15
1 ECE 391 supplemental notes - #11 168 Oregon State University ECE391– Transmission Lines Spring Term 2014 Adding a Lumped Series Element Consider the following T-line circuit: Z L Z 0,1 Z 0,2 R z L = Z L Z 0,2 z in,2 = r in,2 + jx in,2 z L,1 = r in,2 Z 0,2 Z 0,1 + R Z 0,1 + jx in,2 Z 0,2 Z 0,1 z in,1 = r in,1 + jx in,1 Z in,1 = z in,1 Z 0,1 All calculations can be done on Smith chart renormalization

ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

1

ECE 391 supplemental notes - #11

168 Oregon State University ECE391– Transmission Lines Spring Term 2014

Adding a Lumped Series Element Consider the following T-line circuit:

ZL

Z0,1! Z0,2!R

zL =ZL

Z0,2zin,2 = rin,2 + jxin,2

zL,1 = rin,2Z0,2Z0,1

+ RZ0,1

+ jxin,2Z0,2Z0,1

zin,1 = rin,1 + jxin,1Zin,1 = zin,1Z0,1

è All calculations can be done on Smith chart

renormalization

Page 2: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

2

169 Oregon State University ECE391– Transmission Lines Spring Term 2014

Smith Chart as Admittance Chart

For circuits involving parallel (shunt) connections of circuit elements, it is more convenient to work with admittances.

How can the Smith chart be used with admittances?

è How is Y=1/Z = G + jB related to reflection coefficient Γ ?

Consider normalized admittance y

y = YY0

= G + jBY0

= g + jb = Y Z0 =Z0Z

= 1z= 1r + jx

170 Oregon State University ECE391– Transmission Lines Spring Term 2014

Reflection coefficient Γ

Smith chart can directly be used with y=g+jb after rotating reflection coefficient by 180°.

Smith Chart as Admittance Chart

Γ = z −1z +1

= 1 y −11 y +1

= − y −1y +1

y −1y +1

= −Γ = Γ e jπ g = const

b = const circles

Page 3: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

3

171 Oregon State University ECE391– Transmission Lines Spring Term 2014

Impedance vs. Admittance Coordinates

r + jx

r - jx SC OC

Re(Γ)

Im(Γ)

inductive

capacitive

0

g + jb

g - jb OC SC

Re(-Γ)

Im(-Γ)

inductive

capacitive

0

Impedance Chart Admittance Chart

172 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example 4 Given the normalized load admittance

yL = 0.5 + j2.0

Determine the normalized admittance at distance

d = λ/16 = 0.0625λ

Solution: use Smith chart with admittance coordinates è see web applet (example 4)

Page 4: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

4

173 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example 5 Given a 50Ω T-line that is terminated in ZL = ZT= 25Ω and has a shunt resistance Rsh = 50Ω connected at distance d = 1m from the termination. The wavelength on the line is λ = 3m.

Determine the input impedance at the location of the shunt resistance.

Solution: see web applet, example 5

174 Oregon State University ECE391– Transmission Lines Spring Term 2014

Additional Example

( )Ω+= 2525 jZLΩ= 500Z

λ1025.0=l

Results

6.2SWR ≈

45.0≈ΓL5.116≈Lθ

1.15.1zin j+≈j−=1yL

5.05.0z jL +=

Page 5: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

5

175 Oregon State University ECE391– Transmission Lines Spring Term 2014

Impedance Matching

Implementation Issues §  Types of Networks

-  lumped elements -  distributed elements -  mixed -  reactive vs. resistive

§  Design Criteria -  bandwidth -  lossless/lossy -  complexity -  parasitics

176 Oregon State University ECE391– Transmission Lines Spring Term 2014

Impedance Matching

è Matching network needs to have at least

two degrees of freedom (two knobs)

to match a complex load impedance

Page 6: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

6

177 Oregon State University ECE391– Transmission Lines Spring Term 2014

Transmission-Line Matching Idea: Use impedance transformation property of transmission line

transformation circle

2βz’ load zL (or yL)

178 Oregon State University ECE391– Transmission Lines Spring Term 2014

Transmission-Line Matching Transformation to real z or y

transformation circle

2βz’

real z (or y) real z (or y)

load zL (or yL)

Page 7: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

7

179 Oregon State University ECE391– Transmission Lines Spring Term 2014

Transmission-Line Matching Transformation to r=1 (or g=1) circle

transformation circle

2βz’

r=1 or g=1

load zL (or yL) z=1+jx (y=1+jb)

z=1-jx (y=1-jb)

180 Oregon State University ECE391– Transmission Lines Spring Term 2014

Single Stub Matching Stub tuners are useful for matching complex load impedances. The two design parameters in single stub matching networks are

§  distance from load at which stub is connected

§  length of stub

Other design considerations are

§  open or shorted stub

§  series or shunt connected stub

Page 8: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

8

181 Oregon State University ECE391– Transmission Lines Spring Term 2014

Basic Design Principle

Objective: Match load admittance by 1.  transforming along T-line to Yin = Y0+jB 2.  tuning out remaining jB with a parallel shunt element of

admittance –jB 3.  shunt element can be realized with a T-line stub

Yin = Y0

182 Oregon State University ECE391– Transmission Lines Spring Term 2014

Design Steps

1.  Determine distance d/λ from the load YL (or ZL) at which the §  input admittance is Y0 +jB (for shunt stub matching) §  input impedance is Z0+jX (for series stub matching)

2.  Realize the stub with a length l/λ of open- or short-circuited transmission line (stub).

Page 9: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

9

183 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example 6

Using a short-circuited stub, match the load impedance ZL=(80 + j70)Ω to a transmission line with Z0 = 50Ω.

Z0 ZL

d

Solution: use Smith chart with admittance coordinates è see web applet (example 6)

184 Oregon State University ECE391– Transmission Lines Spring Term 2014

Additional Example

Ω=125LRpF54.2=LC

GHz10 =fΩ= 500Z

jL −= 5.0z

58.11yin_1,2 j±≈

mS6.31/58.1 0sh_1,2 jZjY ==

Need shunt element with

Page 10: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

10

185 Oregon State University ECE391– Transmission Lines Spring Term 2014

Quarter-Wave Transformer

LZZZ 01 =

increased mismatch

NOTE: for complex load, insert λ/4 transformer where Zin=R

4/λ at design frequency f0

186 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example: Quarter-Wave Transformer

Ω=125LRpF54.2=LC

GHz10 =fΩ= 500Z

jL −= 5.0z

Ω≈ 5.24Z T0,

24.0zin,1 ≈ Ω≈12Zin,1

in,1

2,0

0in,2ZZZ

Z T==From

Page 11: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

11

187 Oregon State University ECE391– Transmission Lines Spring Term 2014

Bandwidth Performance

GHz1at 0 =f

188 Oregon State University ECE391– Transmission Lines Spring Term 2014

Lumped Element Matching Reactive L-Section Matching Networks

0ZRL <0ZRL >

220

220

LL

LLLLL

XRZRXRZRX

B+

−+±=

LL

L

RBZ

RZX

BX 001 −+=

( )0

0

ZRRZ

B LL−±=

( ) LLL XRZRX −−±= 0

different solutions may result in different bandwidths

Page 12: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

12

189 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example

Design criteria §  bandwidth §  realizability of components §  parameter sensitivity §  … cost … ?

190 Oregon State University ECE391– Transmission Lines Spring Term 2014

Lumped-Distributed and Distributed Matching Networks

Series Reactance Matching Shunt Reactance Matching

Page 13: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

13

191 Oregon State University ECE391– Transmission Lines Spring Term 2014

Examples

192 Oregon State University ECE391– Transmission Lines Spring Term 2014

Double-Stub Tuner •  Double-stub (and multi-stub) tuners use fixed

stub locations (typical spacing: λ/8)

•  Advantages: -  easier to accommodate different loads -  better bandwidth performance

Page 14: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

14

193 Oregon State University ECE391– Transmission Lines Spring Term 2014

Smith Chart with Lossy T-Lines Recall for a lossless T-line

For low-loss T-lines, Z0 ≈ real and γ = α + jβ

Then

zin (z ') =Zin (z ')Z0

= 1+ ΓLe−2γ z '

1− ΓLe−2γ z ' =

1+ ΓL e−2αz 'e jφ z '( )

1− ΓL e−2αz 'e jφ z '( )

zin (z ') =Zin (z ')Z0

=1+ ΓL e

jφ z '( )

1− ΓL ejφ z '( ) φ(z ') = θL − 2βz '

194 Oregon State University ECE391– Transmission Lines Spring Term 2014

Smith Chart with Lossy T-Lines Γ z '( ) = ΓL e

−2αz '

Γre

Γim As z '→∞zin →1(Zin → Z0 )

Page 15: ECE 391 supplemental notes - #11 - Oregon State …web.engr.oregonstate.edu/~traylor/ece391/Andreas_slides/...ECE 391 supplemental notes - #11 168 Oregon State University ECE391–

15

195 Oregon State University ECE391– Transmission Lines Spring Term 2014

Approach

Γre

Γim

zL

Γ inlossy = Γ in

losslesse−2αz '

Γ inlossless = ΓL e

1.  Assume lossless line and rotate by -2βz’ 2. Change |Γ| by factor

e−2αz '

196 Oregon State University ECE391– Transmission Lines Spring Term 2014

Example 7

Given a lossy T-line with characteristic impedance Z0 = 100Ω, length l = 1.5m (l < λ/2), and ZSC(z’=l) = 40 – j280 Ω.

(a) Determine α and β.

(b) Determine Zin for ZL = 50 + j50 Ω an l = 1.5m.

Solution using Smith chart

è see web applet (example 7)