14
Kate Block 1 The Intermediate Disturbance Hypothesis: Theoretical Underpinnings, Validity and Applications to North American Grasslands Introduction Coexistence between species occurs only under limited conditions and interspecific competition generally reduces biodiversity unless a community is acted upon by an external force which reduces interspecific competition or its effects (Petraitis et al 1989, p. 394). Disturbance often provides this type of external intervention. The Intermediate Disturbance Hypothesis states that diversity (species richness) is maximized when disturbance occurs at an intermediate scale (Connell 1978, p. 1303) and attempts to describe the manner in which disturbance maintains biodiversity within ecological communities. This paper is an exploration of interspecific competition theory, the Intermediate Disturbance Hypothesis (IDH), the evidence that supports and refutes the IDH, and the applications to North American grasslands and their management. To conclude the paper, general recommendations regarding the use of prescribed disturbance for prairie preservation, restoration, and management are provided. Theoretical Background: Interspecific Competition All populations of organisms in nature demonstrate the inherent propensity for unlimited exponential growth. However, as modeled by the logistic equation, abiotic and biotic factors present in their environments limit their capacity to increase (Crombie 1947, p. 45). These factors can be described by three main categories (Crombie 1947, p. 45): (1) Factors arising from the organism itself – its adaptation to the habitat in which it lives, life history traits, and reproductive characteristics. (2) Abiotic factors – weather, climate, soil characteristics, and solar radiation. (3) Biotic factors – organismorganism interactions and alterations organisms make to the physical environment surrounding them. Biotic factors frequently influence populations in a density dependent manner. Depending upon their specific nature, disturbances, which will be discussed in detail later in this paper, may be categorized as either abiotic or biotic factors although they are most commonly abiotic. While density independent factors may dictate the presence and nature of interspecific competition as well as its eventual outcomes, only density dependent factors are directly involved in interspecific competition (Crombie 1947, p. 46). Factors that increase the ratio of organisms to environmental resources increase competition while factors that decrease the ratio of organisms to environmental resources decrease competition (Crombie 1947, p. 46). When two or more species with similar niche requirements are present in a given environment, interspecific competition occurs when the ratio of organisms to environmental resources increases above a certain critical level (Crombie 1947, p. 48). One species may be a superior competitor to another species by either possessing a superior rate of reproduction and survival or via a superior ability for interference (Crombie 1947, p. 49). Often a species’ superiority will depend upon the exact environmental conditions present and, thus, because environmental conditions often fluctuate, on species may be the superior competitor under one specific set of environmental conditions while another may be the superior competitor under a different set of environmental conditions (Crombie 1947, p. 49). In plants, the necessary factor – light, water, a particular nutrient – in shortest supply relative to total demand is generally the instigator of intraspecific competition (Rubel 1953 qtd. in Crombie 1947,

Ecology Term Paper - Western Michigan Universityhomepages.wmich.edu/~malcolm/BIOS6150-Ecology/Review Paper... · diversity%(species%richness)%is%maximized%when%disturbance%occurs%atan%intermediate%scale%(Connell%

Embed Size (px)

Citation preview

Kate  Block      

1    

The  Intermediate  Disturbance  Hypothesis:  Theoretical  Underpinnings,  Validity  and  Applications  to  North  American  Grasslands  

   

Introduction  Coexistence  between  species  occurs  only  under  limited  conditions  and  interspecific  

competition  generally  reduces  biodiversity  unless  a  community  is  acted  upon  by  an  external  force  which  reduces  interspecific  competition  or  its  effects  (Petraitis  et  al  1989,  p.  394).    Disturbance  often  provides  this  type  of  external  intervention.    The  Intermediate  Disturbance  Hypothesis  states  that  diversity  (species  richness)  is  maximized  when  disturbance  occurs  at  an  intermediate  scale  (Connell  1978,  p.  1303)  and  attempts  to  describe  the  manner  in  which  disturbance  maintains  biodiversity  within  ecological  communities.    This  paper  is  an  exploration  of  interspecific  competition  theory,  the  Intermediate  Disturbance  Hypothesis  (IDH),  the  evidence  that  supports  and  refutes  the  IDH,  and  the  applications  to  North  American  grasslands  and  their  management.    To  conclude  the  paper,  general  recommendations  regarding  the  use  of  prescribed  disturbance  for  prairie  preservation,  restoration,  and  management  are  provided.    Theoretical  Background:  Interspecific  Competition     All  populations  of  organisms  in  nature  demonstrate  the  inherent  propensity  for  unlimited  exponential  growth.    However,  as  modeled  by  the  logistic  equation,  abiotic  and  biotic  factors  present  in  their  environments  limit  their  capacity  to  increase  (Crombie  1947,  p.  45).    These  factors  can  be  described  by  three  main  categories  (Crombie  1947,  p.  45):    (1)  Factors  arising  from  the  organism  itself  –  its  adaptation  to  the  habitat  in  which  it  lives,  life  history  traits,  and  reproductive  characteristics.    (2)  Abiotic  factors  –  weather,  climate,  soil  characteristics,  and  solar  radiation.    (3)  Biotic  factors  –  organism-­‐organism  interactions  and  alterations  organisms  make  to  the  physical  environment  surrounding  them.    Biotic  factors  frequently  influence  populations  in  a  density  dependent  manner.    Depending  upon  their  specific  nature,  disturbances,  which  will  be  discussed  in  detail  later  in  this  paper,  may  be  categorized  as  either  abiotic  or  biotic  factors  although  they  are  most  commonly  abiotic.    While  density  independent  factors  may  dictate  the  presence  and  nature  of  interspecific  competition  as  well  as  its  eventual  outcomes,  only  density  dependent  factors  are  directly  involved  in  interspecific  competition  (Crombie  1947,  p.  46).    Factors  that  increase  the  ratio  of  organisms  to  environmental  resources  increase  competition  while  factors  that  decrease  the  ratio  of  organisms  to  environmental  resources  decrease  competition  (Crombie  1947,  p.  46).     When  two  or  more  species  with  similar  niche  requirements  are  present  in  a  given  environment,  interspecific  competition  occurs  when  the  ratio  of  organisms  to  environmental  resources  increases  above  a  certain  critical  level  (Crombie  1947,  p.  48).    One  species  may  be  a  superior  competitor  to  another  species  by  either  possessing  a  superior  rate  of  reproduction  and  survival  or  via  a  superior  ability  for  interference  (Crombie  1947,  p.  49).    Often  a  species’  superiority  will  depend  upon  the  exact  environmental  conditions  present  and,  thus,  because  environmental  conditions  often  fluctuate,  on  species  may  be  the  superior  competitor  under  one  specific  set  of  environmental  conditions  while  another  may  be  the  superior  competitor  under  a  different  set  of  environmental  conditions  (Crombie  1947,  p.  49).     In  plants,  the  necessary  factor  –  light,  water,  a  particular  nutrient  –  in  shortest  supply  relative  to  total  demand  is  generally  the  instigator  of  intraspecific  competition  (Rubel  1953  qtd.  in  Crombie  1947,  

   

2    

p.  51).    Because  an  actual  physical  struggle  between  plants  almost  never  occurs,  intraspecific  competition  in  plants  almost  solely  “arises  from  the  reaction  of  one  plant  upon  the  physical  factors  about  it  and  the  effect  of  these  modified  factors  upon  its  competitors”  (Rubel  1953  qtd.  in  Crombie  1947,  pp.  50-­‐51).    As  a  superior  competitor’s  dominance  within  its  community  increases  via  the  elimination  of  inferior  competitors,  intraspecific  competition  decreases  and  a  climax  community  emerges  (Crombie  1947,  p.  51).         The  classical  Lotka-­‐Volterra  model  of  interspecific  competition  is  a  logical  extension  of  the  logistic  equation  that  describes  the  competitive  interaction  between  two  species  whose  growth  rates  are  density  dependent  (Neuhauser  &  Pacala  1999,  p.  1227).    The  two  equations  comprising  the  classical  Lotka-­‐Volterra  model  are  as  follows  (Malcolm  3  February  2009,  slide  8):  

  For  species  1:     dN1/dt  =  r1N1[K1-­‐N1-­‐(αN2/K1)]     For  species  2:     dN2/dt  =  r2N2[K2-­‐N2-­‐(βN1/K2)]  

In  each  of  these  equations,  N  represents  the  size  of  the  population  of  species  1  or  species  2,  r  represents  the  intrinsic  rate  of  natural  increase  for  species  1  or  species  2,  K  represents  the  carrying  capacity  of  species  1  or  species  2,  α  represents  the  competition  coefficient  for  species  1,  and  β  represents  the  competition  coefficient  for  species  2  (Malcolm  3  February  2009,  slide  8).    To  clarify,  the  term  αN2  represents  the  effect  of  species  2  on  species  1  and  the  term  βN1  represents  the  effect  of  species  1  on  species  2  (Malcolm  3  February  2009,  slide  9).    If  α  or  β  is  less  than  1,  intraspecific  competition  has  a  greater  impact  on  the  species’  (1  or  2,  respectively)  population  dynamics  than  interspecific  competition  and  if  α  or  β  is  greater  than  1,  interspecific  competition  has  a  greater  impact  on  the  species’  (1  or  2,  respectively)  population  dynamics  than  intraspecific  competition  (Malcolm  3  February  2009,  slide  9).  

Four  different  outcomes  are  possible  in  the  Lotka-­‐Volterra  model  of  interspecific  competition  (Malcolm  3  February  2009):    (1)  Competitive  exclusion  in  which  species  1  prevails  and  species  2  is  extirpated  (or  extinct)  –  occurs  when  K1  is  greater  than  K2/β  and  K1/β  is  greater  than  K2.    (2)  Competitive  exclusion  in  which  species  2  prevails  and  species  1  is  extirpated  (or  extinct)  –  occurs  when  K2  is  greater  than  K1/α  and  K2/α  is  greater  than  K1.    Competitive  exclusion  of  one  species  by  the  other  can  occur  even  if  the  effect  of  intraspecific  competition  on  the  “winner”  is  stronger  than  its  impact  (via  interspecific  competition)  on  the  “loser.”    (3)  Either  species  1  or  species  2  can  “win”  –  the  effect  of  interspecific  competition  is  greater  than  the  effect  of  intraspecific  competition  for  both  species  and,  therefore,  the  ultimate  outcome  is  dependent  upon  the  initial  densities  of  each  species.    This  outcome  is  frequently  termed  founder  control  (Neuhauser  &  Pacala  1999,  p.  1227).    (4)  Coexistence  of  species  1  and  species  2  –  occurs  when  both  species  have  less  of  a  competitive  effect  on  each  other  than  they  do  on  themselves.    In  other  words,  for  both  species  1  and  species  2,  the  effects  of  intraspecific  competition  supersede  the  effects  of  interspecific  competition  (Neuhauser  &  Pacala  1999,  p.  1227).    Each  of  these  possible  outcomes  is  illustrated  in  the  figure  below  (Malcolm  3  February  2009,  slide  17).  

   

3    

 Two  species  can  compete  for  the  same  resources  and  still  coexist  as  long  as  a  sufficient  degree  

of  niche  displacement  is  present  (Neuhauser  &  Pacala  1999,  p.  1227-­‐1228);  the  habitat  in  which  species  1  and  species  2  exist  is  such  that  species  1  and  species  2  are  not  limited  by  the  same  resource  (Begon  et  al  2006,  p.  263;  Neuhauser  &  Pacala  1999,  p.  1227).    The  resulting  outcomes  of  a  particular  interaction  between  two  species  can  be  determined  by  graphing  the  zero  isoclines  –  a  connected  line  of  points  at  which  population  growth  for  species  1  or  species  2  is  zero  (Malcolm  3  February  2009,  slide  10)  –  of  each  species  (Begon  et  al  2006,  p.  236).    Because  coexistence  is  only  possible  in  one  of  the  four  potential  outcomes  of  interspecific  competition,  we  can  easily  recognize  that  interspecific  competition  frequently  reduces  biodiversity  unless  a  community  is  acted  upon  by  an  external  force  which  reduces  interspecific  competition  or  its  effects  (Petraitis  et  al  1989,  p.  394).    Disturbance  often  provides  this  type  of  external  intervention.    Disturbance  and  the  Maintenance  of  Biodiversity     Disturbance  and  predation  have  generally  been  cited  as  the  two  primary  mechanisms  by  which  interspecific  competition’s  effects  are  muted  (Petraitis  et  al  1989,  p.  394).    While  predation  –  which  acts  as  a  form  of  biotic  disturbance  (Mackey  &  Currie  2001,  p.  3480)  –  reduces  interspecific  competition  via  selective  mortality  (of  prey  species),  disturbance  reduces  interspecific  competition  via  the  mass  mortality  that  follows  random,  localized  events  (Petraitis  et  al  1989,  p.  394).    Disturbance  is  typically  defined  as  “any  relative  discrete  event  in  time  that  disrupts  ecosystem,  community,  or  population  structure  and  changes  resources,  substrate  availability,  or  the  physical  environment”  (White  &  Pickett  1985  qtd.  in  Petraitis  et  al  1989,  p.  395).    Alternately,  disturbance  has  been  more  explicitly  conceptualized  as  “a  temporally  discrete  even  that  abruptly  kills  or  displaces  individuals  or  that  directly  results  in  the  loss  of  biomass”  (Mackey  &  Currie  2001,  p.  3480).    Fire,  intense  storm  events,  landslides,  flooding,  and  extreme  drought  are  all  examples  of  abiotic  disturbance  and  directly  or  indirectly  change  resource  availability  (Mackey  &  Currie  2001,  p.  3480).    The  Intermediate  Disturbance  Hypothesis  

Figure  1:    Outcomes  generated  by  the  classical  Lotka-­‐Volterra  model  of  interspecific  competition,  as  depicted  by  the  zero  isoclines  for  species  1  and  species  2.    In  (a),  species  1  prevails  and  species  2  is  eliminated.    In  (b),  species  2  prevails  and  species  1  is  eliminated.    In  (c),  an  unstable  equilibrium  is  generated  –  indicated  by  the  arrows  pointing  away  from  the  intersection  of  the  two  isoclines  –  and  either  species  1  or  2  will  win,  depending  upon  initial  conditions.    In  (d),  a  stable  equilibrium  is  generated  –  indicated  by  the  arrows  pointing  toward  the  intersection  of  the  two  isoclines  –  and  coexistence  occurs.  

   

4    

  The  vast  majority  of  ecology  textbooks  and  research-­‐based  literature  credit  Joseph  H.  Connell  with  the  formulation  of  the  intermediate  disturbance  hypothesis  (IDH)  in  his  1978  article  “Diversity  in  Tropical  Rain  Forests  and  Coral  Reefs,”  published  in  Science  (Wilkinson  1999,  p.  145;  Connell  1978).    Although  several  scholars  have  questioned  the  legitimacy  of  recognizing  Connell  as  the  chief  and  original  author  of  the  IDH  because  several  other  authors  –  most  notably  Grime  and  Horn  –  had  published  similar  speculations  a  few  years  prior  to  Connell’s  paper  (e.g.  Wilkinson  1999,  pp.  145-­‐146;  Fox  1979,  p.  1345),  in  this  paper,  the  account  of  the  IDH  that  I  give  is  Connell’s.     In  the  early  1960s,  Connell  became  curious  about  how  the  biodiversity  in  tropical  ecosystems  arose  and  how  it  was  maintained  (Connell  1987,  p.  1).    He  had  subscribed  to  popular  theoretical  position  of  the  time:    Ecological  communities  were  conceived  as  highly  regulated  at  a  particular  equilibrium  state  and  their  members  (various  species)  were  co-­‐adapted  such  that  each  of  their  niches  fit  neatly  among  the  others  like  an  elaborate  jigsaw  puzzle  (Connell  1987,  p.  1).    In  this  view,  a  range  of  “forces”  existed  within  ecological  communities  and  prevented  any  single  species  from  becoming  either  too  common  (dominant)  or  too  rare  (Connell  1987,  p.  1).    In  his  own  words,  after  witnessing  a  hurricane  decimate  first  a  coral  reef  and  the  his  rain  forest  study  plots,  Connell  decided  that  perhaps  he  “should  entertain  some  alternative  hypothesis  about  mechanisms  maintaining  tropical  diversity  instead  of  clinging  to  the  one  I  had  brought  to  the  tropics  from  my  temperate  ivory  tower”  (Connell  1987,  p.  1).    Thus,  the  IDH  was  born.     In  his  landmark  1978  paper  in  Science,  Connell  actually  presented  six  different  hypotheses  –  three  equilibrium  hypotheses  and  three  non-­‐equilibrium  hypotheses  –  that  attempt  to  explain  the  diversity  of  tropical  rain  forests  and  coral  reefs  (pp.  1302-­‐1303).    Connell  clarifies  that,  while  they  may  apply  to  a  wide  variety  of  ecosystems,  he  only  intends  to  apply  these  hypotheses  to  tropical  communities  (1978,  p.  1302).    In  reality,  each  of  the  six  hypotheses  may  indeed  contribute  to  the  preservation  of  biodiversity  in  the  tropics;  however,  Connell  asserts  that  the  relative  importance  of  each  may  vary  dramatically,  with  non-­‐equilibrium  processes  likely  to  be  the  most  vital  (1978,  pp.  1308-­‐1309).    Similarly,  even  though  these  hypotheses  may  indeed  accurately  account  for  the  tropical  communities’  biodiversity,  biodiversity  may  also  be  generated  and  maintained  by  a  variety  of  other  mechanisms  (Connell  1978,  p.  1302).    It  is  beyond  the  scope  of  this  paper  to  discuss  each  of  these  six  hypotheses  in  detail.    I  will  instead  focus  on  a  single  hypothesis  which  is  arguably  presently  the  most  widely  espoused;  the  IDH.     Simply  put,  the  IDH  states  that  diversity  (species  richness)  should  be  highest  when  disturbance  occurs  at  an  intermediate  scale  (Connell  1978,  p.  1303).    The  rationale  undergirding  this  claim  is  as  follows:    (1)  A  trade-­‐off  between  competitive  ability  and  resistant  to  or  tolerant  of  disturbance  exists  (Petraitis  1989,  p.  397;  Mackey  &  Currie  2001,  p.  3479;  Connell  1978,  p.  1303).    This  assumption  presumes  that  a  species  cannot  be  both  a  superior  competitor  and  superiorly  adapted  to  disturbance  (e.g.,  by  being  an  especially  good  disperser/colonizer  or  unlikely  to  experience  disturbance-­‐induced  mortality).    (2)  When  disturbance  is  high  –  frequent  (frequency  is  evaluated  on  the  basis  of  the  generation  times  of  organisms  within  the  community  of  interest),  intense  (conceptualized  as  total  area  affected  by  disturbance  multiplied  by  frequency  of  disturbance),  or  severe  –  few  species  will  be  present  (low  species  richness)  because  only  those  species  that  are  sufficiently  tolerant  of  or  resistant  to  disturbance  can  persist  (Connell  1978,  p.  1303;  Petraitis  et  al  1989,  p.  397;  Roxburgh  et  al  2004,  p.  360).    (3)  When  disturbance  is  low  –  infrequent,  of  low  intensity,  or  mild  –  few  species  will  be  present  (low  species  richness)  because  only  those  species  that  are  superior  competitors  can  persist  (Connell  1978,  p.  1303;  Petraitis  et  al  1989,  p.  397).        Connell  describes  several  types  of  superior  competitors  –  those  that  are  “most  efficient  in  exploiting  limited  resources,”  those  that  are  “most  efficient  in  

   

5    

interfering  with  other  species,”  those  that  are  “most  resistant  to  damage  or  to  death  caused  by  physical  extremes  or  natural  enemies”  (Connell  1978,  p.  1303).    (4)  When  disturbance  is  intermediate  –  moderate  frequency,  intensity,  or  severity  –  more  species  will  be  present  (higher  species  richness)  because  a  wider  range  of  species  are  able  to  tolerate  environmental  and  biological  conditions  (Connell  1978,  p.  1303;  Petraitis  et  al  1989,  p.  397).    “There  is  a  balance  between  [the]  competitive  exclusion”  that  occurs  when  disturbance  is  low  “and  [the]  loss  of  competitive  dominants”  that  occurs  when  disturbance  is  high  (Mackey  &  Currie  2001,  p.  3479).    The  relationship  between  species  richness  and  disturbance  is  depicted  in  the  figure  below.  

 Figure  2:  Graphical  representations  of  the  IDH.    In  (a),  species  diversity  should  be  highest  at  intermediate  levels  of  disturbance  (Hobbs  &  Huenneke  1992,  p.  326).    In  (b),  the  x-­‐axis  represents  the  mortality  resulting  from  disturbance  and  the  level  species  diversity  is  related  to  competitively  dominant  species.    Species  diversity  is  highest  when  disturbance-­‐induced  mortality  is  at  intermediate  levels  (Hacker  &  Gaines  1997,  p.  1992).         Connell  provided  evidence  supporting  the  IDH  from  several  studies  of  tropical  rain  forests  in  Uganda,  Nigeria,  Australia,  and  Guyana  (1978,  pp.  1303-­‐1305).    Evidence  from  research  conducted  in  coral  reef  communities  was  more  limited.    Connell  only  presented  a  detailed  discussion  of  supporting  evidence  from  studies  conducted  in  Belize  and  Australia  (1978,  pp.  1304-­‐1305).    Other  authors  (e.g.  Huston  1985)  have  specifically  questioned  the  validity  of  the  IDH  in  coral  reef  communities,  concluding  that  a  variety  of  factors  interact  to  determine  the  community  structure  and  species  richness  of  coral  reefs.    In  particular,  depth  and  light  gradients,  the  frequency  and  intensity  of  disturbance,  and  competitive  displacement  are  all  important  factors  that  impact  the  coral  reef  ecosystem  (Huston  1985,  p.  172).     The  IDH  has  enjoyed  widespread  acceptance  from  the  scientific  community  over  the  past  three  decades  for  good  reason.    The  support  for  the  IDH  present  in  the  literature  is  overwhelming  if  not  unanimous.    Several  studies  specifically  evaluating  the  IDH’s  relevance  in  North  American  grassland  ecosystems  will  be  reviewed  later  in  this  paper.    For  now,  we  will  turn  our  attention  to  a  paper  published  by  Roxburgh,  Shea,  and  Wilson  in  2004.    Using  a  multi-­‐species  reciprocal-­‐yield  law  model,  the  authors  obtained  the  following  results  (Roxburgh  et  al  2004,  p.  368):    When  disturbance  occurred  less  than  once  every  fifteen  years,  competitive  exclusion  occurred,  generating  a  monoculture.    When  disturbance  occurred  in  alternate  years,  many  of  the  highly  competitive  species  could  not  persist,  generating  a  five-­‐species  community.    Diversity  peaked  at  25  species  when  disturbance  occurred  once  every  seven  years.  

 

   

6    

 Additionally,  the  findings  reported  by  Roxburgh  and  his  colleagues  indicate  that  the  coexistence  intermediate  disturbance  generates  arises  via  two  primary  mechanisms  (2004,  p.  361):    (1)  The  storage  effect  –  “the  species’  attributes  allow  gains  made  during  favorable  growth  periods  to  be  ‘stored’  in  the  population  for  use  during  unfavorable  periods  …  and/or  periods  when  the  impact  of  competition  is  increased.”    (2)  Relative  nonlinearity  –  “differences  in  the  responses  of  competitors  to  fluctuations  in  resource  availability  [are]  relatively  nonlinear.”    The  functionality  of  these  mechanisms  has  important  implications  for  species  coexistence.    First,  true,  stable  coexistence  can  only  occur  when  competing  species’  responses  to  disturbance  differ  (Roxburgh  et  al  2004,  p.  361).    Therefore,  if  competing  species  differ  only  in  their  degree  of  competitive  superiority,  disturbance  cannot  generate  coexistence  (Roxburgh  et  al  2004,  p.  361).    Secondly,  many  of  disturbance’s  coexistence-­‐inducing  mechanisms  operate  at  varying  degrees,  and  sometimes  in  concert,  depending  upon  the  particular  realities  present  in  a  given  situation  (Roxburgh  et  al  2004,  p.  361).  

Research  has  also  suggested  that  the  IDH  may  only  accurately  reflect  specific  situations,  communities,  or  trophic  levels  or  that  it  may  require  substantial  revision.    Wooten  (1998)  has  suggested  that  the  IDH  is  only  valid  for  sessile  species,  which  tend  to  comprise  the  basal  trophic  level  of  the  community,  collecting  outside  energy  and  converting  it  to  a  form  usable  by  the  remaining  members  of  the  community.        If  multi-­‐trophic  level  interactions  are  considered,  the  IDH’s  validity  as  an  explanatory  model  is  greatly  reduced  (Wooten  1998,  p.  804).  

Hacker  and  Gaines  (1997)  have  suggested  that  “positive  interactions”  –  commensalisms  and  mutualisms  –  between  facilitator  species  may  exert  a  substantial  influence  on  community  composition.    Taking  these  positive  interactions  into  account  requires  minor  modifications  of  the  IDH.    Essentially,  the  authors  claim  that  “if  the  presence  of  one  or  more  facilitator  species  allows  the  persistence  of  others  by  ameliorating  physical  stress  or  by  providing  protection  from  disturbance  or  predation,  the  decline  in  species  diversity”  that  the  IDH  predicts  at  high  levels  of  disturbance  “may  occur  under  more  intense  conditions  of  mortality  from  physical  disturbance,  stress,  or  predation”  (Hacker  &  Gaines  1997,  p.  1993).    Similarly,  the  reestablishment  of  certain  species  post-­‐disturbance  may  be  enhanced  by  facilitator  species  via  increases  in  recruitment,  colonization,  and/or  growth  rates,  increasing  diversity  across  a  range  of  disturbance  levels  after  facilitator  species  are  released  from  interspecific  competition  (Hacker  &  Gaines  1997,  p.  1993).        The  figure  below  illustrates  the  potential  impact  of  positive  interactions  on  the  diversity-­‐disturbance  relationship  predicted  by  the  IDH  (Hacker  &  Gaines  1997,  p.  1992).  

Figure  3  (Roxburgh  et  al  2004,  p.  370):    Outcomes  generated  by  a  multi-­‐species  reciprocal  yield  model  demonstrate  maximum  species  richness  at  intermediate  frequency  of  disturbance.  

   

7    

 While  Hacker  and  Gaines  modified  model  of  the  IDH  may  prove  an  extreme  example  of  the  influence  positive  interactions  have  on  biodiversity,  it  provides  and  important  insight  into  one  of  the  IDH’s  shortcomings;  namely,  that  when  diversity-­‐enhancing  mechanisms  involving  facilitator  species  are  not  specifically  recognized,  the  predictions  made  by  the  IDH  may  not  reflect  the  true  nature  of  diversity-­‐disturbance  relationship  in  the  field  (Hacker  &  Gaines  1997,  p.  1997).    Furthermore,  if  the  potentially  critical  effects  of  positive  interactions  in  determining  biodiversity  are  considered  and  competition  displacement  (exclusion)  is  graphed  against  disturbance-­‐induced  mortality,  a  ridge  of  maximum  diversity  is  revealed  (Hacker  &  Gaines  1997,  p.  1998),  as  depicted  in  the  figure  on  the  following  page.  

     

     

A  2001  review  of  the  IDH  conducted  by  Mackey  and  Currie  reveals  that  although  the  contemporary  literature  accepts  that  the  relationship  between  biodiversity  and  disturbance  is  strong  and  peaked,  an  examination  of  disturbance  literature  demonstrates  that  this  wholesale  acceptance  is  unjustified  (Mackey  &  Currie  2001,  p.  3479).    While  peaked  responses  characteristic  of  the  IDH  were  reported  in  11%  of  evenness  studies,  16%  of  richness  studies,  and  19%  of  diversity  studies,  non-­‐significant  relationships  between  disturbance  and  evenness,  richness,  or  diversity  were  most  often  

Figure  4:    When  released  from  interspecific  competition,  facilitator  species  can  both  heighten  and  extend  the  IDH’s  species  diversity  curve  under  disturbance  conditions  generating  moderate  to  high  mortality  levels  by  “preventing  or  ameliorating  harsh  conditions”  and  “[creating]  new  interaction  webs”  (Hacker  &  Gaines  1997,  p.  1992).  

Figure  5:    Dynamic  equilibrium  model  (Huston  1979,  1994  qtd.  in  Hacker  &  Gaines  1997).    Keystone  facilitator  species  are  generally  most  important  when  the  rate  of  competitive  displacement  is  low  but  disturbance,  stress,  or  predation  (represented  by  the  mortality  that  results)  is  high.    Conversely,  keystone  predators  are  most  important  when  competitive  displacement  is  high  and  disturbance,  stress,  or  predation  is  low.    Maximum  species  richness  is  predicted  under  the  conditions  present  (pairings  of  competitive  displacement  and  mortality  values)  along  the  ridge  shown  in  the  figure.  

   

8    

reported  (Mackey  &  Currie  2001,  p.  3479  &  3483).    Positive  and  negative  monotonic  and  unimodal  relationships  between  disturbance  and  evenness,  richness,  or  diversity  were  also  present  in  the  literature  Mackey  and  Currie  reviewed.    The  table  below  provides  data  for  the  various  types  of  relationships  found  in  each  of  the  85  studies  (of  an  initial  sample  of  1962  papers  and  abstracts)  examined  by  the  authors  (Mackey  &  Currie  2001,  p.  3483).  

    Mackey  and  Currie  conclude  that  the  substantial  proportion  of  studies  reporting  a  non-­‐significant  relationship  between  disturbance  and  evenness,  richness,  or  diversity  suggest  that  the  widespread  support  IDH  enjoys  may  not  be  justified  as  it  does  not  appear  to  accurately  reflect  ecological  realities  in  many  cases  (Mackey  &  Currie  2001,  p.  3487).    The  median  variation  explained  by  disturbance  was  53%  for  species  richness  and  60%  for  both  evenness  and  diversity  (Mackey  &  Currie  2001,  p.  3488).    However,  in  accordance  with  Wooten’s  (1998)  findings,  explained  variation  was  significantly  higher  in  studies  of  sessile  autotrophs  than  for  heterotrophs  or  motile  autotrophs  (Mackey  &  Currie  2001,  p.  3489),  allowing  one  to  speculate  that  if  the  IDH  is  a  fairly  realistic  description  of  the  diversity-­‐disturbance  relationship  in  any  ecological  community,  perhaps  it  is  the  plant  community.    Based  on  their  review,  the  authors  argue  that  while  published  literature  does  provide  some  evidence  that  disturbance  does  influence  spatial  and  temporal  patterns  of  diversity  to  some  extent,  “diversity-­‐disturbance  relationships  are  neither  consistently  strong  nor  consistently  peaked”  and  that  “disturbance  is  probably  not  generally  among  the  most  important”  factors  determining  species  diversity  (Mackey  &  Currie  2001,  p.  3491).    The  Intermediate  Disturbance  Hypothesis  and  North  American  Grasslands     The  grassland-­‐related  literature  both  supports  and  refutes  the  appropriateness  of  the  IDH  as  a  model  of  the  relationship  between  diversity  and  disturbance  and,  thus,  offers  little  in  the  way  of  cut  and  dry  conclusions.    At  times,  evidence  that  corroborates  the  IDH  and  evidence  that  invalidates  it  are  even  presented  within  the  same  study  (e.g.  McIntyre  &  Lavorel  1994).    Although  the  majority  of  studies  that  explore  disturbance  and  diversity  patterns  in  grasslands  do  not  provide  unambiguous  evidence  that  the  IDH  accurately  reflects  the  diversity-­‐disturbance  relationship  in  these  ecosystems,  most  do  

   

9    

state  that  disturbance  –  particularly  fire  –  has  profound  effects  on  community  composition  (Stohlgren  et  al  1999,  Collins  1987,  Collins  2000,  Gibson  1988,  McIntyre  &  Lavorel  1994,  Vujnovic  et  al  2002,  Collins  et  al  1995).     First,  let  us  examine  the  literature  in  support  of  the  IDH’s  relevance  in  grasslands.    In  a  study  examining  the  effects  of  water-­‐enrichment  (due  to  increased  run  off  that  was  anthropogenic  in  origin),  soil  disturbance,  and  grazing  by  herbivores  on  total,  native,  rare,  and  exotic  species  richness,  intermediate  levels  of  grazing  generated  the  highest  total  and  native  species  richness  (McIntyre  &  Lavorel  1994,  pp.  524-­‐525).    This  same  study  showed  decreased  total,  native,  and  rare  species  richness  with  increasing  soil  disturbance  and  water-­‐enrichment  (McIntyre  &  Lavorel  1994).    Contrastingly,  exotic  species  richness  increased  with  increasing  soil  disturbance  and  water-­‐enrichment  and  did  not  vary  significantly  with  grazing  (McIntyre  &  Lavorel  1994,  p.  525).     In  a  2002  paper,  Vujnovic  and  his  coauthors  present  the  findings  of  a  study  conducted  in  grassland  remnants  in  Alberta,  Canada.    The  examined  the  total,  native,  and  non-­‐native  species  richness  and  evenness  present  in  quadrats  that  had  experienced  various  types  and  levels  of  disturbance,  testing  the  following  hypotheses  (Vujnovic  et  al  2002,  p.  505):    (1)  Within-­‐patch  species  richness  is  at  its  highest  at  intermediate  levels  of  disturbance  –  a  direct  test  of  the  IDH.    (2)  Non-­‐native  vascular  plant  species  richness  increases  will  increasing  disturbance.    The  results  of  their  study  are  summarized  in  the  figure  below  (Vujnovic  et  al  2002,  p.  509).  

    As  shown  in  the  figure  in  the  on  the  previous  page,  species  evenness  and  Simpson’s  diversity  index  for  non-­‐native  species  and  total  species  did  not  show  the  relationship  predicted  by  the  IDH  (Vujnovic  et  al  2002,  p.  508-­‐509).    However,  when  disturbance  occurred  at  intermediate  levels,  total  

   

10    

species  richness  peaked  (Vujnovic  et  al  2002,  p.  508-­‐509).    Non-­‐native  species  richness  increased  with  increasing  disturbance,  as  hypothesized  by  the  authors  (Vujnovic  et  al  2002,  p.  509).    Vujnovic  and  his  coauthors  attribute  this  increase  to  a  decrease  shade  provided  by  Festuca  hallii,  a  native  grass  (Vujnovic  et  al  2002,  p.  510).         While  McIntyre  and  Lavorel  (1994)  and  Vujnovic  and  his  colleagues  (2002)  had  the  foresight  to  partition  species  richness  into  its  native  and  non-­‐native  components,  many  authors  have  not  made  this  distinction,  resulting  in  results  that  are  difficult  to  interpret  from  a  management  standpoint.    Although  total  species  richness  may  be  of  the  most  interest  to  some  ecologists,  land  managers  and  conservation  organizations  are  often  most  interested  in  maximizing  native  species  richness  and,  if  possible,  minimizing  non-­‐native  species  richness.     In  contrast  to  the  work  done  by  these  authors,  various  studies  conducted  by  Scott  Collins  (1987,  1992,  1995,  2000)  have  contradicted  the  IDH.    His  twelve-­‐year  1995  study  revealed  decreasing  species  richness  with  increasing  fire  frequency,  as  shown  below  (p.  488).  

 However,  concurrent  with  a  lesser  known  prediction  of  the  IDH,  Collins  found  that  species  richness  was  greatest  at  an  intermediate  time  periods  after  disturbance  (Collins  et  al  1995,  p.  490).    Because  increases  in  diversity  result  from  a  variety  of  mechanisms  that  are  not  directly  associated  with  disturbance,  particularly  seed  dispersal  and  germination,  disturbance  may  actually  decrease  species  richness  despite  its  capacity  to  generate  species  richness-­‐increasing  conditions  in  some  circumstances  (Collins  1995  et  al,  p.  490).    Furthermore,  the  IDH’s  foundational  assumption  that  a  tradeoff  between  tolerance  or  resistance  to  disturbance  and  competitive  ability  exists  apparently  does  not  accurately  reflect  the  native  of  at  least  some  prairie  species  (Collins  et  al  1995,  p.  491).    Quite  on  the  contrary,  the  dominant  grasses  in  North  American  prairies  –  particularly  Andropogon  gerardii  –  actually  tend  to  increase  their  competitive  superiority  in  response  to  fire  (Collins  et  al  1995,  p.  491;  Collins  1992,  p.  2001).     When  prairie  plots  that  were  burned  every  year,  alternate  years,  or  every  four  years  were  compared  to  sites  that  were  never  burn,  heterogeneity  –  a  measure  of  diversity  –  decreased  with  the  number  of  fires  a  site  had  experienced  and  was  lowest  at  sites  with  intermediate  burning  frequencies  (Collins  1992,  pp.  2003-­‐2004).    Similarly,  the  composition  of  plant  communities  in  annually  burned  sites  is  significantly  different  than  the  composition  of  plant  communities  in  sites  that  are  burned  less  frequently,  partially  due  to  the  increased  dominance  of  grasses  at  the  expense  of  forbs  and  shrubs  (Collins  2000,  pp.  317-­‐319).    Via  selective  browsing  on  C4  grasses,  grazing  by  large  ungulates  may  increase  species  diversity  by  reducing  grass  dominance  and  allowing  forbs  to  increase  (Knapp  et  al  1999  qtd.  in  Collins  2000,  p.  321;  Collins  1987,  p.  1248).    When  grazing  and  fire  were  studied  together,  species  richness  increased  with  increasing  disturbance  intensity,  with  the  high  species  richness  

Figure  7:    The  relationship  between  diversity  and  disturbance  in  two  series  of  plots  in  Konza  Prairie,  Kansas,  USA.  

   

11    

occurring  in  quadrats  that  were  subjected  to  both  fire  and  grazing  (Collins  1987,  p.  1247).    Statistical  analysis  revealed  a  significant  interaction  between  these  two  disturbances,  resulting  in  increased  species  diversity  (Collins  1987,  p.  1247).     Rocky  Mountain  grasslands  may  differ  substantially  from  the  Midwestern  prairies  studied  extensively  by  Collins.    Stohlgren  and  his  colleagues  collected  data  from  nine  areas  in  four  states  to  determine  whether  grazing  would  increase  native  species  richness  via  the  reduction  of  competitive  exclusion  and  whether  the  IDH  holds  true  for  this  system  (1999,  p.  45).    The  authors  claim  (Stohlgren  et  al  1999,  pp.  58-­‐61):    (1)  “Grazing  probably  has  little  effect  on  native  species  richness  at  landscape  levels  in  these  Rocky  Mountain  grasslands”  (emphasis  mine).    (2)  “Grazing  probably  has  little  effect  on  the  accelerate  spread  of  most  exotic  plant  species  at  landscape  scales.”    (3)  “Grazing  affects  local  plant  species  and  life-­‐form  composition  and  cover,  but  spatial  variation  is  considerable.”    (4)  “Soil  fertility,  climate,  and  other  factors  have  a  greater  effect  on  plant  species  diversity  than”  grazing  does.    (5)  “Few  plant  species  show  consistent,  directional  responses  to  grazing  and  cessation  of  grazing.”     All  conclusions  regarding  the  validity  of  the  IDH  should  be  examined  critically.    Outcomes  may  depend  upon  the  type  of  disturbance  studied  and  the  numbers  and  ranges  of  frequencies  and  intensities  studied  as  well  as  whether  or  not  several  different  disturbances  are  examined  in  concert  (Grime  1973  and  Martinsen  1990  qtd.  in  Vujnovic  et  al  2002,  p.  505).    Additionally,  as  noted  by  Mackey  and  Currie  (2001),  unless  research  protocols  are  appropriately  designed,  carefully  sampling  methodologies  are  used,  and  rigorous  statistical  analyses  are  performed,  inferences  that  are  drawn  about  the  diversity-­‐disturbance  relationship  and  the  relevance  of  the  IDH  to  particular  ecological  communities  of  interest  may  not  be  valid.    Implications  for  Management  

The  results  of  the  studies  reviewed  in  the  paper  specifically  for  their  findings  regarding  the  legitimacy  of  the  IDH  as  well  as  other  disturbance-­‐related  field  studies  conducted  in  grassland  ecosystems  have  important  applications  for  conservation.    Individual  and  communal  evolutionary  histories  should  be  considered  when  attempting  to  ascertain  the  appropriate  management  strategies  for  grassland  ecosystems,  especially  when  considering  the  use  of  prescribed  disturbance.    The  types,  frequencies,  and  intensities  of  disturbance  that  may  achieve  particular  management  objectives  are  likely  to  be  site-­‐specific  and  will  often  depend  upon  a  variety  of  interacting  factors.  

Historically,  grasslands  have  experienced  relatively  frequent  fire  (Leach  &  Givnish  1996).    Presently,  grasslands  experience  minimal  disturbance  by  fire.    A  lack  of  ignition  sources,  the  prevalence  of  barriers  to  fire  (e.g.  roads  and  urban  areas),  and  fire  suppression  in  grassland  ecosystems  composed  predominantly  of  fire-­‐adapted  species,  such  as  C4  grasses,  may  produce  a  significant  disruption  of  ecosystem  processes  and  function  (Hobbs  &  Huenneke  1992;  Leach  &  Givnish  1996).    In  order  to  increase  their  survivability  in  the  presence  of  periodic  fire,  some  prairie  species  may  have  developed  specific  physiological  characteristics  that  actually  amplify  their  flammability  (Mutch  1970).    For  this  reason,  fire  often  functioned  as  both  a  disturbance  and  a  regenerative  agent  in  North  American  prairies  (Gibson  1988)  by  removing  litter  and  standing  dead  biomass  (Hulbert  1988  &  1969,  Wilson  &  Shay  1990,  Knapp  1985),  increasing  light  intensity  near  the  soil  surface  and  nitrogen  availability  early  in  the  growing  season.  

When  managing  existing  prairie  remnants  or  newly  restored  prairies,  the  use  of  prescribed  fire  may  be  important  to  mimic  the  existence  historical  disturbance  regimes  (Mutch  1970,  Leach  &Givnish  1996).    Although  the  benefits  of  prescribed  fire  are  fairly  well-­‐established  in  the  literature,  consensus  has  not  been  reached  regarding  the  ideal  frequency  at  which  prescribed  burns  should  occur.    Historical  

   

12    

data  indicates  that  the  frequency  of  prairie  fires  pre-­‐settlement  was  once  every  three  to  ten  years;  however,  research  scientists  and  prairie  property  managers  alike  most  commonly  utilize  an  annual  or  “alternate  springs”  prescribed  burn  schedule  (Gibson  1988).    Similar  inconsistencies  regarding  the  appropriate  seasonal  timing  of  prescribed  fire  exist.    Howe  (1994)  asserts  that  although  many  studies  evaluate  the  effects  of  spring  burns,  based  on  historical  fire  regimes  in  which  lightning  from  midsummer  storms  was  the  primary  ignition  source,  the  summer  months  are  more  appropriate  for  prescribed  fire.  

Grazing  may  also  be  an  important  disturbance  for  grassland  ecosystems  based  on  the  community’s  evolutionary  history.    The  elimination  of  large  ungulate  from  grassland  food  webs  has  likely  affected  the  plant  community  composition  by  releasing  the  competitively  superior  C4  grasses  from  predation,  reducing  the  community’s  biodiversity  (Knapp  et  al  1999  qtd.  in  Collins  2000,  p.  321;  Collins  1987,  p.  1248).    However,  the  work  of  Stohlgren  and  his  colleagues  (1999)  indicates  that  although  prairie  managers  may  find  exposing  grasslands  to  grazing-­‐induced  disturbance  with  the  goal  of  increasing  species  richness  intuitively  appealing,  grazing  probably  does  not  exert  significant  effects  on  the  plant  community’s  diversity  at  the  landscape  level.    This  finding  does  not  preclude  the  use  of  grazing  to  increase  species  richness  within  small  patches  of  prairie.    Based  on  the  results  of  Collins’  1987  study  of  the  combined  effects  of  grazing  and  fire,  management  strategies  that  utilize  both  of  these  disturbances  may  be  most  successful  in  maximizing  species  richness.  

In  short,  when  attempting  to  manage  grassland  ecosystems,  multiple  factors  must  be  considered:    (1)  Individual  and  communal  evolutionary  histories,  including  historical  disturbances  regimes,  particularly  fire  and  grazing.    (2)  The  dispersal  and  colonization  tendencies  of  the  species  present  in  the  community.    (3)  The  degree  of  spatial  aggregation  and  landscape  dependence  exhibited  by  disturbances  occurring  within  the  community  (Elkin  &  Possingham  2008).    (4)  Communal  competitive  hierarchies  and  whether  or  not  a  meaningful  trade-­‐off  between  competitive  superiority  and  ability  to  tolerate  or  resist  disturbance  exists.    (5)  The  specific  management  objectives  for  a  given  site,  including,  but  not  limited  to,  maximizing  native  species  richness  and/or  abundance  goals,  minimization  of  non-­‐native  richness  and/or  abundance,  or  accurately  recreating  the  historical  prairie  community.    Therefore,  it  is  imperative  that  those  involved  efforts  to  conserve  and  preserve  prairie  species  and  communities  possess  a  deep,  holistic  understanding  of  the  life  histories  and  metapopulation  dynamics  of  species  of  interest,  the  nature  of  significant  disturbance  regimes  and  their  effects,  and  the  characteristics  of  interspecific  competition  within  grassland  communities  to  best  ensure  that  these  communities  are  effectively  preserved  and  restored.  

   References  

 Begon,  Michael,  Colin  R.  Townsend,  and  John  L.  Harper.  Ecology:  From  Individuals  to  Ecosystems.  4th  

ed.  Oxford,  United  Kingdom:  Blackwell  Publishing,  2006.  Benning,  T.  L.,  and  Thomas  B.  Bragg.  "Response  of  Big  Bluestem  (Andropogon  gerardii  Vitman)  to  

Timing  of  Spring  Burning."  American  Midland  Naturalist  130.1  (1993):  127-­‐32.  Connell,  Joseph  H.  “Diversity  in  Tropical  Rain  Forests  and  Coral  Reefs.”  Science  199  (1978):  1302-­‐1310.  Connell,  Joseph  H.  “Citation  Classic.”  ISI  46  (1987).  Collins,  Scott  L.  "Interaction  of  Disturbances  in  Tallgrass  Prairie:  A  Field  Experiment."  Ecology  68.5  

(1987):  1243-­‐50.  

   

13    

Collins,  Scott  L.  "Fire  Frequency  and  Community  Heterogeneity  in  Tallgrass  Prairie  Vegetation."  Ecology  73.6  (1992):  2001-­‐06.  

Collins,  Scott  L.,  Susan  M.  Glenn,  and  David  J.  Gibson.  "Experimental  Analysis  of  Intermediate  Disturbance  and  Initial  Floristic  Composition:  Decoupling  Cause  and  Effect."  Ecology  76.2  (1995):  486-­‐92.  

Collins,  Scott  L.  “Disturbance  Frequency  and  Community  Stability  in  Native  Tallgrass  Prairie.”  The  American  Naturalist  155.3  (2000):  311-­‐325.  

Crombie,  A.C.  “Interspecific  Competition.”  The  Journal  of  Animal  Ecology  16.1  (1947):  44-­‐73.  Elkin,  Che  M.,  and  Hugh  Possingham.  “The  Role  of  Landscape-­‐Dependent  Disturbance  and  Dispersal  in  

Metapopulation  Persistence.”  The  American  Naturalist  172.4  (2008):  563-­‐575.  Fox,  John  F.  “Intermediate-­‐Disturbance  Hypothesis.”  Science  204  (1979):  1344-­‐1345.  Gibson,  David  J.  "Regeneration  and  Fluctuation  of  Tallgrass  Prairie  Vegetation  in  Response  to  Burning  

Frequency."  Bulletin  of  the  Torrey  Botanical  Club  115.1  (1988):  1-­‐12.  Hacker,  Sally  D.,  and  Steven  D.  Gaines.  “Some  Implications  of  Direct  Positive  Interactions  for  

Community  Species  Diversity.”  Ecology  78.7  (1997):  1990-­‐2003.  Hobbs,  Richard  J.,  and  Laura  F.  Huenneke.  "Disturbance,  Diversity,  and  Invasion:  Implications  for  

Conservation."  Conservation  Biology  6.3  (1992):  324-­‐37.  Howe,  Henry  F.  "Managing  Species  Diversity  in  Tallgrass  Prairie:  Assumptions  and  Implications."  

Conservation  Biology  8.3  (1994):  691-­‐704.  Huston,  M.A.  “Patterns  of  Species  Diversity  on  Coral  Reefs.”  Annual  Review  of  Ecology  and  Systematics  

16  (1985):  149-­‐177.  Hulbert,  Lloyd  C.  "Fire  and  Litter  Effects  in  Undisturbed  Bluestem  Prairie  in  Kansas."  Ecology  50.5  

(1969):  874-­‐77.  Hulbert,  Lloyd  C.  "Causes  of  Fire  Effects  in  Tallgrass  Prairie."  Ecology  69.1  (1988):  46-­‐58.  Knapp,  Alan  K.  "Effect  of  Fire  and  Drought  on  the  Ecophysiology  of  Andropogon  gerardii  and  Panicum  

virgatum  in  a  Tallgrass  Prairie."  Ecology  66.4  (1985):  1309-­‐20.  Leach,  Mark  K.,  and  Thomas  J.  Givnish.  "Ecological  determinants  of  species  loss  in  remnant  prairies."  

Science  273.5281  (1996):  1555-­‐59.  Mackey,  Robin  L.,  and  David  J.  Currie.  “The  Diversity-­‐Disturbance  Relationship:  Is  it  Generally  Strong  

and  Peaked?”  Ecology  82.12  (2001):  3479-­‐3492.  Malcolm,  Stephen.  “Interspecific  Competition.”  Western  Michigan  University,  Kalamazoo,  MI.  3  

February  2009.  McIntyre,  S.,  and  Lavorel,  S.  “Predicting  Richness  of  Native,  Rare,  and  Exotic  Plants  in  Response  to  

Habitat  and  Disturbance  Variables  across  a  Variegated  Landscape.”  Conservation  Biology  8.2  (1994):  521-­‐531.  

Mutch,  Robert  W.  "Wildland  Fires  and  Ecosystems  -­‐-­‐  A  Hypothesis."  Ecology  51.6  (1970):  1046-­‐51.  Neuhauser,  Claudia,  and  Stephen  W.  Pacala.  “An  Explicitly  Spatial  Version  of  the  Lotka-­‐Volterra  Model  

with  Interspecific  Competition.”  The  Annals  of  Applied  Probability  9.4  (1999):  1226-­‐1259.  Petraitis,  Peter  S.,  Roger  E.  Latham,  and  Richard  A.  Niesenbaum.  “The  Maintenance  of  Species  Diversity  

by  Disturbance.”    64.4  (1989):  393-­‐418.  Roxburgh,  Stephen  H.,  Katriona  Shea,  and  J.  Bastow  Wilson.  “The  Intermediate  Disturbance  

Hypothesis:  Patch  Dynamics  and  Mechanisms  of  Species  Coexistence.”  Ecology  85.2  (2004):  359-­‐371.  

   

14    

Stohlgren,  Thomas  J.,  Lisa  D.  Schell,  and  Brian  Vanden  Heuvel.  “How  Grazing  and  Soil  Quality  Affect  Native  and  Exotic  Plant  Diversity  in  Rocky  Mountain  Grasslands.”  Ecological  Applications  9.1  (1999):  45-­‐64.  

Vujnovic,  K.,  R.W.  Wein,  and  M.R.T.  Dale.  “Predicting  Plant  Species  Diversity  in  Response  to  Disturbance  Magnitude  in  Grassland  Remnants  of  Central  Alberta.”  Canadian  Journal  of  Botany  80.5  (2002):  504-­‐511.  

Wilkinson,  David  M.  “The  Disturbing  History  of  Intermediate  Disturbance.”  Oikos  84.1  (1999):  145-­‐147.  Wooten,  J.  Timothy.  “Effects  of  Disturbance  on  Species  Diversity:  A  Multitrophic  Perspective.”  The  

American  Naturalist  152.6  (1998):  803-­‐825.