20
Centre d’Ingénierie Hydraulique Tidal stream demonstration project at Paimpol-Bréhat (France) ICOE2014 – Halifax, NS Canada (Nov 2014) EDF Hydro Engineering Centre

EDF Centre d'Ingénierie Hydraulique

  • Upload
    donhan

  • View
    220

  • Download
    3

Embed Size (px)

Citation preview

Page 1: EDF Centre d'Ingénierie Hydraulique

Centre d’Ingénierie Hydraulique

Tidal stream demonstration project at Paimpol-Bréhat (France)

ICOE2014 – Halifax, NS Canada (Nov 2014)

EDF Hydro Engineering Centre

Page 2: EDF Centre d'Ingénierie Hydraulique

Contents

1. Project architecture and layout

2. Construction and implementation

3. Conclusions

Page 3: EDF Centre d'Ingénierie Hydraulique

1. Project architecture and layout

Page 4: EDF Centre d'Ingénierie Hydraulique

Project architecture and layout

Architecture

Page 5: EDF Centre d'Ingénierie Hydraulique

Project architecture and layout

Layout

Page 6: EDF Centre d'Ingénierie Hydraulique

2. Construction and implementation

Page 7: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation

Administrative procedures (2008-2010) 16m turbine prototype testing on site

(2011-2012 ; 2013-2014) Prototype validation, stand alone Marine works procedures validation and improvement

Export cable manufacture and installation (2012) Onshore + offshore substation (2012-2014)

Export cable stabilization (2013) Project next phase (2015)

Installation of 2 pre-industrial 16m turbines, Connection to the grid in Fall 2015.

Page 8: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Turbines (OpenHydro)

Phase 01 : Test of the prototype (OCT-16-01, « Arcouest ») Key objectives of the prototype testing

Prove the technology concept, Develop and validate reliable Method Statements for marine

operations : deployment and recovery, Collect data (electrical, structural, environmental monitoring).

Page 9: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Turbines (OpenHydro) Test conditions (winter 2013-2014)

Test period: Dec. 2013 to April 2014. Very severe winter conditions : 7 significant storms ; 3 of them combined

with high spring tides conditions. Wave height over 8.5 m recorded at the turbine location.

Key results The turbine ran and generated power during 1700 hours. A total of 510 hours of data was recorded. The turbine performance have been confirmed. Some improvements identified to improve the long-term reliability for Phase

02 turbines.

⇒ Successful testing in real conditions. Validate the principle of the 16m diameter prototype developed by OpenHydro. ⇒ The PS2 turbine design benefits from the feedback from the prototype l’Arcouest :

Improved reliability and performance, Industrialization : design for manufacture and assembly

Page 10: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Turbines (OpenHydro)

Page 11: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Offshore/onshore substations (General Electric)

Functions:

Drive the turbines (MPPT) Power conversion (AC => DC) Increase voltage for export to shore Turbine monitoring and SCADA system Auxiliaries power supply

Location: Submerged Fixed on Turbine n°1

Dimensions: 9m length, 3m diametre, 65 tons

Page 12: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Export cable Manufacture (Silec Cable)

Specific design:

DC (+/- 5kV) Optical fibres 16km long – factory built junctions Double armour, free floading, coilable Prototype validation

Page 13: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Export cable Installation – LD Travocean

Constraints:

Landfall (low water depth, rocks) Cable buried in seabed (jetting) on 5km Surface laid on 11km, additional protection with cast iron pipes Strong currents

Page 14: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Export cable Stabilization – Red7Marine

Freespans reduction: Cable realignment Cable support by groutbags

Stabilization: 121 concrete matresses

Page 15: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Connection system

Circuits to be connected: Turbine – Power: 3 single core jumpers Turbine – Auxiliaries: 1 multi-core electrical jumper Turbine – Optical: 1 four-fibres optical jumper Export – Power: 2 single core jumpers Export – Optical: 2 four-fibres optical jumpers

Constraints: All components are submerged, no access Electrical characteristics (U, I, Hz) available products Turbine deployment (positioning, umbilical handling) Site conditions (hydrodynamic, consented area, turbines

positions) Marine works Reliability/Maintenance Project time schedule and budget

Page 16: EDF Centre d'Ingénierie Hydraulique

Construction - Implementation – Connection system hardware (Siemens)

Chosen solution:

Use of wetmate connectors

Advantages:

Existing products / track record Adaptable to turbine position Use of small DSV for future disconnection/connection

Connection:

By divers

Page 17: EDF Centre d'Ingénierie Hydraulique

3. Conclusions

Page 18: EDF Centre d'Ingénierie Hydraulique

To be highly considered for future projects

Turbines: Robustness / reliabilty Energy production Offshore operations (speed and positioning accuracy at limited costs) Foundations / anchoring The ideal turbine will be the best tradeoff

Connection system

Reduce costs Keep reliability Subsea cables integrity Integrated connection (all type of connectors connected at the same time) « Self-connecting » turbine

Offshore works

Surveys Particular constrains (« energetic » sites) Tidal windows / weather windows Keep it quick and simple (as far as possible…)

Page 19: EDF Centre d'Ingénierie Hydraulique

To conclude

Paimpol-Brehat tidal stream demonstrator project

will be a basis for the industry

The first reference in France that will guide any

further industrial development

Page 20: EDF Centre d'Ingénierie Hydraulique

Thank you for your attention