50
ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

Embed Size (px)

Citation preview

Page 1: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Biomechanical Instrumentation

Considerations in Data Acquisition

Page 2: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data Acquisition in Biomechanics

Why???

Describe and Understand a Phenomena Test a Theory Evaluate a condition/situation

Data Acquisition provides information that is used in making decisions.

Page 3: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The Goal !!!

Accuracy in Data Acquisition

Good Decision

Objectivity in Data InterpretationObjectivity in Data Interpretation

Page 4: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Levels of Data Acquisition

Visual Observation and Human Interpretation• Limited Information Processing Capacity• Subjectivity in interpretation

Instrumented Observation and Human Interpretation• Un-limited information processing capacity• Decreased subjectivity of interpretation

Instrumented Observation and Interpretation• Un-limited information processing capacity

and Objectivity of interpretation* Lack of spontaneity and creativity

Page 5: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Factors that Maximize Accuracy in Data Acquisition

Selection of the correct measurement technique• Use of established techniques

Attention to appropriate sensitivity levels

Calibration Standardization of protocols Adequate preparation (ie

training, pilot testing, etc.)

Page 6: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Factors that Maximize Accuracy in Data

Acquisition

Attention to the Details

Good Decisions

Page 7: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Biomechanical DataWhat’s it like?

Continuous Wide range of Amplitudes Variability of Duration Wide range of Frequencies

Page 8: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data are ……Continuous

ROM

EMG

0

100

200

300

400

500

600

EMG (uV)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Gait Cycle

Degrees

Page 9: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Wide Range of Amplitudes

Ground Reaction Forces – Hundreds of Newton

EMG – Millionths of a volt

Page 10: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Wide Range of AmplitudesMeasurement Range

Frequency, Hz

Method

Blood flow 1 to 300 mL/s 0 to 20 Electromagnetic or ultrasonic

Blood pressure 0 to 400 mmHg 0 to 50 Cuff or strain gage

Cardiac output 4 to 25 L/min 0 to 20 Fick, dye dilution

Electrocardiography 0.5 to 4 mV 0.05 to 150 Skin electrodes

Electroencephalography

5 to 300 V 0.5 to 150 Scalp electrodes

Electromyography 0.1 to 5 mV 0 to 10000 Needle electrodes

Electroretinography 0 to 900 V 0 to 50 Contact lens electrodes

pH 3 to 13 pH units 0 to 1 pH electrode

pCO2 40 to 100 mmHg 0 to 2 pCO2 electrode

pO2 30 to 100 mmHg 0 to 2 pO2 electrode

Pneumotachography 0 to 600 L/min 0 to 40 Pneumotachometer

Respiratory rate2 to 50 breaths/min

0.1 to 10 Impedance

Temperature 32 to 40 °C 0 to 0.1 Thermistor

Page 11: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Wide Variability of Duration

Continuous Motion Studies - hours

Reaction Time Studies - msec

Page 12: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Wide Range of Frequencies

ROM in Walking – 2 to 4 Hz Foot Impact Shock – 200 to

300 Hz EMG – > 2000 Hz

Page 13: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

How Do We Acquire Biomechanical Data??

Video/Cine Force Plates Electromyography Pressure Plates Accelerometers Force Transducers Electrogoniometers Etc.

Page 14: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

How do we Record the Data??

Old technology (yuk)• Chart Recorders • Oscilloscopes • Tape Recorders

New Technology• Computers• Data loggers

Page 15: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The Problem !!!

Instruments produce continuous data (Analog Data)Computers like discrete data(Digital Data)

Page 16: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The Problems!!!

(a) An input signal which exceeds the dynamic range. (b) The resulting amplified signal is saturated at 1 V.

Page 17: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The problems!!!

Time

Amplitude

Dc offset

(a) An input signal without dc offset. (b) An input signal with dc offset.

Page 18: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The SolutionThe Analog to Digital (A/D)

Converter

Changes the in-coming (analog) signal to (digital) information that can be processed by the computer

Page 19: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Principles of A/D Conversion

An analog signal (typically a voltage) is measured at periodic intervals. At each interval the voltage is given a numerical value that represents the amplitude of

the voltage. 0 2 3 4 4 3 2 1

Page 20: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Principles of A/D Conversion

The Analog values that represent the signal are then stored, as an array of numbers, for processing.

02344321

Page 21: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data Sampling and Data Treatment

Page 22: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data Sampling and Data Treatment

Issues

Transferring Analog Signals to a Digital Computer

Time and Frequency Domain Analysis Determining Optimal Sampling Rates Prevention and Treatment of Noisy Data Data Normalization

Page 23: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The Analog to Digital (A/D) ConverterAnalog Signals

ROM

GRF

EMG

Page 24: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

The Analog to Digital (A/D) Converter

Changes the in-coming analog signal to digits (numerical information) that can be processed by the computer

Page 25: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Principles of A/D Conversion

An analog signal (typically a voltage) is measured at periodic intervals. At each interval the voltage is given a numerical value that represents the amplitude of

the voltage. 0 2 3 4 4 3 2 1

Page 26: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Features of the A/D Converter

Channels - 4, 8 16, 32, 64 Gain - 2, 4 8, 10 (typical) Input Range - variable (+-10

Volts) Sampling Rate

• Low 1000 Hz to High 500 kHz

Resolution• 8 Bit 256 units• 12 Bit 4096 units• 16 Bit 65536 units

D/A Capacity

Page 27: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Time and Frequency Domain Analysis

Time Domain

Frequency Domain

Time (seconds)

Frequency (hz)

Mv

Mv

Page 28: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Time and Frequency Domain Analysis

Time Domain – Represents change in signal Amplitude relative to change in Time

Frequency Domain – Represents change in signal Amplitude relative to the Rate of Change in Amplitude

Time Domain Fourier Transform (FFT)Frequency Domain

Page 29: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Frequency Domain Analysis

Examples

Page 30: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Determining Optimal Sampling Rates

How Fast Do We Need to Sample the Data ?

The Real IssueThe Real Issue

Sampling Rate: The rate at which periodic measurements of a signal are made. Units are samples per second or Hz

Examples – An EMG signal being sampled at 1000 Hz A video picture being sampled at 60 Hz

Page 31: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Considerations in Selecting a Sampling Rate

Frequency Characteristics of the Signal – the rate at which the amplitude of the signal changes

Examples:

Rapidly Changing Signals –

Slowly Changing Signals -

Page 32: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Considerations in Selecting a Sampling Rate

Frequency Characteristics of the Signal - the Nyquist Sampling Theory

Speed of Signal Processing and Data Analysis

Depends on:

What’s neededComputer Processing SpeedAmount of DataRequisite Processing

Page 33: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Considerations in Selecting a Sampling Rate

Frequency Characteristics of the Signal - the Nyquist Sampling Theory

Speed of Signal Processing and Data Analysis

Storage Capacity of the System Number of Channels Simultaneously

Sampled Capacity (speed and channels) of A/D

system

Page 34: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Typical Sampling Rates for Biomechanical Data

Force Platform - 10 Hz (balance) to 1000 Hz (running, jumping, etc.)

EMG - 100 Hz to 2000 Hz Video - 15 fps to 500 fps

Page 35: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Determining Optimal Sampling Rates

Theoretical –Determine the frequency characteristics of the signal to be sampled – Apply the Nyquist Theory ( i.e. At least 2 x the highest frequency in the signal)

Practical – Copy what someone else has done!!!

Page 36: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Determining Optimal Sampling Rates

What Happens if we……

Sample too slow – Aliasing Error (introduces frequencies into the data that aren’t actually there

Sample Too Fast – Generates excess data

Page 37: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Sampling Rate

Examples

Page 38: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Prevention and Treatment of

Noisy Data A BIG Problem!!!

Page 39: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Noisy Data

Noisy EMG Signal

Not Noisy (clean)

Page 40: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Minimizing the Effect of Noisy Data

Control sources of noise before contamination – eliminate sources of noise• Vibration• Radiant electrical energy• Movement artifact (cable movement)

Filter data after contamination – with appropriate hardware and/or software filters

Page 41: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Filtering DataThe Goal

Extracting the Noise without Changing the

Signal

Page 42: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Digitial FilteringBased on the Frequency characteristics of the dataA mathematical process that selectively eliminates that part of the data that is caused by noiseBased on the assumption that the noise occurs at frequencies that are different from those of the actual signal

Page 43: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Digital Filtering

Raw Signal – (signal + noise)

Filtered Signal

Page 44: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Digital Filtering

Examples

Page 45: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Noise ReductionOther Techniques

Smoothing – Moving Window

Curve Fitting – Cubic Spline

Root Mean Square

*All of the above are effective – but less specific*May also be used to simplify complex waveforms to enhance analysis

Page 46: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Noise Reduction - other

Examples

Page 47: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data NormalizationThe Goal – To convert the data from one base unit to an

alternative base unit

1. To enhance ease of interpretation

2. To establish a common base so that averaging across subjects/conditions is possible

Examples

•“The mean level of muscle activity in the biceps during the arm curl was 80 mv.”

•“The mean level of muscle activity in the biceps during the arm curl was 98% of a maximum voluntary contraction”

Page 48: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data Normalization

The Goal – To convert the data from one base unit to an alternative base unit

1. To enhance ease of interpretation

2. To establish a common base so that averaging across subjects/conditions is possible

Examples

•“The force on impact with the ground was equal to 1100 Newtons”

•“The force on impact with the ground was equal to 1.5 bodyweights”

Page 49: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

Data Normalization

Other types of data normalization –

• Normalizing time by the duration of a cycleEx. Expressing gait events relative to a

gait cycle – ie. 20% of the gait cycle

• Normalizing O2 consumption by expressingit as a function of body mass and/or time

Ex. Ml/Kg/Min

Page 50: ÉCOLE DES SCIENCES DE LACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition

ÉCOLE DES SCIENCES DE L’ACTIVITÉ PHYSIQUESCHOOL OF HUMAN KINETICS

THE END