mutants (n = 22)

Controls (n = 16)Mutants (n = 22)

Controls (n = 16)Mutants (n = 22)

P = 0.959 P = 0.6062

P = 0.3232 P = 0.4633

P = 0.003 P = 0.0004

30

35

34

33

32

31

0

50

40

30

20

10

0

5

4

3

2

1

0

0.6

0.4

0.2

0

40

30

20

10

0

10

8

6

4

2

F I G U R E 2   IncreasedlocomotoractivityofSyngap1−/+ mice in openfieldtest.A,Totaldistancetraveled;B,verticalactivity;C,timespentinthecenterarea;D,stereotypicbehaviorcountsarerepresented.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA

Open field test(A) (B)

(C) (D)

Dis

tanc

e tr

avel

ed (

cm)

Ver

tical

act

ivity

Cen

ter

time

(s)

Ste

reot

ypic

cou

nts

Time (min) Time (min)

Time (min) Time (min)

P < 0.0001 P = 0.0055

P = 0.041 P = 0.0032

Controls (n = 16)Mutants (n = 22)

Page 8: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  7NAKAJIMA et Al.

trialintherotarodtestwasnotsignificant(P = .064).GaitanalysistestdidnotrevealanydifferencebetweenSYNGAP1−/+andcontrolmice(dataareavailableintheMousePhenotypeDatabasedescribedinthedataanalysis2.17section).Inthehotplatetest,Syngap1−/+miceexhib‐iteddecreasedpainsensitivity.(Figure1F,P = .0004**).

3.2 | IncreasedlocomotoractivityofSyngap1−/+ mice intheopenfieldtest

Intheopenfieldtest,Syngap1−/+miceexhibitedsignificantincreasesinthetotaldistancetraveled (Figure2A,P< .0001***),numberofvertical activities (Figure 2B, P = .0055*), center time (Figure 2C,P = .041#),andstereotypiccounts(Figure2D,P = .0032**)comparedwiththoseinthecontrolmice.

3.3 | Normallight/darktransitionofSyngap1−/+ mice

The light/dark transition test detected no significant differencesbetween themutantmice andWTmice in the distances traveledbetweenthe light/darkcompartments (Figure3A, light,P = .1189;dark,P = .2648),numberoftransitionsbetweenlight/darkcompart‐ments(Figure3B,P = .7704),latencytoenterthelightcompartment

(Figure 3C, P = .1025), or time spent in the light compartment(Figure3D,P = .4639).ThereweretwoSyngap1−/+micewhichdidnotenterthelightcompartmentduringtheentire10‐minutesession.

3.4 | Increasesinlocomotoractivityandopen‐armtimeofSyngap1−/+miceintheelevatedplusmaze

Intheelevatedplusmazetest,Syngap1−/+miceshowedasignificantin‐crease inthetotaldistancetraveled inarms(Figure3E,P< .0001***).Therewasnosignificantdifferenceinpercentageofentriesintotheopenarms(Figure3F,P = .0945)betweengenotypes.Percentageoftimespentinopenarmsandthetotalnumberofentriesweresignificantlyincreasedinthemutantmice(Figure3G,P = .0052*;Figure3H,P = .0001***).Therewere 10 Syngap1−/+miceandtwocontrolmicewhichfellfromthemazeofwhichdatawereexcludedfromthestatisticalanalysis(Figure3E‐H).Themutantmiceshowedasignificantlyhigherincidenceofafallfromthemazethanthecontrolmice(Figure3I,P = .0309#).

3.5 | SocialbehaviorinSyngap1−/+ mice

Inthesocialinteractiontest,Syngap1−/+miceexhibitedasignificantdecreaseintotaldurationofcontacts(Figure4A,P = .0001**).There

F I G U R E 3  Anxiety‐relatedbehaviorsofSyngap1−/+miceobservedinelevatedplusmazeandlight/darktransitiontest.(A‐D)Light/darktransitiontest:A,distancetraveledinthelight/darkcompartments;B,numberoflight/darktransitions;C,latencytoenterthelightcompartment;andD,timespentinthelightcompartment.(E‐H)Elevatedplusmazetest:E,distancetraveled;F,percentageofentriesintoopenarms;G,percentageoftimespentinopenarms;H,numberofarmentries;I,percentageofmicedroppedfromthemaze.Datarepresentthemean±SEM.TheP‐valuesinpanels(A‐I)indicategenotypeeffectsinone‐wayANOVA.TheP‐valueof(I)wasevaluatedusingachi‐squaretest.Onlythedataofthemicethatcompletedthesessionwithoutfalling(controls,n=14;mutants,n=12)wereincludedinthestatisticalanalysisinE‐H

Light/dark transition test

Elevated plus maze test

0

10

20

30

40

50

Per

cent

age

of fa

lls

2 controls and 10 mutants fell from the maze.

P P P PP

P P P P P

Dis

tanc

e tr

avel

ed (

cm)

Num

ber

of tr

ansi

tions

Late

ncy

to li

ght (

s)

Sta

y tim

e in

ligh

t (s)

Light Dark

Controls (n = 16)Mutants (n = 22)

Dis

tanc

e tr

avel

ed (

cm)

Ent

ries

into

ope

n ar

ms

(%)

Tim

e on

ope

n ar

ms

(%)

Num

ber

of e

ntrie

s

Controls (n = 16)Mutants (n = 22)

Controls (n = 14)Mutants (n = 12)

(A) (B) (C) (D)

(E) (F) (G) (H) (I)

Page 9: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

8  |     NAKAJIMA et Al.

was no difference betweenSyngap1−/+mice andWTmice in thetotalnumberofcontacts(Figure4B,P = .8005).Meandurationpercontactwassignificantlydecreasedinthemutantmice(Figure4C,P = .0001**).Themutantmicetraveledalongerdistancethanthecontrolmice(Figure4D,P = .0107*).ThemicewerealsosubjectedtoaCrawley'ssociabilityandsocialnoveltypreferencetestwhichiscomposedofasociabilitytestandasocialnoveltypreferencetest.Inthesociabilitytest,socialbehaviorcanbeassessedbasedonthetimespentaroundawirecagewithanunfamiliarmouse(strangerside)vs the timespentaroundanemptycage (empty side).BoththemutantandWTmicespentmoretimearoundthestranger‐sidecagethantheempty‐sidecage(Figure4E,WT:P = .0044*,mutant:P = .0097*).Comparedtomutants,WTmicestayedlongeraroundthestrangerside(Figure4E,P = .0007**).Themutantmiceshowedasignificantincreaseinthetotaldistance(Figure4F,P<.0001***).Inthesocialnoveltypreferencetest,bothWTandSyngap1−/+ mice tended to spend longer time around the stranger 2‐sided cage;however, they were not statistically significant (Figure 4G, WT:P = .1278,Syngap1−/+: P = .3556).WTmice stayed longer aroundthestrangersideofthecage(Figure4G,P<.0007**)thandidthe

mutants. Themutantmice showed a significant increase in totaldistance(Figure4H,P = .0007**).

3.6 | DecreasedprepulseinhibitionoftheacousticstartleresponseinSyngap1−/+ mice

In theprepulse inhibition test, therewasno significantdifferencebetween the Syngap1−/+ and WT mice in the startle amplitude(Figure5A,P = .3613).Syngap1−/+mice showed a significantly de‐creasedprepulse inhibitionof thestartle responsecomparedwithWTmice(Figure5B,110dB,P=.0004**;120dB,P=.0037**).

3.7 | DecreasedimmobilityofSyngap1−/+miceinthetestsfordepression‐likebehavior

InthePorsoltforcedswimtest,Syngap1−/+miceexhibitedasignif‐icantlydecreased immobility timeonday1 andday2 (Figure6A,P=.0051*andP=.0002**,respectively).Likewise,inthetailsuspen‐siontest,Syngap1−/+miceshowedasignificantlydecreasedimmobil‐itytime(Figure6B,P <.00001***).

F I G U R E 4  SociabilityandsocialnoveltypreferenceofSyngap1−/+mice.(A‐D)Socialinteractiontestinnovelenvironments:A,totaldurationofcontacts;B,numberofcontacts;C,meandurationpercontact;andD,totaldistancetraveled.(E‐J)Crawley'ssociabilityandsocialnoveltypreferencetest:E,timespentaroundthecage,andF,totaldistancetraveledinthesociabilitytest;G,timespentaroundthecage,andH,totaldistancetraveledinthesocialnoveltypreferencetest.Datarepresentthemean±SEM.TheP‐valuesin(A‐D,F,andH)indicategenotypeeffectsinone‐wayANOVA.TheP‐valuesinpanels(E)and(G)representthegenotypeeffects(controlsvsmutants)orsideeffects(emptysidevsstranger1side,orstranger1sidevsstranger2side)inone‐wayANOVA

(A) (B) (C)

(E)

(G)

Tim

e sp

ent

arou

nd c

age

(s)

Tim

e sp

ent

arou

nd c

age

(s)

0

50

100

150

0

50

100

150

0

1000

2000

3000P < 0.0001

0

1000

2000

3000P < 0.0001

(D)

(F)

(H)

Social interaction test in novel environment

Tota

l Dur

atio

nof

Con

tact

s (s

)

Controls Mutants(n = 16) (n = 22)

P = 0.0001 P = 0.8005 P = 0.0001 P = 0.0107

Num

ber

of c

onta

cts

Mea

n du

ratio

n/co

ntac

t

Dis

tanc

e tr

avel

ed (

cm)

Controls (n = 7)Mutants (n = 11)

Crawley’s sociability and social novelty preference test

Controls (n = 16)Mutants (n = 22)

Controls (n = 16)Mutants (n = 22)

P = 0.0007

P = 0.0044

P = 0.0097

Controls Mutants(n = 16) (n = 22)

Empty sideStranger 1 side

Stranger 1 sideStranger 2 side

P = 0.0007

P = 0.1278

P = 0.3556

Dis

tanc

e tr

avel

ed (

cm)

Dis

tanc

e tr

avel

ed (

cm)

Page 10: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  9NAKAJIMA et Al.

3.8 | IncreasedlocomotoractivityandimpairedworkingmemoryofSyngap1−/+miceintheT‐maze

AT‐mazespontaneousalternationtaskwasperformedtocomparetheworkingmemorybetweentheWTandSyngap1−/+ mice 48. The percentageofcorrectresponsesofSyngap1−/+micewaslowerthanthatoftheWTmice(Figure7A,P=.0031**).Syngap1−/+miceandWTmiceshowednoobviousdifferencesinlatencytocompleteasession(Figure7B,P=.0785).Syngap1−/+micetraveledalongerdistancetocompleteasession(Figure7C,P=.0003**)thantheWTmice.

In the Y‐maze, Syngap1−/+mice demonstrated an increased num‐berofentries(Figure7D,P=.0001**)andtotalalternations(Figure7E,P=.0006**).Percentageofalternationsinthetotalnumberofentrieswasnotdifferentbetweenthegenotypes (Figure7F,P= .632).Totaldistance was significantly increased in Syngap1−/+ mice (Figure 7G,P=.0005**).

3.9 | ImpairedspatialreferencememoryinSyngap1−/+ mice

IntheBarnesmazetest,Syngap1−/+miceshowedanincreaseinthefollow‐ingindices:numberoferrorsbeforereachingthetargethole(Figure8A,P=.002**),latencytoreachthetargethole(Figure8B,P=.0204*),dis‐tancetoreachthetargethole(Figure8C,P=.0002**),andnumberofomissionerrorsbeforereachingthetargethole(Figure8D,P=.0282#).Probetrialswhereintheescapeboxwasremovedwereperformed1dayaftertrainingandamonthafterthelastdayoftraining.Syngap1−/+ mice spentlesstimearoundthetargetduringtheseprobetests(Figure8E;1day,P=.0022**;1month,P=.0156*)thantheWTmice.

3.10 | DecreasedfreezingofSyngap1−/+ mice duringconditioningincontextualandcuedfearconditioningtest

TherewasnosignificantdifferencebetweenSyngap1−/+andWTmiceinthedistancetraveledbefore,during,oraftereachfootshockduring

theconditioningperiod(Figure9A,footshock1,P=.0774;footshock2,P=.5818;andfootshock3,P=.5153).Syngap1−/+miceexhibitedasignificantdecreaseinthepercentageoffreezingduringconditioning(Figure9B,P=.0001***).During2nddayoftesting,therewerenodif‐ferencesbetweengenotypesinthepercentageoffreezing(Figure9Ctop,P=.5696)orinthedistancetraveled(Figure9Cbottom,P=.494).Inthecuedtestonday2,Syngap1−/+miceshoweddecreasedfreez‐ingduringthesoundrepresentation(Figure9Dtop,P=.0357#).Therewasnodifferenceindistancetraveled(Figure9Dbottom,P=.573)be‐tweenthegenotypes.Inthecontexttesting30daysafterthefearcon‐ditioning,therewerenosignificantdifferencesinfreezing(Figure9Etop,P= .1378)or indistancetraveled (Figure9Ebottom,P= .1661)between the genotypes. In the cued testing after 30days, freezing(Figure9F top,P = .1302) anddistance traveled (Figure9Fbottom,P=.1012)duringthetonerepresentationwerenotsignificantlydiffer‐entbetweenthegenotypes.

3.11 | HomecageactivitiesofSyngap1−/+ mice

Inthesocialinteractiontestinhomecage,anincreasedmeannumberofparticlesofSyngap1−/+micewereobservedduringnight(Figure10A;wholeperiod,P= .2343;day,P= .7405;night,P= .0431#), thoughthisdidnotsurviveFDRcorrection.Syngap1−/+miceexhibitedmore

F I G U R E 5  DecreasedprepulseinhibitionofSyngap1−/+mice.A,StartleamplitudeandB,percentofprepulseinhibitionweretested.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVAthatwasseparatelyperformedinexperimentwithdifferentstartlesoundlevel

Prepulse inhibition test

110 1200

0.5

1

Sta

rtle

Am

plitu

de

Sound Level (dB) Prepulse Sound Level (dB)

P = 0.3613 P = 0.0004 P = 0.0037

(A) (B)

Pre

puls

e in

hibi

tion

(%)

110 dBstartle

120 dBstartle

74 78 74 78

Controls (n = 16)Mutants (n = 22)

F I G U R E 6  DecreasedimmobilityofSyngap1−/+miceinthetestsfordepression‐likebehavior.A,Percentageofimmobilitytimeonday1andday2inaPorsoltforcedswimmingtest.B,Percentageofimmobilitytimeinthetailsuspensiontest.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA

(A)

1 2 3 4 5 6 7 8 9 10Time (min)

1 2 3 4 5 6 7 8 9 10

(B)

Porsolt forced swim test

Tail suspension test

Day 1P = 0.0051

Day 2P = 0.0002

P < 0.0001

Controls (n = 16)Mutants (n = 22)

Imm

obili

ty (

%)

Imm

obili

ty (

%)

Time (min)1 2 3 4 5 6 7 8 9 10

Controls (n = 16)Mutants (n = 19)

Page 11: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

10  |     NAKAJIMA et Al.

locomotor activity during the night (Figure 10B; whole period,P=.0028;day,P=.1247;night,P=.0022**)thantheWTmice.Inthehomecageactivitytestwithsinglemouseinacage,Syngap1−/+ mice showed increasedactivity levelduring thenight (Figure10C;wholeperiod,P=.0021;day,P=.809;night,P=.0006**).

4  | DISCUSSION

In this study,we subjectedmaleSyngap1−/+miceon aC57BL/6Jgenetic background to a comprehensive behavioral test battery.Inagreementwithpreviousbehavioralstudieswhichareusingdif‐ferent Syngap1−/+ mouse lines, we have reproducedmost of thepreviously reportedbehavioralphenotypes: increased locomotoractivity23,25‒29;decreasedprepulseinhibition25;impairedworking23,26,28,29; and reference spatialmemory 22,26,27. Similar to a pre‐ceding report25,heterozygousSyngap1knockoutmiceshowedadecreaseincuedfearmemoryinourstudy,eventhoughthisfailedto reach a study‐wide significance. While weakened contextualfear memory 23,28 and increased startle reflex 25 of the mutantmicehavebeenpreviouslyreported,wefailedtoreproducethesephenotypes. Inaddition,wefoundthatthesemiceshowedade‐creasedsensitivitytopainfulstimuliandimpairedmotorfunction(seeTableS4).

ThedecreasedsensitivitytopainfulstimuliofSyngap1−/+ mice is consistentwith a previous studywhich reported a high pain

thresholdin72%ofSYNGAP‐relatedIDpatients21.Ontheotherhand, two preceding studies failed to detect altered thermalnociception inSyngap1−/+ mice 26,30.Duarteet al30 showed thatcapsaicin‐induced thermal hypernociception occurred at lowerdosesofcapsaicininSyngap1−/+micethaninWTmice.However,thisstudydidnotdetectalterednociceptioninthesemicewith‐outthe injectionofcapsaicin.Differences inthetimecourseofheatapplicationmayhaveledtotheinconsistenciesinpaw‐with‐drawal latency in Syngap1−/+ mice between other studies andours 26,30,56.Duarte et al30 andMuhia et al26 used instrumentswhichapplygraduallyincreasingheatstimuli56‒58.Ontheotherhand, our hot plate provides immediate heat at 55℃. We alsofound that male Syngap1−/+ mice have impairedmotor functionasassessedbytheacceleratingrotarodtest.Learningeffects inthemutantmicewerenotdetectedinthesametest.Thelossofmotorfunctionandthedifficultyinmotorlearningofthesemu‐tantmicemaycorrespondtoataxiaorgaitabnormalitiessimilarto human SYNGAP1‐related ID patients 13,16,18,21,59,60, althoughthepossibleconfoundingeffectofhyperlocomotoractivitycan‐notbeexcludedinthisapparentperformancedeficitofthemu‐tantsintherotarodtest.Ontheotherhand,Muhiaetal26didnotfind suchmotor dysfunctions inmalemutantmice assessed bytheacceleratingrotarodtest.SuchinconsistenciesacrossstudiesmaybeduetovariationsinthedeletionsiteoftheSyngapgene,geneticbackground,and/orageofthemice.DuarteetalusedaSyngap mutantmice on a C57BL/6J background 10,30, of which

F I G U R E 7   ImpairedworkingmemoryandincreasedlocomotoractivityofSyngap1−/+miceobservedinY‐mazeandT‐maze.(A‐C)T‐mazespontaneousalternationtest:A,percentageofcorrectresponses;B,latencytocompleteasession;C,distancetraveledtocompleteasession.(D‐G)Y‐mazetest:D,numberofentries;E,totalalterations;F,numberofalterationsasapercentageoftotalentries;andG,totaldistancetraveled.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA(A‐C),orone‐wayANOVA(D‐G)

1000

2000

3000

4000(D) (E) (F) (G)

(A) (B) (C)

2 42000

2500

3000

3500

Dis

tanc

e (c

m)

Sessions

P = 0.0003

2 450

60

70

80

Cor

rect

Res

pons

es (

%)

Sessions

P = 0.0031

2 4500

600

700

800

900

1000

Late

ncy

(s)

Sessions

P = 0.0785

Y-maze test

T-maze test Controls (n = 16)Mutants (n = 19)

Controls (n = 16)Mutants (n = 19)

P = 0.0001 P = 0.0006 P = 0.632 P = 0.0005

Dis

tanc

e (c

m)

Alte

rnat

ion

(%)

T ota

l alte

rnat

ions

Num

ber

of e

ntrie

s

00

20

40

60

0

5

10

15

20

0

10

20

30

40

Page 12: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  11NAKAJIMA et Al.

exon cassette containing the first commonmethionine presentin Syngap‐c gene was chosen for deletion 10. Muhia et al em‐ployedamutantmouselineonaC57BL/6background(substrainnotspecified)9,26,whereinexons4to9withintheSyngapgenewerecompletelydeleted. Inour study,weusedmutantswithaC57BL/6J background, lacking the codon for arginine 312 (or470)oftheSyngapgene1,2,22.Inadditiontothevariationsinthemutationsite,thereisadifferenceintheageoftheanimalsstud‐ied.Muhiaetal26startedthebehavioraltestswhenthemicewere10‐12weeksold.Ontheotherhand,ourmicewere53‐56weeksoldatthebeginningofthetestbattery.Basedonareportdemon‐strating the effects of age on various behavioral domains inC57BL/6Jmice32,possibleage‐dependencyofthephenotypesinthemutantmiceshouldbetakenintoconsideration.Inthisstudy,femaleSyngap1−/+micewerenottested.Severalpreviousstudieshavereportedthatmanybehavioralphenotypesweresharedbe‐tweenmaleandfemaleSyngap1−/+ mice 6,22,23,25‒27,whileMuhiaetal26reportedadecreasedlatencytofallintherotarodtestonlyinfemales.FurtherstudiesarenecessarytoclarifytheeffectofsexonthephenotypesoftheSyngap1−/+mouselinethatweusedinthepresentstudy.

Intheelevatedplusmaze,Syngap1−/+micestayedontheopenarmforasignificantlylongertimethanWTmice,whichisnormally

interpretedasadecreasedanxiety‐likebehavior61.Severalgroupshave also reported increased open‐arm stay time for Syngap1−/+ miceintheelevatedplusmaze6,23,25,26,28,29.MuhiaetalandGuoetal25,26 investigated theconfoundingeffectofelevated locomotoractivityontheincreasedopen‐armtimeintheelevatedplusmazeandclaimedthatmutantmicehaveabnormalanxietylevels.Muhiaetal26analyzedthefirst2minutesoftheelevatedplusmazetest,inwhichactivitylevelsdidnotdifferbetweenthetwogenotypes,andspeculatedthattheobservedincreaseinentriesandtimespentintheopenarmsbythemutantmicewerenotconfoundedbyen‐hancedlocomotoractivity.Guoetal25alsoarguedthatmutantmicedidnotproperlyperceivedanger,andtheincreasedopen‐armtimewasnotrelatedtoageneralizedornovelty‐inducedhyperactivity,becausetherewerenodifferencesbetweengenotypesinthenum‐berofopenor totalarmentries.On theotherhand,Kilincetal6 claimedthatitwasuncleariftheincreasedtimeintheopenarmsofthemutantmicereflectsreducedanxietyoran increasedexplor‐atorydrive,orboth.Overall, it isstillunclearwhetherSyngap1−/+ micehaveadecreasedanxiety.However,astudyreportedanxiousbehaviorinpatientswithSyngap1mutations62.Someresearchershavespeculated that the increasedexplorationof theopenarmsmayreflectanincreasedpanic‐likeescaperesponsetostressand/or a higher level of anxiety 32,53,63‒65. For example, Schunurri‐2

F I G U R E 8   ImpairedspatialreferencememoryofSyngap1−/+miceintheBarnesmaze.A,Numberoferrorsbeforereachingthetargethole;B,latencytoreachthetargethole;C,distancetoreachthetargethole;andD,numberofomissionerrorsbeforereachingthetargetholeareshown.E,Timespentaroundeachholeintheprobetrialconducted1d(left)and1mo(right)afterthelasttrainingsession.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA(A‐D),orone‐wayANOVA(E)

(B)(A) (C)

(E) Probe test (1 mo after training)Probe test (1 d after training)

Barnes maze test(D)

2 4 6 8 10 12 140

1

2

3

4

Num

ber

of o

mis

sion

err

ors

Trials

P = 0.0282

Controls (n = 16)Mutants (n = 22)

Num

ber

of e

rror

sto

targ

et h

ole

Late

ncy

to ta

rget

hol

e (s

)

Dis

tanc

e to

targ

et h

ole

(cm

)

TrialsTrialsTrials

Tim

e sp

ent a

roun

d ea

ch h

ole

(s)

Tim

e sp

ent a

roun

d ea

ch h

ole

(s)

Distance (angle) from target Distance (angle) from target

P = 0.002 P = 0.0204 P = 0.0002

2 4 6 8 10 12 142 4 6 8 10 12 142 4 6 8 10 12 140

100200

700600500400300

800

02040

140120100

8060

160

0

2

4

12

10

8

6

P = 0.0022

P = 0.0156

Controls (n = 16)Mutants (n = 22)

Controls (n = 16)Mutants (n = 20)

Page 13: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

12  |     NAKAJIMA et Al.

knockout mice, which lack a major histocompatibility complexbindingprotein,showincreasedopen‐armexplorationinadditiontohigherplasmacorticosteronelevels32,64.Furtherinvestigationsarethereforenecessarytoclarifythe linkbetweenSyngap1genemutationsandanxiety.

While many studies have shown elevated locomotor activitiesofSyngap1−/+miceinnovelenvironmentsinvariousbehavioraltests23,25‒29, activity in familiar environment has not yet been tested 6. In thepresentstudy,weobserved thehomecage locomotoractiv‐ityofthesemiceandfoundthattheyhaveasignificantly increased

F I G U R E 9  ContextualandcuedfearmemoryinSyngap1−/+mice.(A)Shocksensitivitymeasuredbythedistancetraveledduringtheshock.Percentageoffreezingtimeduring:(B)conditioning,(C,top)contexttesting,(D,top)cuedtestingwithalteredcontext,(E,top)contexttestingafter30d,and(F,top)cuedtestingwithalteredcontextafter30d.Eachdatapointinthefigurepanels(B)and(C‐F,top)indicatespercentageoffreezingineach1‐minbin.Distancetraveledin:(C,bottom)contexttesting,(D,bottom)cuedtestingwithalteredcontext,(E,bottom),contexttestingafter30d,and(F,bottom)cuedtestingwithalteredcontextafter30d.Eachdatapointinfigurepanels(C‐F,bottom)indicatesthedistancetraveledineach1‐minbin.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA.Thehorizontalblackbarsindicatethetimeduringwhichthetonestimuliwereadministered

CS

UCS

(B) (C)

CS

(D) (E) (F)

Day 30

(A)

Shock sensitivity

Day 1

Free

zing

(%

)

Time (min)

Time (min)

Fear conditioning testDay 2

US US US

Dis

tanc

e tr

avel

ed (

cm)

Dis

tanc

e tr

avel

ed (

cm)

Time (s)

Conditioning Context test Cued test Context test Cued test

Controls (n = 16)Mutants (n = 19)

P P P

PP

P P

P

P PP

P P P

P

Page 14: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  13NAKAJIMA et Al.

locomotor activity at night, which indicates that these mice showhyperlocomotor activity not only in novel, but also in familiarenvironments.

Collectively, we confirmed that the Syngap1−/+ mouse reca‐pitulatesthesymptomsofIDandASDinpatientswithSYNGAP1 mutations. A reduction in Syngap1 levels dramatically affectedlocomotoractivity,cognitivefunctions,emotion,painsensation,andmotorfunction.However,theassociationbetweenSYNGAPandanxietyneeds tobe reconsidered.These findingsalsopro‐videcluestophysiologicalrolesofSYNGAP‐regulatedpathways.Our analysis of Syngap1−/+ mice can prove to be an invaluablemodel for further investigations of ID and ASD patients withSYNGAP1mutations.

ACKNOWLEDG MENTS

WethankKeikoToyama,MikaTanaka,YoshihiroTakamiya,andNaoHirata for their technical support in this study. Thisworkwas sup‐ported by the following grants: MEXT KAKENHI Grant NumbersJP221S0003, JP16H06462, JP16H06276; JSPS KAKENHI GrantNumberJP16680015;AMEDunderGrantNumberJP18dm0107101;andSimonsInitiativefortheDevelopingBraingrantR83776.

CONFLIC T OF INTERE S T

Theauthorshavenoconflictsofinteresttodeclare.

DATA REPOSITORY

The rawdata of the behavioral tests and the information abouteach mouse are accessible on the public database “MousePhenotypeDatabase”(http://www.mouse‐phenotype.org/).

ANIMAL S TUDIE S

AllthebehavioraltestswerecarriedoutintheSectionofBehaviorPatterns,CenterforGeneticAnalysisofBehavior,NationalInstitutefor Physiological Sciences. All the experimental protocols wereapprovedby theAnimalCareandUseCommitteeof theNationalInstituteforPhysiologicalSciences.

ORCID

Ryuichi Nakajima https://orcid.org/0000‐0002‐0024‐4422

Satoko Hattori https://orcid.org/0000‐0002‐1047‐6454

Hirotaka Shoji https://orcid.org/0000‐0003‐4843‐6949

F I G U R E 1 0  ElevatedlocomotoractivityanddecreasedsocialactivityinSyngap1−/+miceinhomecage.(A‐B)Socialinteractioninhomecageasindicatedby(A)meannumberofparticles,and(B)activitylevels.(C)Homecagelocomotoractivityofsinglemouse.Datarepresentthemean±SEM.TheP‐valuesindicategenotypeeffectsintwo‐wayrepeatedmeasuresANOVA.ThethreeP‐valuesineachpanel(A‐C)representthegenotypeeffects(controlsvsmutants)intwo‐wayrepeatedmeasuresANOVAfortheactivitylevelsofwholeday,day,ornight,fromtoprow

(C)

Home cage activity test (single mouse)

1

1.2

1.4

1.6

1.8

2

0

200000

400000

600000

800000P = 0.0028

Act

ivity

Lev

el(A

rbitr

ary

Uni

t)M

ean

Num

ber

of P

artic

les

Day P = 0.7405Night P = 0.0431

Day P = 0.1247Night P = 0.0022

Social interaction test in home cage

(A)

(B)

1 day

daynight

1 day

daynight P = 0.2343

P = 0.0021Day P = 0.809Night P = 0.0006

Controls (n = 7 pairs)Mutants (n = 9 pairs)

Controls (n = 14)Mutants (n = 19)

Act

ivity

Lev

el(A

rbitr

ary

Uni

t)

Page 15: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

14  |     NAKAJIMA et Al.

R E FE R E N C E S

1. ChenH‐J, Rojas‐SotoM,OguniA,KennedyMB.A synapticRas‐GTPaseactivatingprotein(p135SynGAP)inhibitedbyCaMkinaseII.Neuron.1998;20(5):895–904.

2. KimJH,LiaoD,LauL‐F,HuganirRL.SynGAP:asynapticRasGAPthat associates with the PSD‐95/SAP90 protein family. Neuron.1998;20(4):683–91.

3. Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE.SynGAP‐MUPP1‐CaMKII synaptic complexes regulate p38 MAPkinaseactivityandNMDAreceptor‐dependentsynapticAMPAre‐ceptorpotentiation.Neuron.2004;43(4):563–74.

4. PenaV,HothornM,EberthA,KaschauN,ParretA,GremerL,etal.TheC2domainofSynGAPisessentialforstimulationoftheRapGTPasereaction.EMBORep.2008;9(4):350–5.

5. TomodaT.RoleofUnc51.1and itsbindingpartners inCNSaxonoutgrowth.GenesDev.2004;18(5):541–58.

6. KilincM,CresonT,RojasC,AcetiM,EllegoodJ,VaissiereT,etal.Species‐conservedSYNGAP1phenotypesassociatedwithneuro‐developmental disorders.MolCellNeurosci [Internet]. 2018Mar24[cited2018Aug10];Availablefrom:http://www.sciencedirect.com/science/article/pii/S1044743118300307

7. ArakiY,ZengM,ZhangM,HuganirRL.RapiddispersionofSynGAPfromsynaptic spines triggersAMPA receptor insertionand spineenlargementduringLTP.Neuron.2015;85(1):173–89.

8. ZhuJJ,QinY,ZhaoM,VanAelstL,MalinowR.Rasandrapcon‐trol AMPA receptor trafficking during synaptic plasticity. Cell.2002;110(4):443–55.

9. Vazquez LE. SynGAP regulates spine formation. J Neurosci.2004;24(40):8862–72.

10. Kim JH, Lee H‐K, Takamiya K, Huganir RL. The role of synapticGTPase‐activating protein in neuronal development and synapticplasticity.JNeurosci.2003;23(4):1119–24.

11. WritzlK,KnegtAC.6p21.3microdeletioninvolvingtheSYNGAP1 gene in a patientwith intellectual disability, seizures, and severespeechimpairment.AmJMedGenetA.2013;161(7):1682–5.

12. KrepischiA,RosenbergC,CostaSS,Crolla JA,HuangS,Vianna‐Morgante AM. A novel de novo microdeletion spanning theSYNGAP1geneontheshortarmofchromosome6associatedwithmentalretardation.AmJMedGenetA.2010;152A(9):2376–8.

13. PrchalovaD,HavlovicovaM,SterbovaK,StraneckyV,HancarovaM,SedlacekZ.Analysisof31‐year‐oldpatientwithSYNGAP1genedefect points to importanceof variants in broader splice regionsandrevealsdevelopmentaltrajectoryofSYNGAP1‐associatedphe‐notype:casereport.BMCMedGenet [Internet].2017Dec[cited2019 Jan 24];18(1). Available from: http://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881‐017‐0425‐4

14. Ram Venkataraman G, O’Connell C, Egawa F, Kashef‐HaghighiD,Wall DP. De novomutations in autism implicate the synapticeliminationnetwork.PacSympBiocomputPacSympBiocomput.2017;22:521–32.

15. Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S,Krebs M‐O, et al. De novo SYNGAP1 mutations in nonsyn‐dromic intellectual disability and autism. Biol Psychiatry.2011;69(9):898–901.

16. Parker MJ, Fryer AE, Shears DJ, Lachlan KL, McKee SA, MageeAC, et al. De novo, heterozygous, loss‐of‐function mutationsin SYNGAP1 cause a syndromic form of intellectual disability:SYNGAP1Syndrome.AmJMedGenetA.2015;167(10):2231–7.

17. HamdanFF,Gauthier J,ArakiY, LinD‐T,YoshizawaY,HigashiK,etal.Excessofdenovodeleteriousmutationsingenesassociatedwithglutamatergicsystemsinnonsyndromicintellectualdisability.AmJHumGenet.2011;88(3):306–16.

18. Mignot C, von Stülpnagel C, Nava C, VilleD, SanlavilleD, LescaG, et al.Genetic andneurodevelopmental spectrumofSYNGAP1

‐associated intellectual disability and epilepsy. J Med Genet.2016;53(8):511–22.

19. TheDecipheringDevelopmentalDisorders Study, FitzgeraldTW,GeretySS, JonesWD,vanKogelenbergM,KingDA, et al. Large‐scalediscoveryofnovelgeneticcausesofdevelopmentaldisorders.Nature.2015;519(7542):223–8.

20. Berryer MH, Hamdan FF, Klitten LL, Møller RS, Carmant L,SchwartzentruberJ,etal.MutationsinSYNGAP1causeintellectualdisability,autism,andaspecificformofepilepsybyinducinghaplo‐insufficiency.HumMutat.2013;34(2):385–94.

21. VlaskampD,ShawBJ,BurgessR,MeiD,MontomoliM,XieH,etal.SYNGAP1encephalopathy:adistinctivegeneralizeddevelopmen‐talandepilepticencephalopathy.Neurology.2019;92(2):e96–107.

22. KomiyamaNH,Watabe AM, Carlisle HJ, Porter K, CharlesworthP,MontiJ,etal.SynGAPregulatesERK/MAPKsignaling,synapticplasticity,andlearninginthecomplexwithpostsynapticdensity95andNMDAreceptor.JNeurosci.2002;22(22):9721–32.

23. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, etal. Pathogenic SYNGAP1 mutations impair cognitive develop‐ment by disrupting maturation of dendritic spine synapses. Cell.2012;151(4):709–23.

24. KnueselI,ElliottA,ChenH‐J,MansuyIM,KennedyMB.AroleforsynGAPinregulatingneuronalapoptosis:SynGAPregulatesapop‐tosisinneurons.EurJNeurosci.2005;21(3):611–21.

25. GuoX,HamiltonP,ReishNJ,SweattJD,MillerCA,RumbaughG.Reduced expression of the NMDA receptor‐interacting proteinSynGAPcausesbehavioralabnormalitiesthatmodelsymptomsofschizophrenia.Neuropsychopharmacology.2009;34(7):1659–72.

26. MuhiaM,YeeBK,FeldonJ,MarkopoulosF,KnueselI.Disruptionof hippocampus‐regulated behavioural and cognitive processesbyheterozygousconstitutivedeletionofSynGAP.EurJNeurosci.2010;31(3):529–43.

27. MuhiaM,WilladtS,YeeBK,FeldonJ,PaternaJ‐c,SchwendenerS,etal.Molecularandbehavioralchangesassociatedwithadulthippocam‐pus‐specificSynGAP1knockout.LearnMem.2012;19(7):268–81.

28. OzkanED,CresonTK,KramárEA,RojasC,SeeseRR,BabyanAH,etal.ReducedcognitioninSyngap1mutantsiscausedbyisolateddamagewithin developing forebrain excitatory neurons.Neuron.2014;82(6):1317–33.

29. BerryerMH,ChattopadhyayaB,XingP,RiebeI,BosoiC,SanonN,etal.DecreaseofSYNGAP1 inGABAergiccells impairs inhibitorysynapse connectivity, synaptic inhibition and cognitive function.NatCommun.2016;7:13340.

30. DuarteDB,DuanJ‐H,NicolGD,VaskoMR,HingtgenCM.ReducedexpressionofSynGAP, aneuronalGTPase‐activatingprotein, en‐hancescapsaicin‐inducedperipheralsensitization.JNeurophysiol.2011;106(1):309–18.

31. MatsuoN,TakaoK,NakanishiK,YamasakiN,TandaK,MiyakawaT. Behavioral profiles of three C57BL/6 substrains. Front BehavNeurosci.2010;4:29.

32. ShojiH, TakaoK,Hattori S,MiyakawaT.Age‐related changes inbehavior inC57BL/6Jmice fromyoungadulthood tomiddleage.MolBrain.2016;9:11.

33. TakaoK,YamasakiN,MiyakawaT.Impactofbrain‐behaviorpheno‐typyingofgenetically‐engineeredmiceonresearchofneuropsychi‐atricdisorders.NeurosciRes.2007;58(2):124–32.

34. NakajimaR,TakaoK,HuangS‐M,TakanoJ,IwataN,MiyakawaT,etal.Comprehensivebehavioralphenotypingofcalpastatin‐knockoutmice.MolBrain.2008;1(1):7.

35. HattoriS,TakaoK,FunakoshiH,MiyakawaT.Comprehensivebe‐havioralanalysisof tryptophan2,3‐dioxygenase (Tdo2)knockoutmice.NeuropsychopharmacolRep.2018;38(2):52–60.

36. Hirata N, Hattori S, Shoji H, Funakoshi H, Miyakawa T.Comprehensivebehavioralanalysisofindoleamine2,3‐dioxygenaseknockoutmice.NeuropsychopharmacolRep.2018;38(3):133–44.

Page 16: Edinburgh Research Explorer · Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsycho Pharmacology. 1Division

     |  15NAKAJIMA et Al.

37. KoshimizuH,HirataN,TakaoK,ToyamaK,IchinoseT,FuruyaSetal.Comprehensivebehavioralanalysisandquantificationofbrainfree aminoacidsofC57BL/6J congenicmice carrying the1473Gallele in tryptophan hydroxylase‐2. Neuropsychopharmacol Rep[Internet].2018Nov24[cited2019Jan31];Availablefrom:http://doi.wiley.com/10.1002/npr2.12041

38. KatayamaY,NishiyamaM,ShojiH,OhkawaY,KawamuraA,SatoT,etal.CHD8haploinsufficiencyresultsinautistic‐likephenotypesinmice.Nature.2016;537(7622):675–9.

39. YamasakiN,MaekawaM,KobayashiK,KajiiY,MaedaJ,SomaM,et al. Alpha‐CaMKII deficiency causes immature dentate gyrus,a novel candidate endophenotype of psychiatric disorders. MolBrain.2008;1(1):6.

40. YoshiokaN,MiyataS,TamadaA,WatanabeY,KawasakiA,KitagawaH,et al.Abnormalities inperineuronalnets andbehavior inmicelackingCSGalNAcT1,akeyenzymeinchondroitinsulfatesynthesis.MolBrain[Internet].2017Dec[cited2019Mar25];10(1).Availablefrom: http://molecularbrain.biomedcentral.com/articles/10.1186/s13041‐017‐0328‐5

41. KatanoT,TakaoK,AbeM,YamazakiM,WatanabeM,MiyakawaT,etal.DistributionofCaskin1proteinandphenotypiccharacter‐izationofitsknockoutmiceusingacomprehensivebehavioraltestbattery.MolBrain[Internet].2018Dec[cited2019Mar25];11(1).Available from: https://molecularbrain.biomedcentral.com/articles/10.1186/s13041‐018‐0407‐2.

42. TakaoK,MiyakawaT.Light/darktransitiontestformice.JVisExp.2006;(1):104.

43. KomadaM,TakaoK,MiyakawaT.Elevatedplusmaze formice. JVisExp [Internet].2008 [cited2011Sep28];(22).Available from:http://www.ncbi.nlm.nih.gov/pubmed/19229173

44. CrawleyJN.Designingmousebehavioraltasksrelevanttoautistic‐likebehaviors.MentRetardDevDisabilResRev.2004;10(4):248–58.

45. MoySS,NadlerJJ,PerezA,BarbaroRP,JohnsJM,MagnusonTR,et al. Sociability and preference for social novelty in five inbredstrains:anapproachtoassessautistic‐likebehaviorinmice.GenesBrainBehav.2004;3(5):287–302.

46. HamptonTG,StaskoMR,KaleA,AmendeI,CostaA.Gaitdynam‐ics intrisomicmice:quantitativeneurologicaltraitsofDownsyn‐drome.PhysiolBehav.2004;82(2–3):381–9.

47. Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T.Comprehensivebehavioralanalysisofclusterofdifferentiation47knockoutmice.PLoSONE.2014;9(2):e89584.

48. ShojiH,HagiharaH,TakaoK,HattoriS,MiyakawaT.T‐mazeforcedalternation and left‐right discrimination tasks for assessingwork‐ingandreferencememoryinmice.JVisExp[Internet].2012[cited2012 Apr 5];(60). Available from: http://www.ncbi.nlm.nih.gov/pubmed/22395674

49. Tsujimura A, Nishi K, Yokoyama C, Miyakawa T, Tanaka M.Relaxin‐3‐deficientmiceshowedslightalterationinanxiety‐relatedbehavior.FrontBehavNeurosci.2011;5:50.

50. Anagnostaras SG. Computer‐assisted behavioral assessment ofpavlovianfearconditioninginmice.LearnMem.2000;7(1):58–72.

51. Yao I, Takao K, Miyakawa T, Ito S, Setou M. Synaptic E3 ligaseSCRAPPER in contextual fear conditioning: extensive behavioralphenotypingofScrapperheterozygoteandoverexpressingmutantmice.PLoSONE.2011;6(2):e17317.

52. ShojiH,TakaoK,HattoriS,MiyakawaT.Contextualandcuedfearconditioningtestusingavideoanalyzingsysteminmice.JVisExp[Internet]. 2014 Mar 1 [cited 2019 Feb 20];(85). Available from:http://www.jove.com/video/50871/contextual‐cued‐fear‐conditioning‐test‐using‐video‐analyzing‐system

53. MiyakawaT,LeiterLM,GerberDJ,GainetdinovRR,SotnikovaTD,ZengH,etal.Conditionalcalcineurinknockoutmiceexhibitmulti‐pleabnormalbehaviorsrelatedtoschizophrenia.ProcNatlAcadSciUSA.2003;100(15):8987–92.

54. Hattori S,OkumuraY,TakaoK,YamaguchiY,MiyakawaT.Opensourcecodeforbehavioranalysisinrodents.NeuropsychopharmacolRep.2019;39(1):67–9.

55. BenjaminiY,DraiD,ElmerG,KafkafiN,Golani I.Controlling thefalsediscoveryrateinbehaviorgeneticsresearch.BehavBrainRes.2001;125(1–2):279–84.

56. DirigDM,SalamiA,RathbunML,OzakiGT,YakshTL.Characterizationofvariablesdefininghindpawwithdrawallatencyevokedbyradiantthermalstimuli.JNeurosciMethods.1997;76(2):183–91.

57. HargreavesK,DubnerR,BrownF,FloresC,JorisJ.Anewandsen‐sitivemethodformeasuringthermalnociceptionincutaneoushy‐peralgesia.Pain.1988;32(1):77–88.

58. GalbraithJA,MroskoBJ,MyersRR.Asystemtomeasurethermalnociception.JNeurosciMethods.1993;49(1–2):63–8.

59. HoyerJ,EkiciAB,EndeleS,PoppB,ZweierC,WiesenerA,etal.HaploinsufficiencyofARID1B,amemberoftheSWI/SNF‐Achro‐matin‐remodelingcomplex, isafrequentcauseof intellectualdis‐ability.AmJHumGenet.2012;90(3):565–72.

60. ZollinoM,GurrieriF,OrteschiD,MarangiG,LeuzziV,NeriG.etal. Integrated analysis of clinical signs and literature data for thediagnosisandtherapyofapreviouslyundescribed6p21.3deletionsyndrome.EurJHumGenet.2011;19(2):239–42.

61. WalfAA,FryeCA.Theuseoftheelevatedplusmazeasanassayofanxiety‐relatedbehaviorinrodents.NatProtoc.2007;2(2):322–8.

62. Klitten LL,Møller RS, NikanorovaM, Silahtaroglu A, HjalgrimH,TommerupN.AbalancedtranslocationdisruptsSYNGAP1 in a pa‐tientwith intellectual disability, speech impairment, and epilepsywith myoclonic absences (EMA): Balanced Translocation Disrupts SYNGAP1.Epilepsia.2011;52(12):e190–e193.

63. HattoriS,TakaoK,TandaK,ToyamaK,ShintaniN,BabaA,etal.Comprehensive behavioral analysis of pituitary adenylate cy‐clase‐activatingpolypeptide(PACAP)knockoutmice.FrontBehavNeurosci.2012;6:58.

64. TakaoK,KobayashiK,HagiharaH,OhiraK,ShojiH,HattoriS,etal.DeficiencyofSchnurri‐2,anMHCenhancerbindingprotein,in‐ducesmildchronicinflammationinthebrainandconfersmolecu‐lar,neuronal,andbehavioralphenotypesrelatedtoschizophrenia.Neuropsychopharmacology.2013;38(8):1409–25.

65. Holmes A, Parmigiani S, Ferrari PF, Palanza P, Rodgers RJ.Behavioralprofileofwildmice in theelevatedplus‐maze test foranxiety.PhysiolBehav.2000;71(5):509–16.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:NakajimaR,TakaoK,HattoriS,etal.ComprehensivebehavioralanalysisofheterozygousSyngap1 knockoutmice.Neuropsychopharmacol Rep. 2019;00:1–15. https://doi.org/10.1002/npr2.12073