19
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL LDRD project 12-ERD- 022, and LDRD project 11-ERD-058, This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences. This work was supported by program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning , and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No.11261140328 and NRF: No. 2012K2A2A6000443). It was supported by the China Natural Science Foundation under Contract No.11405215 and 11405217, the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2014GB106001 and 2013GB111002. LLNL-PRES-669936. 夏天阳 1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China. 2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA June 5th, 2015 • ASIPP 1 托卡马克中的边界局域模的简单介绍

托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022, and LDRD project 11-ERD-058, This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences. This work was supported by program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning , and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No.11261140328 and NRF: No. 2012K2A2A6000443). It was supported by the China Natural Science Foundation under Contract No.11405215 and 11405217, the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2014GB106001 and 2013GB111002. LLNL-PRES-669936.

夏天阳

1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China. 2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

June 5th, 2015 • ASIPP

1

托卡马克中的边界局域模的简单介绍

Page 2: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ 高约束模(H模)和台基区

2

1982年,ASDEX首次实现H模。

在H模下,边缘等离子体湍流被抑制,边

缘等离子体的输运水平显著降低,这一现象被称为边缘输运垒(ETB)。台基区(pedestal)形成。

优点:改善核心区等离子体的约束。减小自持反应所需要的装置体积,降低建造费用。为ITER计划的开展提供了必要的物理基础。

缺点:剖面梯度过大,导致台基区的等离子体非常不稳定→边界局域模(ELM)

典型的H模与L模的密度温度和电流密度剖面

Page 3: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ 边界局域模

3

ELM:托卡马克中,随着加热的不断进行,核心区的能量和粒子不断进入台基区,

但是却无法输运离开分离面。这导致台阶区的梯度越来越大,并最终发生爆发式的坍塌。大量等离子体在极短的时间内喷发出去,越过分离面,进入刮削层(SOL)。

实验特点: • 频率:几十至几百赫兹 • 导致大量的能量损失:穿过等离子体边界的能量损失中,ELM引起的比例为

20-40%[1] • 导致大量的粒子损失:有助于排出杂质和氦灰。 • ITER中,一个ELM可以导致等离子体总热能10%的损失 • 极高的瞬态热负载:~10-100MW/m2。 • 丝状结构

[1] A.Loarte et al., PPCF 45, 1549 (2003). MAST上的ELM丝状结构(可见光成像)

Page 4: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ 各个装置上观测与模拟的ELM丝状结构

4

KSTAR上的ELM结构(ECEI)

DIII-D

EAST

* Z.X. Liu, PoP 2014

Page 5: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM的实验观测

5

DIII-D上的典型ELM放电(Leonard,PoP 2014)

DIII-D上的一个ELM放

电周期内的诊断观测,呈现为两个阶段(Fenstermacher,EPS, 2013)

JET上的一个ELM放

电周期内的诊断观测(Saibene,PPCF 2002)

Beginning of ELM cycle

Page 6: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ 典型的ELM对剖面的影响

6 密度剖面的塌缩和回复*

靶板上热流的增大和衰减*

*Fenstermacher,EPS, 2013

144382

Page 7: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM的前兆震荡(precursor)

7

前兆震荡(Precursor):在ELM爆发前,台基区等离子体的密度、温度、磁场等出现的规则增长型震荡。

不是每个ELM 爆发前都会有前兆震荡,前兆震荡也并不是总是同时出现在密度、温度和磁场扰动上。

JT-60U上的前兆震荡。密度出现,而磁信号则不出现。

γ/ωA ≈ 0.1% ∼ 1%

发生在ELM 爆发前的数百μs内

由于台阶区的线性不稳定性引起

输运→台基区能量和粒子增加→ETB导致梯度增大→电流增大→梯度达到MHD阈值→线性不稳定性

Page 8: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM的分类

8

ELM的分类依据:频率,能量/粒子损失,模结构,MHD稳定性,加热功率依赖等

目前的主要分类:Type-I,Type-III,grassy等

类型 Type-I Type-III grassy

频率 ~10Hz ~100Hz 800-1500Hz

频率对加热功率依赖

随加热功率提高而增大

随加热功率提高而减小

-

MHD稳定性 接近稳定性边界 低于稳定性边界 低于稳定性边界

Dα 巨大的尖峰结构 显著小于Type-I 比Type-III更小

前兆震荡 不明显 50-70kHz -

三种ELM之间的演化关系(Snyder,NF 2004)

Page 9: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM与碰撞率之间的关系

9

ELM分类与碰撞率之间的关系(Oyama, Journal of Physics: Conference Series., 2008)

ELM能量损失与碰撞率的关系(Loarte,PPCF, 2003)

总体来说,碰撞率越小,ELM导致的能量损失越大

Page 10: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM爆发的物理理解

10

Peeling-ballooning mode:压强的梯度会导致在坏曲率的位置产生名为理想气球模(ideal-Ballooning mode)的不稳定性。同时,由于磁流体平衡的作用,

压力梯度必然导致在该区域产生一个对应的自矩电流,而这个电流也会引发名为剥裂模(Peeling mode)的不稳定性。自矩电流在引发剥裂模的同时,也会增强该区域的磁剪切,从而对理想气球模产生致稳效果。(Snyder, PoP 2002)

Ideal ballooning mode的Mercier判据(Mercier, NF 1960):

Peeling mode的稳定性判据(Connor, PoP 1998):

n=∞ n=20 B

P

B

P

P

s-α模型中的气球模(实线)和剥裂模(虚线)的稳定性区间

Page 11: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Peeling-Ballooning (P-B) mode

11 压强不变,密度不同导致边界自举电流变化* 不同的自举电流导致不同的P-B模的谱,

但是增长率峰值大小不变*。 *X.Q. Xu, PoP 2014

DIII-D上的P-B模稳定性区间(Snyder, NF 2009) 密度对气球模的影响

Page 12: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM爆发的非线性理论*

12 *P.W. Xi, PRL 2014

存在背景湍流的情况下,ideal MHD不稳定的平衡不会发生ELM坍塌

Page 13: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Pedestal的形成由P-B模和KBM联合决定

13

EPED(Snyder, PoP 2009)给出了对台基区结构的预言:

P-B模:ELM崩塌,台基高度和宽度降低。 提供台基高度和宽度的上限 需要另外的约束来决定台基高度与宽度

H模下shear ExB flow很强→长波湍流被抑制→短波ETG只对局域梯度产生影响→KBM称为候选者

KBM:湍流输运,与P-B模一道决定台基高度与宽度

Page 14: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ ELM爆发后恢复过程

14 DIII-D观测:温度高度的恢复比密度慢。宽度的恢复远快于高度。

Page 15: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Quasi coherent fluctuation (QCF)与ELM恢复密切

相关

15 C-Mod上观测的QCF与温度恢复过程相关联(Diallo,NF 2005)

DIII-D上观测的磁信号的QCF

ELM爆发时刻,外中平面磁探针探测到扰动幅度突然下降

随后在密度快速恢复过程中,扰动幅度仍然很小

此后(~10%频率宽度之后),QCF产生并演化

Page 16: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ 总结

16

H模等离子体达到MHD阈值,就会产生ELM。

I型ELM导致大量的能量损失,严重影响约束性能,应尽量避免。但是ELM带来的粒子输运则有助于氦灰的排出。

ELM的爆发可以用MHD不稳定性来解释:P-B模

EPED模型使用理想P-B模与KBM来预言台基结构,即KBM影响台基的建立

ELM的恢复过程与QCF有极高的关联性:QCF的物理机制(KBM?)

Page 17: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Backup:Shift of ELM triggering criterion*

17 *P.W. Xi, PRL 2014

Page 18: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Backup:QCF与温度剖面恢复

18

Page 19: 托卡马克中的边界局域模的简单介绍 - IPPtheory.ipp.ac.cn/wp-content/uploads/2015/07/xia_June5.pdf · 022, and LDRD project 11-ERD-058, This material is based upon work

Multi-field two-fluid model in BOUT++ Next step work

19