12
/2 Eddy Current Dyno Frein à courant de Foucault Water cooled Eddy current dynamometer A range of products rated from 5 to 3200 kw. 1,2,3 or 4 rotor technology. Full Digital control panel. Extended safeties concept Stand alone solution EddyCurrentDyno_UKP_08_14

Eddy Current Dyno - Rotronics€¦ · Eddy Current Dyno Frein à courant de Foucault Water cooled Eddy current dynamometer A range of products rated from 5 to 3200 kw. 1,2,3 or 4

  • Upload
    others

  • View
    28

  • Download
    0

Embed Size (px)

Citation preview

�/�2

Eddy Current DynoFrein à courant de Foucault

Water cooled Eddy current dynamometerA range of products rated from 5 to 3200 kw.

1,2,3 or 4 rotor technology.Full Digital control panel. Extended safeties conceptStand alone solution

EddyCurrentDyno_UKP_08_14

2/�2

ROTRONICS

ROTRONICS, specialists in engine test beds, offers a range of industrial Eddy current dynamometers.

OPERATING PRINCIPLE

`The brake allows application of a load to an engine undergoing dynamometer testing for measurement of its speed and torque.The brake essentially comprises a rotor and a stator.The stator is mounted on the chassis and circumferential ly retained. Rotational force acting upon it is measured by a load cell. The stator also incorporates electrical windings and ducts for water cooling.The rotor turns inside the stator where it is subjected to a magnetic field generated by the electrical windings. When the rotor turns, it cross the lines of force and induces Eddy currents. These currents generate forces which oppose the movement that gave rise to them. The force of the engine is then transmitted to the stator, and measured by the load cell. Knowing the magnitude of the lever arm and the rotational speed, the engine’s torque can therefore be measured.

The mechanical energy absorbed by the brake is transformed into heat. The heat is removed by cooling water circulated through ducts within the stator. The cooling circuit is dimensioned in order to dissipate the heat energy produced when the dynamometer is running at its maximum power rating.

The speed of rotation is measured by a magneto-resistive sensor in association with an indexed wheel.

�/�2

STANDARD DYNO EQUIPMENT

• A frame supporting the dyno body and allowing fixing to the ground.

• An engine coupling plate with standardised drillings.(DIN�20,DIN�50...)

• A magneto-resistive probe scanning an indexed (60 tooth) wheel mounted on the engine drive shaft for speed measurement.

• A pressure controler mounted on the cooling water outlet for lack of flow detection.

• A high output unit supplying power to the brake windings.

• Thermo-contacts located on the cooling water output to monitor water temperatures.

• A “double output” (additional engine coupling plate at the other end of the dyno shaft) is available across the model range. This allows the addition of a starter or the mounting of two engines, one at either side of the dyno.

OPTIONAL EQUIPMENT

• A digital control rack allows operation of the brake and visualisation of rotational speed, braking torque and power, as well as the current settings.

• A shaft guard fixed to the dyno frame encloses the connecting shaft.

• Two arms allowing calibration of the torque measurement (calibration weights not supplied).

• 8m of cable with connectors for connections between the dynamometer control cabinet and the control rack. Alternate lengths are available at extra cost.

• A load cell with digital signal conditioning unit allowing accurate measurement of the absorbing torque.

• An engine starter unit mounted on the brake. • Extended safeties (vibration, additional sensors) • special frame (custom axis heigth....)

�/�2

Description:As standard, the brakes is delivered with the single loop RRN104 Rack control unit.Its twin processor digital technology allows simultaneous management of the brake, its configuration (fast and accurate) and the real time conditioning & display of data being measured : speed, torque, power, load, settings and alarm status.

Available operating modes :- constant speed.(n=K)- constant torque.(M=K)- Manual load setting.(M) (open loop).- Load as a function of speed squared. (Mn²)Available inputs / outputs :hybrid link to any automation software & dyno RS2�2 Interface with monitoring PC for communication of all settings and measured values.

CONTROLLER SINGLE LOOP

Description:As an option the dyno package can be delivered with a state of the art GIB301 Dual loop digital control rack.It allows simultaneous control of both dyno & throttle actuator.

Visualisation module :- thanks to a large LCD screen you can display/set all needed informations for measurement & control.

CONTROLLER DUAL LOOP

ECD

YNO

ENG

INE

ECU / PEDAL

THROTTLECEA201 or CEA301

CP301

DUALLOOP

CONTROL

Setup bywebserverPOWER UNIT

DYNOPUD

Speed & Safeties (temp,bearing..)Torque (load cell & torquemeter direct conditioning)

ENGINE

DYNO

MODBUS / ETHERCATHYBRID (option)

MODBUSHYBRID (option)

HYBRIDPWM

AUTOMATIONKRONOS

MODBUS ETHERCATPROFIBUS HYBRID

Native digital conditioning:- speed and torque are directly conditioned by the rack (including torquemeter), accuracy and

resolution is maximized. Available operating modes :- several control modes (N/%, N/X,RLS ..) covering all kinds of application from engine test bed to tandem dyno.Available hybrid options :0..�0V Outputs for speed, torque and of power.0..�0V Inputs for setpoint external definition (speed, torque, load...) Digital outputs for alarm signals. Setup by webserver

5/�2

TEChNICAL SPECIfICATIONS

The indicated (cooling) water flow corresponds in a 20° rise in water temperature when operating the dyno at maximum power (typically max inlet temp �0°C, Max outlet 50°C) At this flow level there is a � Bar pressure drop across the dyno.

The dyno’s high speed bearings are oil lubricated.

Direction of rotation : reversible

Design of the cooling water input and output allows easy connection to the cooling water circuit (not supplied). The brake cooling circuit is completely watertight and operates under pressure. The cooling water circuit has no effect on brake hysteresis , which remains well with the stated accuracy.

Color : Blue (RAL 70�0) as standard, other colors available on demand.

Dyno model power torque max speed inertia axis height TYPEkW Nm rpm kgm2 mm

E C5S R 5 17 15000 0,002 647 S RE C20S R 20 120 15000 0,020 647 S RE C40S R 40 150 15000 0,020 647 S RE C75S R 75 450 13000 0,050 647 S RE C110S R 110 450 13000 0,050 647 S RE C190S R 190 800 12000 0,150 647 S RE C230DRS 230 500 13000 0,100 647 DRSE C230DRT 230 900 12000 0,100 647 DRTE C290S R 290 2000 9000 0,600 662 S RE C380DRS 380 800 12000 0,290 662 DRSE C380DRI 380 600 12000 0,100 662 DRIE C380DRT 380 1600 9000 0,300 662 DRTE C500S R 500 3500 5500 3,000 700 S RE C580DRS 580 1800 9000 0,900 700 DRSE C580DRT 580 4000 7000 1,100 700 DRTE C870TRS 870 2000 9000 1,500 700 TRSE C870TRT 870 6000 6500 1,700 700 TRTE C1000DRT 1000 7000 3500 5,500 800 DRTE C1500TRT 1500 10500 3500 8,100 800 TRTE C2500TRT 2500 15000 3500 23,000 1000 TRTE C3200Q RT 3200 20000 2500 33,600 1000 Q RT

6/�2

Sin

gleR

otor

SR

TEC

hN

ICA

L C

hA

RA

CTE

RIS

TIC

S

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

20

-40

SR

370

43

04

80

62

070

82

353

64

716

23

“9

03

40

42

09

056

014

504

35

350

1815

02

5050

9,9

417

20

8,5

42

47

M8

74,5

89

1219

3

EC

75-1

10S

R4

00

46

051

06

5070

874

546

47

162

6G

1“9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

452

22

66

257

M8

84

99

122

40

EC

190

SR

510

580

63

077

070

93

56

66

62

22

30

G1“

¼9

054

06

40

90

500

1450

38

954

018

150

375

1019

,759

12

95,

58

275

M10

101,

511

913

39

3

EC

29

0S

R6

30

69

074

08

80

7010

40

67

700

22

23

G1”

½9

06

60

760

90

90

013

503

87

64

018

150

40

510

19,7

700

350

82

,59

0M

1213

015

016

66

0

EC

500

SR

740

80

08

5010

30

90

124

22

88

00

22

49

,5G

2“

100

90

010

00

90

118

012

504

60

88

02

215

051

715

29

,68

65

43

2,5

82

,511

0M

1215

5,5

180

1611

50

Dyn

oT

ype

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

23

0D

RS

518

578

62

876

870

874

190

64

716

17G

1”½

90

46

054

09

06

80

1450

40

04

40

1815

03

25

1019

,757

02

26

118

62

57M

88

49

912

38

5

EC

38

0D

RS

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

38

0D

RI

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

580

DR

S75

48

148

64

100

470

104

017

070

02

22

3G

2”

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,68

24

32

2,5

179

82

,59

0M

1213

015

016

1050

EC

23

0D

RT

562

63

26

82

82

270

874

190

64

716

30

G1”

½9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

64

12

51,5

138

82

75M

1010

1,5

119

134

35

EC

38

0D

RT

732

80

28

529

92

709

35

190

66

22

22

1G

2“

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

80

23

17,5

167

82

,59

0M

1213

015

016

735

EC

580

DR

T79

98

60

910

1050

7010

40

7070

02

24

9G

2“

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,69

26

36

12

04

82

,511

0M

1215

5,5

180

1611

60

EC

100

0D

RT

103

411

1411

84

142

412

012

42

90

80

02

757

G2

”½10

09

80

108

09

013

20

22

502

90

88

02

72

00

560

20

39

,411

82

46

62

508

314

0M

18x1

.52

182

503

02

30

0

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

??

??

745

815

86

510

45

90

93

4,5

22

26

62

22

29

,5G

2”½

90

540

66

013

08

00

1350

38

954

018

150

377

1019

,78

25,

52

60

,515

212

275

M10

101,

511

913

90

0

EC

870

TR

S9

33

99

310

43

122

39

010

40

172

700

22

23

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

100

33

22

,517

98

2,5

110

M12

155,

518

016

1450

EC

870

TR

T10

03

106

411

1412

94

90

104

070

700

22

49

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

113

03

61

20

48

2,5

110

M16

155,

518

03

016

00

EC

150

0T

RT

128

413

64

143

416

7412

012

42

90

80

02

757

G3

”10

09

80

108

013

013

20

20

00

46

08

80

27

20

056

02

03

9,4

143

24

66

250

83

140

M18

*1,5

218

26

03

03

30

0

EC

250

0T

RT

1417

149

715

67

186

715

015

60

210

100

02

79

112

52

00

1150

130

013

016

00

24

00

520

850

37

20

06

35

20

39

,416

38

523

29

68

+86

175

M2

0*2

Ø2

02

45

28

53

055

00

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

32

00

QR

T17

1317

93

186

32

163

150

1 5 6

02

1010

00

27

91

125

20

011

5013

00

130

160

02

40

052

08

503

72

00

64

72

03

9,4

193

452

32

96

8+8

617

5M

20

*2Ø

20

24

52

85

30

760

0

CW

CC

WC

W

Sen

s d

e ro

tati

on

Ro

tati

on

Dir

ecti

on

Cap

teu

r de

forc

eLo

ad c

ell

Entr

ée d

’eau

Wat

er In

let

Sort

ie d

’eau

Wat

er O

utl

et

Pres

sost

atD

iffer

enti

al p

ress

ure

sw

itch

An

nea

u d

e le

vag

eLi

ftin

g

(Nb

alé

sag

e)(N

b h

ole

s)B

rid

e d

’acc

ou

ple

men

tEn

gin

e C

ou

plin

g F

lan

ge

Cap

teu

r Vit

esse

Pick

up

7/�2

Dou

bleR

otor

DR

TEC

hN

ICA

L C

hA

RA

CTE

RIS

TIC

S CC

WC

W

An

nea

u d

e le

vag

eLi

ftin

g

Sen

s d

e ro

tati

on

Ro

tati

on

Dir

ecti

on

Sort

ie d

’eau

Wat

er O

utl

et

Pres

sost

atD

iffer

enti

al p

ress

ure

sw

itch

Cap

teu

r de

forc

eLo

ad c

ell

Entr

ée d

’eau

Wat

er In

let

(Nb

alé

sag

es)

(Nb

ho

les)

Bri

de

d’a

cco

up

lem

ent

Eng

ine

Co

up

ling

Fla

ng

e

Cap

teu

r Vit

esse

Pick

up

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

20

-40

SR

370

43

04

80

62

070

82

353

64

716

23

“9

03

40

42

09

056

014

504

35

350

1815

02

5050

9,9

417

20

8,5

42

47

M8

74,5

89

1219

3

EC

75-1

10S

R4

00

46

051

06

5070

874

546

47

162

6G

1“9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

452

22

66

257

M8

84

99

122

40

EC

190

SR

510

580

63

077

070

93

56

66

62

22

30

G1“

¼9

054

06

40

90

500

1450

38

954

018

150

375

1019

,759

12

95,

58

275

M10

101,

511

913

39

3

EC

29

0S

R6

30

69

074

08

80

7010

40

67

700

22

23

G1”

½9

06

60

760

90

90

013

503

87

64

018

150

40

510

19,7

700

350

82

,59

0M

1213

015

016

66

0

EC

500

SR

740

80

08

5010

30

90

124

22

88

00

22

49

,5G

2“

100

90

010

00

90

118

012

504

60

88

02

215

051

715

29

,68

65

43

2,5

82

,511

0M

1215

5,5

180

1611

50

Dyn

oT

ype

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

23

0D

RS

518

578

62

876

870

874

190

64

716

17G

1”½

90

46

054

09

06

80

1450

40

04

40

1815

03

25

1019

,757

02

26

118

62

57M

88

49

912

38

5

EC

38

0D

RS

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

38

0D

RI

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

580

DR

S75

48

148

64

100

470

104

017

070

02

22

3G

2”

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,68

24

32

2,5

179

82

,59

0M

1213

015

016

1050

EC

23

0D

RT

562

63

26

82

82

270

874

190

64

716

30

G1”

½9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

64

12

51,5

138

82

75M

1010

1,5

119

134

35

EC

38

0D

RT

732

80

28

529

92

709

35

190

66

22

22

1G

2“

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

80

23

17,5

167

82

,59

0M

1213

015

016

735

EC

580

DR

T79

98

60

910

1050

7010

40

7070

02

24

9G

2“

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,69

26

36

12

04

82

,511

0M

1215

5,5

180

1611

60

EC

100

0D

RT

103

411

1411

84

142

412

012

42

90

80

02

757

G2

”½10

09

80

108

09

013

20

22

502

90

88

02

72

00

560

20

39

,411

82

46

62

508

314

0M

18x1

.52

182

503

02

30

0

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

??

??

745

815

86

510

45

90

93

4,5

22

26

62

22

29

,5G

2”½

90

540

66

013

08

00

1350

38

954

018

150

377

1019

,78

25,

52

60

,515

212

275

M10

101,

511

913

90

0

EC

870

TR

S9

33

99

310

43

122

39

010

40

172

700

22

23

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

100

33

22

,517

98

2,5

110

M12

155,

518

016

1450

EC

870

TR

T10

03

106

411

1412

94

90

104

070

700

22

49

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

113

03

61

20

48

2,5

110

M16

155,

518

03

016

00

EC

150

0T

RT

128

413

64

143

416

7412

012

42

90

80

02

757

G3

”10

09

80

108

013

013

20

20

00

46

08

80

27

20

056

02

03

9,4

143

24

66

250

83

140

M18

*1,5

218

26

03

03

30

0

EC

250

0T

RT

1417

149

715

67

186

715

015

60

210

100

02

79

112

52

00

1150

130

013

016

00

24

00

520

850

37

20

06

35

20

39

,416

38

523

29

68

+86

175

M2

0*2

Ø2

02

45

28

53

055

00

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

32

00

QR

T17

1317

93

186

32

163

150

1 5 6

02

1010

00

27

91

125

20

011

5013

00

130

160

02

40

052

08

503

72

00

64

72

03

9,4

193

452

32

96

8+8

617

5M

20

*2Ø

20

24

52

85

30

760

0

8/�2

Trip

leR

otor

TR

TEC

hN

ICA

L C

hA

RA

CTE

RIS

TIC

S

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

20

-40

SR

370

43

04

80

62

070

82

353

64

716

23

“9

03

40

42

09

056

014

504

35

350

1815

02

5050

9,9

417

20

8,5

42

47

M8

74,5

89

1219

3

EC

75-1

10S

R4

00

46

051

06

5070

874

546

47

162

6G

1“9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

452

22

66

257

M8

84

99

122

40

EC

190

SR

510

580

63

077

070

93

56

66

62

22

30

G1“

¼9

054

06

40

90

500

1450

38

954

018

150

375

1019

,759

12

95,

58

275

M10

101,

511

913

39

3

EC

29

0S

R6

30

69

074

08

80

7010

40

67

700

22

23

G1”

½9

06

60

760

90

90

013

503

87

64

018

150

40

510

19,7

700

350

82

,59

0M

1213

015

016

66

0

EC

500

SR

740

80

08

5010

30

90

124

22

88

00

22

49

,5G

2“

100

90

010

00

90

118

012

504

60

88

02

215

051

715

29

,68

65

43

2,5

82

,511

0M

1215

5,5

180

1611

50

Dyn

oT

ype

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

23

0D

RS

518

578

62

876

870

874

190

64

716

17G

1”½

90

46

054

09

06

80

1450

40

04

40

1815

03

25

1019

,757

02

26

118

62

57M

88

49

912

38

5

EC

38

0D

RS

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

38

0D

RI

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

580

DR

S75

48

148

64

100

470

104

017

070

02

22

3G

2”

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,68

24

32

2,5

179

82

,59

0M

1213

015

016

1050

EC

23

0D

RT

562

63

26

82

82

270

874

190

64

716

30

G1”

½9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

64

12

51,5

138

82

75M

1010

1,5

119

134

35

EC

38

0D

RT

732

80

28

529

92

709

35

190

66

22

22

1G

2“

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

80

23

17,5

167

82

,59

0M

1213

015

016

735

EC

580

DR

T79

98

60

910

1050

7010

40

7070

02

24

9G

2“

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,69

26

36

12

04

82

,511

0M

1215

5,5

180

1611

60

EC

100

0D

RT

103

411

1411

84

142

412

012

42

90

80

02

757

G2

”½10

09

80

108

09

013

20

22

502

90

88

02

72

00

560

20

39

,411

82

46

62

508

314

0M

18x1

.52

182

503

02

30

0

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

??

??

745

815

86

510

45

90

93

4,5

22

26

62

22

29

,5G

2”½

90

540

66

013

08

00

1350

38

954

018

150

377

1019

,78

25,

52

60

,515

212

275

M10

101,

511

913

90

0

EC

870

TR

S9

33

99

310

43

122

39

010

40

172

700

22

23

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

100

33

22

,517

98

2,5

110

M12

155,

518

016

1450

EC

870

TR

T10

03

106

411

1412

94

90

104

070

700

22

49

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

113

03

61

20

48

2,5

110

M16

155,

518

03

016

00

EC

150

0T

RT

128

413

64

143

416

7412

012

42

90

80

02

757

G3

”10

09

80

108

013

013

20

20

00

46

08

80

27

20

056

02

03

9,4

143

24

66

250

83

140

M18

*1,5

218

26

03

03

30

0

EC

250

0T

RT

1417

149

715

67

186

715

015

60

210

100

02

79

112

52

00

1150

130

013

016

00

24

00

520

850

37

20

06

35

20

39

,416

38

523

29

68

+86

175

M2

0*2

Ø2

02

45

28

53

055

00

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

32

00

QR

T17

1317

93

186

32

163

150

1 5 6

02

1010

00

27

91

125

20

011

5013

00

130

160

02

40

052

08

503

72

00

64

72

03

9,4

193

452

32

96

8+8

617

5M

20

*2Ø

20

24

52

85

30

760

0

CC

WC

W

Se

ns

de

ro

tati

on

Ro

tati

on

Dir

ect

ion

An

ne

au

de

lev

ag

eL

ifti

ng

Ca

pte

ur

de

fo

rce

Loa

d c

ell

En

tré

e d

’ea

uW

ate

r In

let

So

rtie

d’e

au

Wa

ter

Ou

tle

t

Pre

sso

sta

tD

iffe

ren

tia

l pre

ssu

re s

wit

ch

(Nb

alé

sag

e)

(Nb

ho

les)

Bri

de

d’a

cco

up

lem

en

tE

ng

ine

Co

up

lin

g F

lan

ge

Ca

pte

ur

Vit

ess

eP

ick

up

�/�2

Qua

drup

leR

otor

QR

TEC

hN

ICA

L C

hA

RA

CTE

RIS

TIC

S

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

20

-40

SR

370

43

04

80

62

070

82

353

64

716

23

“9

03

40

42

09

056

014

504

35

350

1815

02

5050

9,9

417

20

8,5

42

47

M8

74,5

89

1219

3

EC

75-1

10S

R4

00

46

051

06

5070

874

546

47

162

6G

1“9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

452

22

66

257

M8

84

99

122

40

EC

190

SR

510

580

63

077

070

93

56

66

62

22

30

G1“

¼9

054

06

40

90

500

1450

38

954

018

150

375

1019

,759

12

95,

58

275

M10

101,

511

913

39

3

EC

29

0S

R6

30

69

074

08

80

7010

40

67

700

22

23

G1”

½9

06

60

760

90

90

013

503

87

64

018

150

40

510

19,7

700

350

82

,59

0M

1213

015

016

66

0

EC

500

SR

740

80

08

5010

30

90

124

22

88

00

22

49

,5G

2“

100

90

010

00

90

118

012

504

60

88

02

215

051

715

29

,68

65

43

2,5

82

,511

0M

1215

5,5

180

1611

50

Dyn

oT

ype

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

23

0D

RS

518

578

62

876

870

874

190

64

716

17G

1”½

90

46

054

09

06

80

1450

40

04

40

1815

03

25

1019

,757

02

26

118

62

57M

88

49

912

38

5

EC

38

0D

RS

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

38

0D

RI

66

273

278

29

22

709

35

190

66

22

23

1G

2”

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

743

29

5,5

152

82

75M

1010

1,5

119

136

30

EC

580

DR

S75

48

148

64

100

470

104

017

070

02

22

3G

2”

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,68

24

32

2,5

179

82

,59

0M

1213

015

016

1050

EC

23

0D

RT

562

63

26

82

82

270

874

190

64

716

30

G1”

½9

04

60

540

90

68

014

504

00

44

018

150

32

510

19,7

64

12

51,5

138

82

75M

1010

1,5

119

134

35

EC

38

0D

RT

732

80

28

529

92

709

35

190

66

22

22

1G

2“

90

540

64

09

078

014

503

89

540

1815

03

7710

19,7

80

23

17,5

167

82

,59

0M

1213

015

016

735

EC

580

DR

T79

98

60

910

1050

7010

40

7070

02

24

9G

2“

90

66

076

09

09

25

1350

38

76

40

1815

04

1515

29

,69

26

36

12

04

82

,511

0M

1215

5,5

180

1611

60

EC

100

0D

RT

103

411

1411

84

142

412

012

42

90

80

02

757

G2

”½10

09

80

108

09

013

20

22

502

90

88

02

72

00

560

20

39

,411

82

46

62

508

314

0M

18x1

.52

182

503

02

30

0

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

??

??

745

815

86

510

45

90

93

4,5

22

26

62

22

29

,5G

2”½

90

540

66

013

08

00

1350

38

954

018

150

377

1019

,78

25,

52

60

,515

212

275

M10

101,

511

913

90

0

EC

870

TR

S9

33

99

310

43

122

39

010

40

172

700

22

23

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

100

33

22

,517

98

2,5

110

M12

155,

518

016

1450

EC

870

TR

T10

03

106

411

1412

94

90

104

070

700

22

49

G2

”½9

06

60

760

130

90

013

503

87

64

018

150

415

152

9,6

113

03

61

20

48

2,5

110

M16

155,

518

03

016

00

EC

150

0T

RT

128

413

64

143

416

7412

012

42

90

80

02

757

G3

”10

09

80

108

013

013

20

20

00

46

08

80

27

20

056

02

03

9,4

143

24

66

250

83

140

M18

*1,5

218

26

03

03

30

0

EC

250

0T

RT

1417

149

715

67

186

715

015

60

210

100

02

79

112

52

00

1150

130

013

016

00

24

00

520

850

37

20

06

35

20

39

,416

38

523

29

68

+86

175

M2

0*2

Ø2

02

45

28

53

055

00

Dyn

oty

pe

AB

CD

EF

GH

øI

J±2

øk

LM

NO

PQ

RS

TU

VW

X±4

Y±2

Za

c(g

6)

ød

øe

øf

hW

eig

htkg

EC

32

00

QR

T17

1317

93

186

32

163

150

1 5 6

02

1010

00

27

91

125

20

011

5013

00

130

160

02

40

052

08

503

72

00

64

72

03

9,4

193

452

32

96

8+8

617

5M

20

*2Ø

20

24

52

85

30

760

0

CW

CC

W Sen

s d

e ro

tati

on

Ro

tati

on

Dir

ecti

on

An

nea

u d

e le

vag

eLi

ftin

g

Sort

ie d

’eau

Wat

er O

utl

et

Pres

sost

atD

iffer

enti

al p

ress

ure

sw

itch

Cap

teu

r de

forc

eLo

ad c

ell

Entr

ée d

’eau

Wat

er In

let

(Nb

alé

sag

es)

(Nb

ho

les)

Bri

de

d’a

cco

up

lem

ent

Eng

ine

Co

up

ling

Fla

ng

e

Cap

teu

r V

ites

sePi

cku

p

�0/�2

Thanks to the dual output dyno we can deliver on demand some starter for your R&D or production test bed. The electrical motor torque and speed can be adjusted to your specifications.

ShAfT GUARD DETAILS

The dimension «L» can be the standard length or can be modified on demand.

D=

=

= =

CL

B A

ENGINE STARTER

ShAfT DETAILSDepending on your application we can help you to define and deliver the right transmission shaft from high speed very light transmission to the heavy duty application. It includes cardan shaft as well as elastic transmission with dampers.

ThROTTLE ACTUATOR We can offer CEA20� durability throttle actuator with a �s stroke or advanced dynamic CEA�0�with stroke below 0.�s.Link to the PGB control rack is digital for better control.

��/�2

OPERATING LIMITS

The operating limits are represented by the straight lines of a log-log graph. The representative segments are the following :

A : Maximum power at low speed, deduced from the maximum excitation current applied to the brake. B : Maximum brake torque deduced from the maximum mechanical capacity of the brake elements.C : Maximum brake power rating, deduced from the water cooling capacity.

D : Maximum brake speed, determined from the mechanical performance of loaded bearings.

E : Minimum applied power. Minimum power necessary in order to overcome the internal resistance of the brake.

N.B : For maximum brake durability the user is advised to remain always within these given operating limits.

Power hp �Torque mdaN

Engine speed rpm

Power

Torque

A

B

B

C

C

D

D

EE

A

�2/�2

DYNO PERfORMANCES

http://www.rotronics.com email : [email protected]

Phone : + �� (0)�50 0�0 85� Fax :+ �� (0)�50 0�0 5�7

DYNOSENS ��, impasse de l’étang. Z.I. des Dragiez 7�800 LA ROCHE SUR FORON - FRANCE

EC19

0SREC

290S

R

EC230DRT

EC380DRS

EC38

0DRT

EC380D

RI

EC580 DRS

EC110SR

EC75SR

EC20SR

EC500SREC

5SR

EC40SR

EC58

0DRT

EC870TRSEC870TRT