48
ECE 510 Lecture 4 Reliability Plotting T&T 6.1-6 Scott Johnson Glenn Shirley

ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

ECE 510 Lecture 4 Reliability Plotting

T&T 6.1-6

Scott Johnson

Glenn Shirley

Page 2: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Functional Forms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2

Page 3: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 3

Reliability Functional Forms

• Choose functional form for model to fit data

Data

Model (functional form)

Page 4: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4

A Function Bestiary – Bestiary: A medieval collection of stories providing physical and

allegorical descriptions of real or imaginary animals

• Continuous distributions

– Normal

– Exponential

– Lognormal

– Weibull

– Gamma

– Beta

• Discrete distributions

– Hypergeometric

– Binomial

– Poisson

• Statistical distributions

– Chi-square

– Student’s t

– F

Most common for reliability

Page 5: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 5

Normal Distribution

• Using Excel:

– PDF = NORMDIST(x,μ,σ,FALSE)

– CDF = NORMDIST(x,μ,σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept = – (y-intercept) / slope

μ = mean σ = standard deviation

uniform rand is CDF where

)(normal rand CDFNORMSINV

2

2

1

2

1

x

exf

2

2

1

2

1

xx

exdxF

σ2 = variance

2xe

Page 6: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 6

Normal Distribution

• Using Excel:

– PDF = NORMDIST(x,μ,σ,FALSE)

– CDF = NORMDIST(x,μ,σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept

μ = mean σ = standard deviation

uniform rand is CDF where

)(normal rand CDFNORMSINV

Normal Distribution

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3x value

PD

F

Normal Distribution

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

x value

CD

F

2

2

1

2

1

x

exf

2

2

1

2

1

xx

exdxF

σ2 = variance

Page 7: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 7

Normal Distribution Reliability Plots

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 t

H(t

)

Page 8: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 8

Use of Normal Distributions

• Most measurement error

• Sum of random things is normal

Page 9: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 9

Exponential Distribution

• Using Excel:

– PDF = λ*EXP(-λx)

– CDF = 1-EXP(-λx)

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

λ = scale factor

uniform rand is CDF where

)1ln(lexponentia rand

CDF

xexf

xexF 1

te

Page 10: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 10

Exponential Distribution

• Using Excel:

– PDF = λ*EXP(-λx)

– CDF = 1-EXP(-λx)

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

λ = scale factor

uniform rand is CDF where

)1ln(lexponentia rand

CDF

xexf

xexF 1

Exponential Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6x value

PD

F

Exponential Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

x value

CD

F

Page 11: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 11

Exponential Reliability Plots

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 t

H(t

)

Page 12: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 12

Use of Exponential Distributions

• Constant fail rate

– No “memory” of the past; no age

– Radioactive decay

– Soft errors, external environment

• Easy to calculate

– MTTF = 1/λ

– Median time to fail from so 5.01 50

50 t

etF

2ln50 t

Page 13: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 13

Exercise 4.1 • Given an exponential fail distribution with

khr

%04.0

what is the probability of failure within 15,000 hours of use? What is the MTTF?

Page 14: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 14

Solution 4.1

• Convert to “pure” units

khr

%04.0

hour

fails4000000.0

then evaluate the fail function at 15,000 hours

%6.0006.011 000,154000000.0 eetF t

The MTTF is even easier

hours 000,500,21

MTTF

Page 15: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 15

LogNormal Distribution

• Using Excel:

– PDF = NORMDIST(ln(t),ln(t50),σ,FALSE)/t

– CDF = NORMDIST(ln(t),ln(t50),σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

t50 = median time to fail σ = standard deviation

uniform rand is CDF where

expnormal rand CDFNORMSINV

2

50lnln

2

1

2

1

tt

et

tf

2

50lnln

2

1

2

1

ttt

et

tdtF

Page 16: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 16

LogNormal Distribution

• Using Excel:

– PDF = NORMDIST(ln(t),ln(t50),σ,FALSE)/t

– CDF = NORMDIST(ln(t),ln(t50),σ,TRUE)

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

t50 = median time to fail σ = standard deviation

uniform rand is CDF where

expnormal rand CDFNORMSINV

2

50lnln

2

1

2

1

tt

et

tf

2

50lnln

2

1

2

1

ttt

et

tdtF

LogNormal Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10x value

PD

F

LogNormal Distribution

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

x value

CD

F

Page 17: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 17

Lognormal Reliability Plots

Mostly decreasing failure rate: IM-type mechanism

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

t

F(t

)

Failure rate = h(t) = f(t)/S(t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6t

h(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

t

S(t

)Cumulative Hazard Function H(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6t

H(t

)

PDF f(t) = d/dt CDF

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6t

f(t)

Page 18: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 18

Use of Lognormal Distributions

Le

SB eI ~

11 tt RR

Page 19: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 19

Weibull Distribution

• Using Excel: – PDF = WEIBULL(x,β,α,FALSE) – CDF = WEIBULL(x,β,α,TRUE) =1-EXP(-((x/α)^β)) – Note γ=0 in Excel

• Plot using: – y-axis = weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

xxxf exp

1

xxF exp1

β = shape parameter

α = scale parameter

γ = location parameter

uniform rand is CDF where

1ln Weibullrand1 CDF

Note: α and β are often

swapped in meaning!

Excel swaps them (below). T&T use βm and αc.

t

e

Page 20: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 20

Weibull Distribution

• Using Excel: – PDF = WEIBULL(x,β,α,FALSE) – CDF = WEIBULL(x,β,α,TRUE) =1-EXP(-((x/α)^β)) – Note γ=0 in Excel

• Plot using: – y-axis = weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

xxxf exp

1

Weibull Distribution

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

x value

CD

F

Weibull Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5x value

PD

F

xxF exp1

β = shape parameter

α = scale parameter

γ = location parameter

uniform rand is CDF where

1ln Weibullrand1 CDF

Note: α and β are often

swapped in meaning!

Excel swaps them (below). T&T use βm and αc.

alpha beta

Page 21: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 21

Weibull Reliability Plots Weibull, β=0.5 (<1) Weibull, β=1.5 (>1)

Increasing failure rate: Wearout (WO) type mechanism

Decreasing failure rate: Infant Mortality (IM) type mechanism

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 t

H(t

)

Reliabilty Function F(t) = CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

F(t

)

Survival Function S(t) = 1-F(t)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

S(t

)

PDF f(t) = d/dt CDF

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 t

f(t)

Failure rate = h(t) = f(t)/S(t)

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 t

h(t

)

Cumulative Hazard Function H(t)

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 t

H(t

)

Page 22: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 22

Use of Weibull Distributions

• When fail is caused by the worst of many items

• When it fits the data well

Weibull

Page 23: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 23

Main Reliability Functions

t

e

2

t

e

t

e

2ln

t

e

Page 24: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Multiple Mechanisms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 24

Page 25: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Multiple Mechanisms

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 25

ththth

tFtFtStStF

tStStS

tot

tot

tot

21

2121

21

1

Survivals multiply, hazard rates add:

Page 26: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Exercise 4.2

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 26

tthUseful: for the Weibull, from T&T table 4.3:

Plot both the hazard rate h(t) (like above) and the fail function F(t).

Hand fit 2 Weibull distributions to the human mortality data like this:

Page 27: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Solution 4.2

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 27

tth

2

2

1

11

tt

eetF thth 21

Page 28: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Reliability Plotting

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 28

Page 29: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Reliability Plotting

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 29

• Note straight lines (dotted, each Weibull)

Page 30: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Probit Plot

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 30

• Our eyes detect straight lines

NORMSINV(CDF)

Page 31: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Excel NORMxxx Functions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 31

• Probit = NORMSINV(CDF) • CDF = NORMSDIST(Probit)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Probit

CD

F

Page 32: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Probit Plots in Excel

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 32

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = x

– σ = 1/slope

– μ = x-intercept = – (y-intercept) / slope

Page 33: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Probit Plots in Excel

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 33

probits data

• Plot using:

y-axis = probit = NORMSINV(CDF)

x-axis = x

σ = 1/slope

μ = x-intercept = – (y-intercept) / slope

Page 34: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Uncertainties in Probit Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 34

Page 35: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

“Exbit” Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 35

• Plot using:

– y-axis = “exbit” = -LN(1-CDF)

– x-axis = x

– λ = slope

• Note that “exbit” is not a standard name

“exbits” data

Page 36: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Weibit Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 36

• Plot using: – y-axis = Weibit = ln(-ln(1-CDF)) – x-axis = ln(x) – β = slope

– α = exp(-intercept/slope)

• Note that “Weibit” is a standard name

Weibit ln data

Page 37: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Lognormal Probit Plot

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 37

• Plot using:

– y-axis = probit = NORMSINV(CDF)

– x-axis = ln(t)

– σ = 1/slope

– ln(t50) = x-intercept

probits ln data

Page 38: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

The Graph Paper Method

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 38

Exponential (semi-log) Normal

Perc

ent

Perc

ent

Page 39: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

More Graph Paper

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 39

Lognormal Weibull

Perc

ent

Perc

ent

Page 40: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Exercise 4.3

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 40

• Make probit, “exbit”, Weibit, and lognormal probit plots

• Determine parameters for each plot

• Look at all 4 data sets (0 – 3)

• Determine which type each distribution is

– Give the parameters for each correct distribution

Page 41: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Solution 4.3

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 41

Data0 – exponential

λ = 3.12 Data1 – normal

µ = –0.06 σ = 0.88 Data2 – Weibull

α = 3.22 β = 1.97

Data3 – lognormal µ =0.88 σ = 0.67

Page 42: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

JMP Plots

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 42

• JMP versions of probit, “exbit”, and Weibit plots

Page 43: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Truncated Distributions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 43

CDF, Probit Scale

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Value

Pro

bit

Cumulative Distribution Function (CDF)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3Value

CD

F

Histogram

0

5

10

15

20

25

30

35

40

45

-3

-2.5 -2

-1.5 -1

-0.5 0

0.5 1

1.5 2

2.5

Value (Min of Range)

Nu

mb

er

of O

ccu

ran

ce

s

Page 44: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Top-Truncated Distributions

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 44

4.0

3.0

Count

Rank

4.0

3.0

MissingCount

Rank

Note Adj CDF doesn’t reach 1

Page 45: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Exercise 4.4

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 45

• Make a truncated probit plot of the data on tab Ex8.

• Find the mean and standard deviation of the original distribution as best you can.

Page 46: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Solution 4.4

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 46

Page 47: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

Data Censoring

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 47

• Missing data is called “censored”

– Type I, time censored

• Exact times to fail up to time t; no data after

– Type II, fail count censored

• Exact times to fail for the first r units to fail; no data after

– Multicensored or readout

• Have a time interval within which each unit failed up to tmax; no data after

Page 48: ECE 510 Lecture 4 Reliability Plottingweb.cecs.pdx.edu/~cgshirl/Documents/QRE_ECE510... · 16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 4 A Function Bestiary – Bestiary: A medieval

The End

16 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 48