24
ECSS-E-ST-32-10C Rev.1 6 March 2009 Space engineering Structural factors of safety for spaceflight hardware ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands

ECSS-E-ST-32-10C_Rev.1(6March2009).pdf

Embed Size (px)

Citation preview

  • ECSS-E-ST-32-10C Rev.1 6 March 2009

    Space engineering Structural factors of safety for spaceflight hardware

    ECSS Secretariat ESA-ESTEC

    Requirements & Standards Division Noordwijk, The Netherlands

  • ECSSEST3210CRev.16March2009

    2

    Foreword

    This Standard is one of the series of ECSS Standards intended to be applied together for themanagement, engineering and product assurance in space projects and applications. ECSS is acooperative effort of the European SpaceAgency, national space agencies and European industryassociationsforthepurposeofdevelopingandmaintainingcommonstandards.RequirementsinthisStandardaredefinedintermsofwhatshallbeaccomplished,ratherthanintermsofhowtoorganizeandperform thenecessarywork.Thisallows existingorganizational structures andmethods tobeappliedwheretheyareeffective,andforthestructuresandmethodstoevolveasnecessarywithoutrewritingthestandards.

    ThisStandardhasbeenpreparedby theECSSEST3210CWorkingGroup, reviewedby theECSSExecutiveSecretariatandapprovedbytheECSSTechnicalAuthority.

    Disclaimer

    ECSSdoesnotprovideanywarrantywhatsoever,whetherexpressed,implied,orstatutory,including,butnotlimitedto,anywarrantyofmerchantabilityorfitnessforaparticularpurposeoranywarrantythat the contents of the item are errorfree. In no respect shall ECSS incur any liability for anydamages,including,butnotlimitedto,direct,indirect,special,orconsequentialdamagesarisingoutof,resulting from,or inanywayconnected to theuseof thisStandard,whetherornotbaseduponwarranty,businessagreement,tort,orotherwise;whetherornotinjurywassustainedbypersonsorpropertyorotherwise;andwhetherornotlosswassustainedfrom,oraroseoutof,theresultsof,theitem,oranyservicesthatmaybeprovidedbyECSS.

    Publishedby: ESARequirementsandStandardsDivision ESTEC, P.O. Box 299, 2200 AG Noordwijk The Netherlands Copyright: 2009 by the European Space Agency for the members of ECSS

  • ECSSEST3210CRev.16March2009

    3

    Change log

    ECSSEST3210A Neverissued

    ECSSEST3210B Neverissued

    ECSSEST3210C

    31July2008

    Firstissue

    ECSSEST3210CRev.1

    6March2009

    Firstissuerevision1

    ChangeswithrespecttoversionC(31July2008)areidentifiedwithrevisiontracking.

    Mainchangesare:

    ChangeofdocumenttitlefromReliabilitybasedmechanicalfactorsofsafetytoStructuralfactorsofsafetyforspaceflighthardware

    AdditionofatypicalvalueforKMassociatedtointernalpressureforpressurizedhardwareinclause4.1.4.2b

    AdditionofrequirementsforFOSforthermalinducedloadsinclause4.3.2.1

    CorrectionofTable42:Testfactorvalues Editorialcorrections

  • ECSSEST3210CRev.16March2009

    4

    Table of contents

    Change log .................................................................................................................3

    1 Scope.......................................................................................................................6

    2 Normative references.............................................................................................8

    3 Terms, definitions and abbreviated terms............................................................9 3.1 Terms and definitions .................................................................................................9 3.2 Terms specific to the present standard ......................................................................9 3.3 Abbreviated terms ....................................................................................................10

    4 Requirements........................................................................................................11 4.1 Applicability of structural factors of safety ................................................................11

    4.1.1 Overview.....................................................................................................11 4.1.2 Applicability.................................................................................................11 4.1.3 General.......................................................................................................11 4.1.4 Design factor for loads................................................................................11 4.1.5 Additional factors for design .......................................................................13

    4.2 Loads and factors relationship .................................................................................14 4.2.1 General.......................................................................................................14 4.2.2 Specific requirements for launch vehicles ..................................................16

    4.3 Factors values ..........................................................................................................17 4.3.1 Test factors.................................................................................................17 4.3.2 Factors of safety .........................................................................................18

    Annex A (informative) Qualification test factor for launch vehicles ...................22

    Bibliography.............................................................................................................24 Figures Figure 4-1: Logic for Factors of Safety application.................................................................15 Figure 4-2: Analysis tree ........................................................................................................16

  • ECSSEST3210CRev.16March2009

    5

    Tables Table 4-1: Relationship among (structural) factors of safety, design factors and

    additional factors..................................................................................................15 Table 4-2: Test factor values..................................................................................................17 Table 4-3: Factors of safety for metallic, FRP, sandwich, glass and ceramic structural

    parts.....................................................................................................................19 Table 4-4: Factors of safety for joints, inserts and connections .............................................20 Table 4-5: Factors of safety for buckling ................................................................................21 Table 4-6: Factors of safety for pressurized hardware...........................................................21

  • ECSSEST3210CRev.16March2009

    6

    1 Scope

    Thepurposeof thisStandard is todefine theFactorsOfSafety (FOS),DesignFactor and additional factors to be used for the dimensioning and designverification of spaceflight hardware including qualification and acceptancetests.

    ThisstandardisnotselfstandingandisusedinconjunctionwiththeECSSEST32,ECSSEST3202andECSSEST3301documents.

    Followingassumptionsaremadeinthedocument:

    thatrecognizedmethodologiesareusedforthedeterminationofthelimitloads,includingtheirscatter,thatareappliedtothehardwareandforthestressanalyses;

    that the structural and mechanical system design is amenable toengineering analyses by current stateoftheart methods and isconformingtostandardaerospaceindustrypractices.

    Factorsof safety aredefined to cover chosen load levelprobability, assumeduncertainty in mechanical properties and manufacturing but not a lack ofengineeringeffort.

    Thechoiceofafactorofsafetyforaprogramisdirectlylinkedtotherationaleretained for designing, dimensioning and testing within the program.Therefore,asthedevelopmentlogicandtheassociatedreliabilityobjectivesaredifferentfor:

    unmannedscientificorcommercialsatellite, expendablelaunchvehicles, manratedspacecraft,and anyotherunmannedspacevehicle(e.g.transfervehicle,planetaryprobe)specificvaluesarepresentedforeachofthem.Factors of safety for reusable launch vehicles and manrated commercialspacecraftarenotaddressedinthisdocument.

    For all of these spaceproducts, factors of safety aredefined hereafter in thedocumentwhatever the adopted qualification logic:protoflightorprototypemodel.

    Forpressurizedhardware,factorsofsafetyforallloadsexceptinternalpressureloadsaredefinedinthisstandard.Concerningtheinternalpressure,thefactors

  • ECSSEST3210CRev.16March2009

    7

    ofsafetyforpressurisedhardwarecanbefoundinECSSEST3202.ForloadscombinationrefertoECSSEST3202.

    Formechanisms,specificfactorsofsafetyassociatedwithyieldandultimateofmetallicmaterials,cable rupture factorsof safety, stops/shaft shoulders/recessyieldfactorsofsafetyandlimitsforpeakHertziancontactstressarespecifiedinECSSEST3301.

    Alternateapproach

    The factors of safety specified hereafter are applied using a deterministicapproach i.e. as generally applied in the Space Industry to achieve thestructures standard reliability objectives. Structural safety based on aprobabilistic analysis could be an alternate approach but it has to bedemonstrated this process achieves the reliability objective specified to thestructure.Theprocedureisapprovedbythecustomer.

    ThisstandardmaybetailoredforthespecificcharacteristicsandconstraintsofaspaceprojectinconformancewithECSSSST00.

  • ECSSEST3210CRev.16March2009

    8

    2 Normative references

    The following normative documents contain provisions which, throughreference in this text, constitute provisions of thisECSS Standard. Fordatedreferences,subsequentamendmentsto,orrevisionofanyofthesepublications,donotapply.However,partiestoagreementsbasedonthisECSSStandardareencouragedtoinvestigatethepossibilityofapplyingthemorerecenteditionsofthenormativedocuments indicated below. Forundated references, the latesteditionofthepublicationreferredtoapplies.

    ECSSSST0001 ECSSsystemGlossaryofterms

    ECSSEST1002 SpaceengineeringVerification

    ECSSEST1003 SpaceengineeringTesting

    ECSSEST32 SpaceengineeringStructuralgeneralrequirements

    ECSSEST3202 SpaceengineeringStructuraldesignandverificationofpressurizedhardware

  • ECSSEST3210CRev.16March2009

    9

    3 Terms, definitions and abbreviated terms

    3.1 Terms and definitions ForthepurposeofthisStandard,thetermsanddefinitionsfromECSSSST0001,ECSSEST1002,ECSSSTE1003,andECSSEST32apply.

    3.2 Terms specific to the present standard 3.2.1 local design factor (KLD) factorusedtotakeintoaccountlocaldiscontinuitiesandappliedinserieswithFOSUorFOSY

    3.2.2 margin policy factor (KMP) factor,specifictolaunchvehicles,whichincludesthemarginpolicydefinedbytheproject

    3.2.3 model factor (KM) factorwhichtakesintoaccounttherepresentativityofmathematicalmodels

    3.2.4 project factor (KP) factorwhichtakes intoaccountatthebeginningoftheprojectthematurityofthedesignand itspossibleevolutionandprogrammaticmarginswhichcoverprojectuncertaintiesorsomegrowthpotentialwhenrequired

    3.2.5 prototype test testperformedonaseparateflightlikestructuraltestarticle

    3.2.6 protoflight test testperformedonaflighthardware

    3.2.7 test factors (KA and KQ) factors used to define respectively the acceptance and the qualification testloads

    3.2.8 ultimate design factor of safety (FOSU) multiplying factor applied to the design limit load in order to calculate thedesignultimateload

  • ECSSEST3210CRev.16March2009

    10

    3.2.9 yield design factor of safety (FOSY) multiplying factor applied to the design limit load in order to calculate thedesignyieldload

    3.3 Abbreviated terms For thepurposeof thisstandard, theabbreviated terms fromECSSSST0001andthefollowingapply.

    Abbreviation MeaningAL acceptancetestload

    DLL designlimitload

    DUL designultimateload

    DYL designyieldload

    FOS factorofsafety

    FOSU ultimatedesignfactorofsafety

    FOSY yielddesignfactorofsafety

    FRP fibrereinforcedplastics

    GSE groundsupportequipment

    KA acceptancetestfactor

    KQ qualificationtestfactor

    LCDA launchvehiclecoupleddynamicanalysis

    LL limitload

    N/A notapplicable

    QL qualificationtestload

    S/C spacecraft

  • ECSSEST3210CRev.16March2009

    11

    4 Requirements

    4.1 Applicability of structural factors of safety

    4.1.1 Overview ThepurposeofthefactorsofsafetydefinedinthisStandardistoguaranteeanadequatelevelofmechanicalreliabilityforspaceflighthardware.

    4.1.2 Applicability a. Thefactorsspecifiedinclauses4.1.4,4.1.5and4.3shallbeappliedfor:

    1. Structural elements of satellites including payloads, equipmentandexperiments.

    NOTE ThesefactorsarenotappliedfortheGSEsizingandqualification.

    2. Theexpendablelaunchvehiclesstructuralelements.

    3. Manrated spacecraft structures including payloads, equipmentsandexperiments.

    b. The factors in clauses 4.1.4, 4.1.5 and 4.3 shall be applied for both thedesignandtestphasesasdefinedinFigure41.

    4.1.3 General a. Design factor and additional factors values shall be agreed with the

    customer.

    4.1.4 Design factor for loads

    4.1.4.1 General a. FordeterminationoftheDesignLimitLoad(DLL)theDesignFactorshall

    beused,thisisdefinedastheproductofthefactorsdefinedhereafter.

    NOTE Robustnessof the sizingprocess is consideredthroughtheDesignLimitLoads(DLL).

  • ECSSEST3210CRev.16March2009

    12

    4.1.4.2 Model factor a. A model Factor KM shall be applied to account for uncertainties in

    mathematical models when predicting dynamic response, loads andevaluatingloadpaths.

    NOTE1 Themodel factor is applied at every level of theanalysis treesystem (Figure42)wherepredictivemodels are used. It encompasses the lack ofconfidence in the information provided by themodel,e.g.hyperstaticity (uncertainty in the loadpathbecauseofnonaccuracyofthemathematicalmodel), junction stiffness uncertainty, noncorrelateddynamicbehaviour.

    NOTE2 Whilegoingthroughthedesignrefinement loops,KM can be progressively reduced to 1,0 afterdemonstration of satisfactory correlation betweenmathematicalmodelsandtestmeasurements.

    NOTE3 For launch vehicles, at system level, KM is alsocalledsystemmargin.

    b. KMvalueshallbejustified.

    NOTE Justification can be performed based onrelevant historical practice (e.g. typical valuesof1,2areusedforsatellitesatthebeginningofnewdevelopmentand1,0for internalpressureloads for pressurized hardware), analytical orexperimentalmeans.

    4.1.4.3 Project factor a. AspecificprojectfactorKPshallbeappliedtoaccountforthematurity

    oftheprogram(e.g.stabilityofthemassbudget,wellidentifieddesign)and the confidence in the specification given to theproject (this factorintegrates aprogrammaticmargin e.g. for growthpotential for furtherdevelopments).

    NOTE Thevalueof this factor isgenerallydefinedatsystem level and can be reduced during thedevelopment.

    b. KPvalueshallbejustified.

    NOTE Justification can be performed based onrelevant historical practice or on foreseenevolutions.

    4.1.4.4 Qualification test factor a. ThequalificationfactorKQshallbeappliedforsatellites.

    NOTE Forsatellites,thequalificationloadsarepartofthespecifiedloadsandareaccountedforinthedimensioning process. This is different for

  • ECSSEST3210CRev.16March2009

    13

    launchvehiclesforwhichQLareconsequencesofthedimensioningprocess.

    4.1.5 Additional factors for design

    4.1.5.1 Overview Alltheanalysiscomplexityorinaccuraciesanduncertaintiesnotmentionedinclause4.1.4aretakenintoaccountwiththefollowingadditionalfactors.

    4.1.5.2 Local design factor a. Alocaldesignfactor,KLDshallbeappliedwhenthesizingapproachor

    thelocalmodellingarecomplex.

    NOTE This factor accounts for specific uncertaintieslinked to theanalysisdifficultiesor to the lackof reliable dimensioning methodology orcriteriawheresignificantstressgradientsoccur(e.g. geometric singularities, fitting, welding,riveting, bonding, holes, inserts and, forcomposite, layup drop out, sandwich corethicknesschange,variationofplyconsolidationasaresultofdrapeovercorners).

    b. KLDvaluesshallbejustified.NOTE1 Justification can be performed based on relevant

    historical practice, analytical or experimentalmeans.

    NOTE2 For satellites,a typicalvalueof1,2 isused in thefollowingcases:

    Compositestructuresdiscontinuities; Sandwich structures discontinuities (face

    wrinkling, intracell buckling, honeycomb shear);

    Jointsandinserts.NOTE3 Theuseofa localdesignfactordoesnotpreclude

    appropriateengineeringanalysis(e.g.KLDdoesnotcover the stress concentration factors) andassessmentofalluncertainties.

    4.1.5.3 Margin policy factor a. AmarginpolicyfactorKMPshallbeappliedforlaunchvehicles.

    NOTE This factor, used to give confidence to thedesign,covers(notexhaustivelist):

    the lackofknowledgeon the failuremodesandassociatedcriteria.

  • ECSSEST3210CRev.16March2009

    14

    the lack of knowledge on the effect ofinteractionofloadings.

    thenontestedzones.b. KMPvaluesshallbejustified.

    NOTE1 Justification can be performed based on relevanthistorical practice, analytical or experimentalmeans.

    NOTE2 KMP can have different values according to thestructuralareatheyarededicatedto.

    4.2 Loads and factors relationship

    4.2.1 General a. QL,AL,DLL,DYL, andDUL, for the test and the design of satellite,

    expendablelaunchvehicles,pressurizedhardwareandmanratedsystemshallbecalculatedfromtheLLasspecifiedinFigure41andTable41.

    NOTE1 Asa resultof the launchvehiclesatellite coupleddynamic loadanalysis (LCDA)performedduringthe project design and verification phases, theknowledgeof theLL canbemodifiedduring thecourseof theproject, leading toa finalestimationof the loadsLLfinal.Then for finalverification, it isusedasaminimum: QL=KQLLfinal for qualification, andAL=KALLfinal foracceptance

    NOTE2 Theyielddesignfactorofsafety(FOSY)ensuresalowprobabilityofyieldingduringloadingatDLLlevel.

    NOTE3 The ultimate design factor of safety (FOSU)ensuresalowprobabilityoffailureduringloadingatDLLlevel.

    b. Theapplication logicforfactorsofsafetyasgiven inFigure41shallbeappliedinarecursivemannerfromsystemleveltosubsystemlevelorlowerlevelsofassembly.

    c. DLLcomputedateachlevelshallbeusedasLLforanalysisattheirownleveltocomputetheDLLforthenextlowerlevelsofassembly.

    NOTE ThisisgraphicallyshowninFigure42.

    d. For satellite,KQ shall be used only at system level in order to avoidrepetitiveapplicationofqualificationmargins.

  • ECSSEST3210CRev.16March2009

    15

    Expendable launch vehicles,pressurized hardware and manned system Test Logic

    Common Design LogicSatellitesTest Logic

    Limit Loads - LL

    Design Limit LoadsDLL

    x Coef. A

    DYL

    x Coef. B

    DUL

    x Coef. C

    x KQ x KA

    QLAL

    x KQ x KA

    QL

    AL

    Incr

    easi

    ng L

    oad

    Leve

    l

    Figure41:LogicforFactorsofSafetyapplication

    Table41:Relationshipamong(structural)factorsofsafety,designfactorsandadditionalfactors

    Coefficient SatelliteLaunchvehiclesandpressurisedhardware Manratedsystems

    CoefAorDesignfactor

    KQxKPxKM KPxKM KPxKM

    CoefB FOSYxKLD FOSYxKMPxKLD FOSYxKLD

    CoefC FOSUxKLD FOSUxKMPxKLD FOSUxKLD

  • ECSSEST3210CRev.16March2009

    16

    System

    Limit Loadsat system level

    (KQ(1)), KP, KM,

    Design Limit Loads

    =

    Limit Loadsfor subsystem or component

    Subsystem or componentKP, KM,

    Design Limit Loads

    KLD , FOS(KMP(2))

    DYL, DUL

    KQ(1): for satellite KMP(2): for launch vehicles

    Figure42:Analysistree

    4.2.2 Specific requirements for launch vehicles a. TheQLshallbedefinedwithacorrectedKQ.

    NOTE1 The correction takes into account manufacturingvariabilityanddifficultiesofhavingtestconditionsfullyrepresentativeofflightconditions.

    NOTE2 The commonly used method for defining thecorrected KQ is presented in Annex A forinformation.

  • ECSSEST3210CRev.16March2009

    17

    4.3 Factors values 4.3.1 Test factors a. ThetestfactorsKQandKAshallbeselectedfromTable42.

    Table42:Testfactorvalues

    Requirements CommentsLoadtype

    Vehicle KQ KA

    Satellite 1,25a 1

    Launchvehicle 1,25correctedb 1orJpc

    TypicalvaluetobeconsideredfordimensioningareJp=1,05to1,1

    Launchloads 1,4

    Globalflightloads

    ManratedS/C

    Onorbitloads

    1,51,2

    Internalpressure inconformancewithECSSEST3202 i Applicableforsatelliteandlaunchvehicles

    Satellite 1,25a,e 1 Dynamiclocalloadsd

    Launchvehicle 1,25e N/A

    Hoistingloadsf Satellite 2 N/A

    Hoistingloadsg(failsafe)

    Satellite 1 N/A

    Storageandtransportationloads

    Satellite

    localtransportationandstorageloads

    othertransportationloads

    2

    1,4

    N/A

    Satellite 1 1Thermalloadsh

    Launchvehicle 1 1

    a AhighervaluecanbespecifiedbytheLaunchvehicleAuthorityorthecustomer.

    b Seeclause4.2.2.

    c Jpistheprooffactorforpressurizedstructure.

    d Localloadsaresystemlevelloadscomputede.g.onunits,appendages,equipments,fixturesduringdynamicanalyses.

    e Thevalueappliesforqualificationtestsunderlocalloadconditions.Ahighervaluecanbespecifiedforspecificpurposes.

    f Nationallawscanspecifyhighervalues.

    g Failsafemeansincaseoflossofoneofthehoistingslings.Inthiscase,thelimitload(LL)isdeterminedbyusingpeakdynamicloadduetothefailureofthehoistingsling.

    h Thermalloads(i.e.mechanicalloadofthermoelasticorigin)aretakenwithaqualification/acceptancefactorequalto1byusingtemperatureandgradientslevelsatqualification/acceptancelevelswherethequalification/acceptanceleveltemperatureincludesthermalpredictionuncertaintyplusaqualification/acceptancetemperaturemargin.

    i KQisdefinedasBurstFactorandKAisdefinedasProofFactorinECSSEST3202.

  • ECSSEST3210CRev.16March2009

    18

    4.3.2 Factors of safety

    4.3.2.1 Metallic, FRP, sandwich, glass and ceramic structural parts

    a. The factor of safety for metallic, FRP, sandwich, glass and ceramicstructuralpartsshallbeselectedfromTable43.

    b. Forsatellitesandmanratedspacecraft,thefactorsprovidedinTable43shallapplyforalladditiveloadsincludingthermalinducedloads.

    c. For satellites andman rated spacecraft,when loads including thermalinducedloadsarerelieving,bothFOSUandFOSYshallbe1,0orless.

    NOTE SeeECSSEST32.

    d. Forexpendablelaunchvehicles,FOSUandFOSYassociatedwiththermalinducedloadsshallbe1,0.

  • ECSSEST3210CRev.16March2009

    19

    Table43:Factorsofsafetyformetallic,FRP,sandwich,glassandceramicstructuralparts

    Requirements

    Structuretype VehicleFOSY FOSU

    FOSYverificationbyanalysisonly

    FOSUverificationbyanalysisonly

    Satellite 1,1 1,25 1,25 2,0

    Launchvehicle 1,1 1,25 SeeNotec 2,0

    Metallicparts

    ManratedS/CLaunchOnOrbit

    1,251,1

    1,41,5

    SeeNotec SeeNotec

    Satellite N/A 1,25 N/A 2,0

    Launchvehicle N/A 1,25 N/A 2,0

    FRPparts(awayfromdiscontinuities)

    ManratedS/CLaunchOnOrbit

    N/AN/A

    1,52,0

    N/AN/A

    SeeNotec

    Satellite N/A 1,25 N/A 2,0

    Launchvehicle N/A 1,25 N/A 2,0

    FRPparts(discontinuities)a

    ManratedS/C N/A 2,0b N/A SeeNotec

    Satellite N/A 1,25 N/A 2,0

    Launchvehicle N/A 1,25 N/A 2,0

    Sandwichparts:

    facewrinkling

    intracellbuckling

    honeycombshear ManratedS/C N/A 1,4 N/A SeeNotec

    Satellite N/A 2,5 N/A 5,0

    Launchvehicle N/A SeeNotec N/A SeeNotec

    Glassandceramicstructuralparts

    ManratedS/C N/A 3,0 N/A SeeNotec

    a e.g.:holes,frames,reinforcements,steepchangeofthickness.

    b ThisvalueisforconsistencywithNASASTD5001andalreadyincludeaKLDfactor.

    c Nocommonlyagreedvaluewithinthespacecommunitycanbeprovided.

  • ECSSEST3210CRev.16March2009

    20

    4.3.2.2 Joints, inserts and connections a. The factorof safety for joints, inserts and connections shallbe selected

    fromTable44.

    Table44:Factorsofsafetyforjoints,insertsandconnectionsRequirements

    Structuretype VehicleFOSY FOSU

    FOSYverificationbyanalysis

    only

    FOSUverificationbyanalysis

    only

    SatelliteN/AN/AN/A

    1,25N/AN/A

    N/A1,251,25

    2,0N/AN/A

    LaunchvehicleN/A1,11,1

    1,25N/AN/A

    N/A N/A

    Jointsandinserts:a

    Failure

    Gapping

    Sliding

    ManratedS/C SeeNotec1,41,41,4

    SeeNotec SeeNotec

    Satellite SeeNotec 2,0 SeeNotec SeeNotecElastomersystemandelastomertostructureconnectionb

    Launchvehicle SeeNotec 2,0 SeeNotec SeeNotec

    a Thesefactorsarenotappliedontheboltspreloadseethreadedfastenersguidelineshandbook(ECSSEHB3223).

    b Analysisandtestareperformedtoshowthatthepossiblenonlineardynamicbehaviouroftheelastomerdoesnotjeopardizethesatellitestrengthandalignment.

    c Nocommonlyagreedvaluewithinthespacecommunitycanbeprovided.

    4.3.2.3 Buckling a. The factorofsafety forglobaland localbucklingshallbeselected from

    Table45.

    NOTE The factor of safety does not cover the knockdown factors commonly used in bucklinganalysesseeBucklinghandbook(ECSSEHB3224).

  • ECSSEST3210CRev.16March2009

    21

    Table45:FactorsofsafetyforbucklingRequirements

    VehicleFOSY FOSU

    FOSYverificationbyanalysis

    only

    FOSUverificationbyanalysisonly

    Satellite SeeNotea 1,25 SeeNotea 2,0

    Launchvehicle

    Global

    Local

    N/A

    1,1

    1,25

    1,25

    SeeNotea

    2,0

    2,0

    ManratedS/C SeeNotea 1,4 SeeNotea N/A

    a Nocommonlyagreedvaluewithinthespacecommunitycanbeprovided.

    4.3.2.4 Pressurized hardware a. The factorofsafety forpressurizedhardware,engine feeding lines,and

    tank pressurisation lines shall be selected from Table 46 for themechanicalloadsexcepttheinternalpressure.

    NOTE1 For internal pressure loadings and loadscombination,seeECSSEST3202.

    NOTE2 PressurizedhardwareisdefinedinECSSEST3202.

    Table46:FactorsofsafetyforpressurizedhardwareRequirements

    VehicleFOSY FOSU

    FOSYverificationbyanalysisonly

    FOSUverificationbyanalysisonly

    Satellite 1,1 1,25 SeeNotea SeeNotea

    Launchvehicle 1,1 1,25 SeeNotea SeeNotea

    ManratedS/C 1,25 1,4 SeeNotea SeeNotea

    a Nocommonlyagreedvaluewithinthespacecommunitycanbeprovided.

  • ECSSEST3210CRev.16March2009

    22

    Annex A (informative) Qualification test factor for launch vehicles

    InEuropean launchvehicleprograms, theQL tobe implementedduring thetestisdefinedwithacorrectedKQfactor,derivedbylocationandfailuremode.

    KQismodifiedbycorrectingfactorssuchas:

    ( )

    +=KK

    1KKKFOSYKQ Tadjmin for loading at yield load

    ( )

    +=KK

    1KKKFOSUKQ Tadjmin for loading at ultimate load

    Takingintoaccountthefollowingpoints: Theactual thicknessofqualificationmodelversus thicknessused

    forsizing.ThisisdonethroughtheuseofthecorrectingfactorKminwhich accounts for the effect of the thickness on the structurestrength. Itcorresponds to theratioof the thicknessmeasuredonthetestspecimentothedimensioningthickness. Kmin is only applicable to metal structures, for other structures,Kmin=1.0isused.

    Theadjacentstructuresinfluenceonthestressfieldbetweenflightandtestconditions.ThisisdonethroughtheuseofthecorrectingfactorKadjwhichaccounts for the influenceofadjacentstructuresnotpresentduringstatictests.

    o Iftheadjacentflightstructuresaresimulatedduringstatictests,Kadj=1,0isused.

    o Elsewise,Kadjisdeducedastheratioofthestressstate(flight)computedinflightconfigurationtothestressstatecomputedintestconfiguration(test)increasedbytheoverfluxfactorusedforthedesign.

    ),0,1max( overfluxtest

    flightadj kK =

    Effectof thermalgradient stress.This isdone through theuseofthecorrectingfactorKTwhichisdefinedastheratiooftheincreasein the stress due to the local thermal gradient to the stresscorrespondingtonolocalthermalgradient.

  • ECSSEST3210CRev.16March2009

    23

    The effect of temperature onmechanical characteristics (Youngsmodulus, strength). This is done through the use of thecorrecting factor K which is the ratio of the mechanicalcharacteristicsconsideredatflightoperatingtemperatureCflighttotheonesattesttemperatureCtest.

    test

    flight

    CC

    K

    =

    TheinfluenceofAvaluesforsizingandmoreprobablevaluesforthematerial constitutiveof the qualificationmodel.This isdonethroughtheuseofthecorrectingfactorK.Iff(Ci) isthefunctiontranslating theeffectof characteristicCion the failuremode, thecorrecting factor K is defined as the ratio of f(Ci) for thecharacteristicvalueused fordesign to f(Ci) for the characteristicvalueofthetestedspecimen.

    ( )( )testi designiCfCf

    K =

    If several characteristics C1, C2, are affecting the consideredfailuremode,Kisdefinedas:

    ( )( ) ( )( ) ( )( )testn designntest2 design2test1 design1 CfCf

    .....Cf

    CfCf

    CfK =

    Thecorrectingfactorsaredefinedandagreedwiththecustomer.

  • ECSSEST3210CRev.16March2009

    24

    Bibliography

    ECSSSST00 ECSSsystemDescription,implementationandgeneralrequirements

    ECSSEHB3223 SpaceengineeringThreadedfastenershandbook

    ECSSEHB3224 SpaceengineeringBucklinghandbook.

    NASASTD5001 Structuraldesignandtestfactorsofsafetyforspaceflighthardware(June21,1996)

    A5SG1X10ASAI(issue5.12,Aprilthe8th;2003)

    Structuredesign,dimensioningandtestspecifications

    Change log1 Scope2 Normative references3 Terms, definitions and abbreviated terms3.1 Terms and definitions3.2 Terms specific to the present standard3.3 Abbreviated terms

    4 Requirements4.1 Applicability of structural factors of safety 4.1.1 Overview4.1.2 Applicability4.1.3 General4.1.4 Design factor for loads4.1.4.1 General4.1.4.2 Model factor4.1.4.3 Project factor4.1.4.4 Qualification test factor

    4.1.5 Additional factors for design4.1.5.1 Overview4.1.5.2 Local design factor4.1.5.3 Margin policy factor

    4.2 Loads and factors relationship 4.2.1 General4.2.2 Specific requirements for launch vehicles

    4.3 Factors values4.3.1 Test factors4.3.2 Factors of safety4.3.2.1 Metallic, FRP, sandwich, glass and ceramic structural parts4.3.2.2 Joints, inserts and connections4.3.2.3 Buckling4.3.2.4 Pressurized hardware

    Bibliography