48
ECE680: Physical VLSI Design ECE680: Physical VLSI Design ECE680: Physical VLSI Design ECE680: Physical VLSI Design Lecturer: Qiliang Li Lecturer: Qiliang Li TextBook: Di it lI t t dCi it AD i P ti Digital Integrated Circuit: A Design Perspective 2 nd Ed. By Rabaey, Chandrakasan and Nikolic Prerequisites: Prerequisites: ECE586 Digital Integrated Circuit Analysis and Design. Knowledge of MOSFET and CMOS inverter is required. (Significant material is from the notes of Rabaey, Chandrakasan, and Nikolić) 1

ECE680: Physical VLSI Design - George Mason Universityece.gmu.edu/~qli/ECE680/chapter1 Introduction.pdf · • Time-to-Market • Millions of Gates • High-Level Abstractions

  • Upload
    dothuan

  • View
    221

  • Download
    1

Embed Size (px)

Citation preview

ECE680: Physical VLSI DesignECE680: Physical VLSI DesignECE680: Physical VLSI DesignECE680: Physical VLSI DesignLecturer: Qiliang LiLecturer: Qiliang LiTextBook:

Di it l I t t d Ci it A D i P tiDigital Integrated Circuit: A Design Perspective2nd Ed. By Rabaey, Chandrakasan and Nikolic

Prerequisites:Prerequisites: ECE586 Digital Integrated Circuit Analysis and Design.

Knowledge of MOSFET and CMOS inverter is required.

(Significant material is from the notes of Rabaey, Chandrakasan, and Nikolić)C a d a asa , a d o ć)

1

IntroductionIntroductionIntroductionIntroductionThe Progress of IC Design and CMOS scaling issues

Cellular phone

2

Baseband SOC

The First ComputerThe First Computere st Co putee st Co pute

The BabbageDifference Engine(1832)(1832)25,000 partscost: £17,470

3

The Transistor RevolutionThe Transistor Revolution

First transistorBell Labs, 1948

4

The First Integrated Circuits The First Integrated Circuits e st teg ated C cu tse st teg ated C cu ts

Bipolar logic1960’s

ECL 3-input GateMotorola 1966

5

Intel 4004 Intel 4004 MicroprocessorMicroprocessorpp

Intel's first microprocessor197119712,300 transistors, 10 umSpeed: 108 kHz

Intel 8088 MicroprocessorIntel 8088 Microprocessor

Intel's “Best” microprocessor

Intel 8088 MicroprocessorIntel 8088 Microprocessor

p197829,000 transistors, 3 umSpeed: 5 MHz

6

Speed: 5 MHz

Intel Pentium (IV) microprocessorIntel Pentium (IV) microprocessorP 4 (2000)P –4 (2000)42 million transistors1.5 GHz0.18 um

P –M (2002)55 million transistors1.7 GHz1.7 GHz90 nm

P –D (2005)291 million transistors3.2 GHz

7

3.2 GHz65 nm

Moore’s LawMoore’s LawMoore s LawMoore s Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled pevery 18 to 24 months.

He made a prediction that psemiconductor technology will double its effectiveness every 18 monthsy

Quad-Core Xeon (2007)820 million transistors>3 GHz

Most recent

8

>3 GHz45 nm

Moore’s LawMoore’s LawMoore s LawMoore s Law16161514131211R

OF

ED F

UN

CTI

ON

1110

9876F

THE

NU

MB

ERER

INTE

GR

ATE

654321

LOG

2 OF

OM

PON

ENTS

P

0

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

CO

9

Electronics, April 19, 1965.

Evolution in ComplexityEvolution in Complexityp yp y

10

Transistor CountsTransistor CountsTransistor CountsTransistor CountsK

1 Billion 1 Billion T i tT i t

1,000,000

100,000

K TransistorsTransistors

10,000

1,000i486

Pentium®Pentium® Pro

Pentium® IIPentium® III

,

10

100

808680286

i386i486

10

11975 1980 1985 1990 1995 2000 2005 2010

8086Source: IntelSource: Intel

11

ProjectedProjected

Courtesy, Intel

Moore’s law in MicroprocessorsMoore’s law in Microprocessorspp

1000

P610

100

(MT)

2X growth in 1.96 years!

286386

486 Pentium® procP6

0 1

1

10

ansi

stor

s

400480088080

8085 8086286

0 001

0.01

0.1

Tra

40040.0011970 1980 1990 2000 2010

Year

12

Transistors on Lead Microprocessors double every 2 years

Courtesy, Intel

Die Size GrowthDie Size Growthe S e G o te S e G o t100

486 Pentium ® procP6

e (m

m)

80088080

80858086

286386

486 p10

Die

siz

e

~7% growth per year2X gro th in 10 ears4004

11970 1980 1990 2000 2010

~2X growth in 10 years

1970 1980 1990 2000 2010Year

Die size grows by 14% to satisfy Moore’s Law

13Courtesy, Intel

FrequencyFrequencyFrequencyFrequency10000

Doubles every

P6Pentium ® proc

100

1000

cy (M

hz)

y2 years

Pentium ® proc486

38628680868085

80801

10

Freq

uenc

8080800840040.1

1

1970 1980 1990 2000 20101970 1980 1990 2000 2010Year

Lead Microprocessors frequency doubles every 2 years

14Courtesy, Intel

Power DissipationPower Dissipationo e ss pat oo e ss pat oP6

100

Pentium ® proc

486386

2868086

10

(Wat

ts)

3868085

808080084004

1Pow

er

4004

0.11971 1974 1978 1985 1992 20001971 1974 1978 1985 1992 2000

Year

Lead Microprocessors power continues to increase

15Courtesy, Intel

Power will be a major problemPower will be a major problemj pj p5KW

18KW

1 5KW10000

100000

1.5KW 500W

Pentium® proc100

1000

r (W

atts

)

8008808080858086

286386

486

1

10

100

Pow

er

4004

0.1

1

1971 1974 1978 1985 1992 2000 2004 2008Year

Power delivery and dissipation will be prohibitive

16Courtesy, Intel

Power densityPower densityyy10000

m2) Rocket

Nozzle

100

1000

sity

(W/c

m

NuclearReactor

Nozzle

40048086

P610

100

ower

Den

s

Hot Plate80088080

8085286 386486

Pentium® proc

11970 1980 1990 2000 2010

Po

1970 1980 1990 2000 2010Year

Power density too high to keep junctions at low temp

17

y g p j p

Courtesy, Intel

Not Only MicroprocessorsNot Only Microprocessorsy py p

CellPhone

Digital Cellular Market(Phones Shipped) Power

Small Signal RF

PowerRF

( pp )

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M Analog Baseband

PowerManagement

Digital Baseband

(DSP + MCU)

(data from Texas Instruments)(data from Texas Instruments)

18

(data from Texas Instruments)(data from Texas Instruments)

Challenges in Digital DesignChallenges in Digital DesignChallenges in Digital DesignChallenges in Digital Design

“Microscopic Problems” “Macroscopic Issues”

∝ DSM ∝ 1/DSM

Microscopic Problems• Ultra-high speed design• Interconnect• Noise, Crosstalk

R li bilit M f t bilit

p• Time-to-Market• Millions of Gates• High-Level Abstractions• Reuse & IP: Portability• Reliability, Manufacturability

• Power Dissipation• Clock distribution.

• Reuse & IP: Portability• Predictability• etc.

Everything Looks a Little Different…and There’s a Lot of Them!?

19

Productivity TrendsProductivity Trendsoduct ty e dsoduct ty e ds

1 000 000

10,000,000

10 000 000

100,000,000Logic Tr /Chip

10,000

1 000hip

(M)

10 000

100,000

10,000

100,000

1,000,000

100,000

1,000,000

10,000,000Logic Tr./ChipTr./Staff Month.

58%/Yr. compoundedComplexity growth rate

1,000

100

10

sist

or p

er C

h

100

1,000

10,000

ctiv

ity/S

taff

-Mo.

mpl

exity

10

100

1,000

100

1,000

10,000

xxxx

xx

x21%/Yr. compound

Productivity growth rate

x

p y g

1

0.1

0 01Logi

c Tr

ans

0 1

1

10

Prod

u(K

) Tra

ns. /

Com

1

10

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

1000.01

0.001 0.01

0.1

21 1 1 1 1 1 1 1 1 1 2 2 2 2

Source: Sematech

Complexity outpaces design productivity

20Courtesy, ITRS Roadmap

Why Scaling?Why Scaling?y Sca gy Sca gTechnology shrinks by 0.7/generationWith ti i t t 2With every generation can integrate 2x more functions per chip; chip cost does not increase significantlysignificantlyCost of a function decreases by 2xBut …

How to design chips with more and more functions?Design engineering population does not double every two yearstwo years…

Hence, a need for more efficient design methodsExploit different levels of abstraction

21

Exploit different levels of abstraction

Design Abstraction LevelsDesign Abstraction LevelsSYSTEM

+

MODULE

+

GATE

DEVICE

CIRCUIT

n+n+S

GD

DEVICE

22

Design MetricsDesign MetricsDesign MetricsDesign Metrics

How to evaluate performance of aHow to evaluate performance of a digital circuit (gate, block, …)?

CostReliabilityScalabilityySpeed (delay, operating frequency) Power dissipationEnergy to perform a function

23

Cost of Integrated CircuitsCost of Integrated CircuitsCost of Integrated CircuitsCost of Integrated Circuits

NRE ( t i i ) tNRE (non-recurrent engineering) costsdesign time and effort, mask generationone-time cost factor

Recurrent costssilicon processing, packaging, testproportional to volumep pproportional to chip area

24

NRE Cost is IncreasingNRE Cost is Increasinggg

25

Die CostDie CostDie CostDie Cost

Single die

Wafer

Going up to 12” (30cm)

26From http://www.amd.com

Cost per TransistorCost per TransistorCost per TransistorCost per Transistor

0 10 111

cost: cost: ¢¢--perper--transistortransistor

Fabrication capital cost per transistor (Moore’s law)

0.0010.001

0.010.01

0.10.1 Fabrication capital cost per transistor (Moore s law)

0 0000010 000001

0.000010.00001

0.00010.0001

0.00000010.0000001

0.0000010.000001

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

27

YieldYield%100

per wafer chips ofnumber Totalper waferchipsgoodof No.

×=Y

tW fyield Dieper wafer Dies

costWafer cost Die×

=

( ) diameterwaferdiameter/2wafer 2 ×π×π ( )area die2

diameterwafer area die

diameter/2wafer per wafer Dies×

×π−

×π=

28

DefectsDefectse ectse ects

α−⎟⎠⎞

⎜⎝⎛

α×

+=area dieareaunit per defects1yield die

α is approximately 3

4)(didi f29

4area)(diecost die f=

Some Examples (1994)Some Examples (1994)p ( )p ( )Chip Metal

layersLine width

Wafer cost

Def./ cm2

Area mm2

Dies/wafer

Yield Die cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 601

4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0 80 $1300 1 0 196 66 27% $73HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

30

Reliability―Reliability―N i i Di it l I t t d Ci itN i i Di it l I t t d Ci itNoise in Digital Integrated CircuitsNoise in Digital Integrated Circuits

i(t)v(t) VDD

Inductive coupling Capacitive coupling Power and groundnoise

31

DC OperationDC OperationVoltage Transfer CharacteristicVoltage Transfer CharacteristicVoltage Transfer CharacteristicVoltage Transfer Characteristic

V(y)

VOH fV(y)=V(x)

VOH = f(VOL)VOL = f(VOH)VM f(VM)

VMSwitching Threshold

VM = f(VM)

VOL

M

V(x)VOHVOL

32

Nominal Voltage Levels

Mapping between analog and digital signalsMapping between analog and digital signals

VoutVSlope = -1V OH

out

VIH

VOH“ 1”

UndefinedRegion

Slope = -1VIL

V IL V IH V in

V OL“ 0” VOL

33

Definition of Noise MarginsDefinition of Noise Marginsgg

Noise margin high

"1"

VOH NMH Noise margin highVIH

UndefinedRegion

NMH

Noise margin lowVIL

g

VOLNML

"0"

Gate Output Gate Input

34

Noise BudgetNoise BudgetNoise BudgetNoise Budget

All t i i tAllocates gross noise margin to expected sources of noiseSources: supply noise, cross talk, interference, offsetDifferentiate between fixed and proportional noise sourcesp p

35

Key Reliability PropertiesKey Reliability PropertiesKey Reliability PropertiesKey Reliability PropertiesAbsolute noise margin values are deceptiveAbsolute noise margin values are deceptive

a floating node is more easily disturbed than a node driven by a low impedance (in terms of y p (voltage)

Noise immunity is the more important metric –the capability to suppress noise sourcesKey metrics: Noise transfer functions, Output

i d f th d i d i t i d f thimpedance of the driver and input impedance of the receiver;

36

Regenerative PropertyRegenerative PropertyRegenerative PropertyRegenerative Property

outout

finv(v)v3

out

f (v)v3

out

v1

v3 f (v)

v1

finv(v)

v0 v2 in

Regenerative Non-Regenerativev2 v0 in

37

Regenerative PropertyRegenerative Propertyg p yg p y

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

5V

(Vol

t) v0

v11

3

2 4

v1v2

02 1

1

6 8 10Simulated response

38

t (nsec)Simulated response

FanFan--in and Fanin and Fan--outout

NM

Fan-out N Fan-in M

39

The Ideal GateThe Ideal Gate

V out

Ri = ∞

out

i

Ro = 0Fanout = ∞NMH = NML = VDD/2 g = ∞

V in

40

An OldAn Old--time Invertertime Inverter

NM

5.0

NM L

3.0

4.0

out(V)

V2.0

3.0

NM HVout V M

1.0

V (V)0.0 1.0 2.0 3.0 4.0 5.0

41

V in (V)

Delay DefinitionsDelay DefinitionsVin

t

50%

Vout

tpHL tpLH

t

90%

50%

tf trt10%

%

42

f r

Ring OscillatorRing Oscillatorgg

v1 v2v0 v3 v4 v5

v0 v1 v5

T = 2 × t × N43

T = 2 × tp × N

A FirstA First Order RC NetworkOrder RC NetworkA FirstA First--Order RC NetworkOrder RC Network

voutR

vin C

tp = ln (2) τ = 0.69 RC

Important model matches delay of inverter44

Important model – matches delay of inverter

Power DissipationPower DissipationPower DissipationPower Dissipation

Instantaneous power: p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: P = V iPpeak = Vsupplyipeak

Average power: g p

( )∫ ∫+ +

==Tt

tTt

t supplysupply

ave dttiT

Vdttp

TP )(1

45

TT

Energy and EnergyEnergy and Energy DelayDelayEnergy and EnergyEnergy and Energy--DelayDelay

Power-Delay Product (PDP) =

E = Energy per operation = Pav × tpgy p p av p

Energy-Delay Product (EDP) =

quality metric of gate = E × tpq y g p

46

A FirstA First Order RC NetworkOrder RC NetworkA FirstA First--Order RC NetworkOrder RC NetworkR

vout

vin CL

R

vin CL

E0 1→ P t( )dt0

T∫ Vdd isupply t( )dt

0

T∫ Vdd CLdVout

0

Vdd

∫ CL Vdd• 2= = = =

Ecap Pcap t( )dt0

T∫ Vouticap t( )dt

0

T∫ CLVoutdVout

0

Vdd∫

12---C

LVdd•

2= = = =

47

SummarySummaryyyDigital integrated circuits have come a long way and still have quite some potential left forway and still have quite some potential left for the coming decadesSome interesting challenges aheadSome interesting challenges ahead

Getting a clear perspective on the challenges and potential solutions is the purpose of this book

Understanding the design metrics that govern digital design is crucial

Cost reliability speed power and energyCost, reliability, speed, power and energy dissipation

48