27

津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

�������� ��

�����������

������������� �

�� �� �� ������ �����

�� �� �� �������������

� ��!�"#$%&'(�)*+,���-."#&'/0��

� �

Page 2: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

[1] 1�23456789:;<=4>?�@AB7CDE

�������� �� �����������

���������!"#$%�

��F��������� ������ � GH�I�JI�

�������������������KL�M8N��OP�

��Q�R STUV�WXYZ[\]\^T_U`]``�

�� ����!�"#$%&'(�)*+,���-."#&'/0��

&'()*+,-.�

abc dVeV`f`[HV_f`[� g��h ijk���lm��a�eV`f`[HV`f_n� opWq r5stu;svwxyz{|�

2}~�����lmm���8)������lm��

a�eV`f_nHV_f[[� o�����C���������;�"|�

2����8��i�8����8�� ¡���lm��

a eV_f[[HV_fVn� os¢£%C�� 8¤¥¦§¨©�ª;«¢�¬­|�2®¯°±8²³±´8µ¶·¸8¹�º»���lm��

aJeV_fVnHV_f`[� os¢£%¼½�¾¿ÀÁÂÁ�Ã;«¢�¬­|�

2²³±´8®¯°±8µ¶·¸8¹�º»���lm��

UUU�ÄÅ� V_f`[HV_f_n�UUU�

abc dTeV_f_nHVnf_n� g���������lm��

aIeV_f_nHVnf[[� oÆÇ�È�¨Á�ÂÉ�?ÊËÁ�ÌÍÎ{¸Ï�5sШ©Ñ;Ò5|�

2ÓÔ Õ8h ijk���lm�8Ö×Ø�8×ÙÚ�8Û� Ü��ÏÁ�ÝÞß��aàeVnf[[HVnfVn� oáâ�ãä�¥åæçèªé�M;sêërìí;#î|�

2-ïði8ñòó�8h ijk���lm�8�ÔKô8�� õ�ö÷øù�(K(��aúeVnfVnHVnf`[� oArduinoÉ�?ÊûPüý$%&'Ш©ÑC���ãþ��û�;&'|�

2zÔ�i8h ijk���lm��aeVnf`[HVnf_n� o��͸Ï�5sШ©ÑCþ����;5��v��;� |�

2� ��8����8h ijk���lm�8���������K(�8�ï�Ü���ÞßK(��

� �

Page 3: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

[2] 1�23456789:;<=4>?�@AB7CDE

&�()/0(.�

abc �VeV`f`[HV_f`[� g���ﰱ8�R� ���lm��

a�eV`f`[HV`f_n� oè�Ð!���"�É�?#$»%�&'()*Ш©Ñ;+,� U¾�-�.

/0;123�;45U|�

26789���lmm���8:@;<���lm��

a�eV`f_nHV_f[[� o=�>�ݾ¿È�C��ñ¥»ß�Á>?Ì;@�&'|�

2�Aº¸k���lmm���8�R� ���lm��

a eV_f[[HV_fVn� oÈBéCD�Ð!�Ш©ÑCþ��E3F-GHxIC�%�45|�

JK LM8Nï O���lm�8P�QR�STQUVWXmY(Z�8,[\]�^_lm��aJeV_fVnHV_f`[� oCPA-PIDÈ�ÌÁ�H;`�aШ©Ñ0;b�Cc?#|�

2ñÓ�d ���lmm���8ï��e8�ï°±���lm� �

Page 4: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

"#$%&'(�)*+,��-.&'/0�bcfg��2016 1� 23��

Cu2SnS31234563789:;<�

2}~��� � )��� ��ÞßmY(Z

Improving Electrical Conductivity of Cu2SnS3 for Thermoelectric Devices 2Hiroyuki FUNABIKI and Shigeyuki NAKAMURA

National Institute of Technology Tsuyama College

=>?@�

� (h8Þ�>ijkl;m 7n;opMq�4r�¼

½sCtu¼½#?�vr5stuAtrÉwx8sv

opMq�C12jy�Êz8{1�É�z#?�v

rstu;í|É}%@Ü�í|~� ZT A

��� � � ���� �6¼½�v��j8S A���?À

� V/K8�:Asvwxy S/m 8T A��û� K8��A

rwxy W/(m�K) j��v@Ü�í|~� ZT 4l?

�tu;5s�y�l?�?��v)��;��A ZT

4 1 �{j��v�Ê4�#8@Ü�í|~� ZTÉl

�%�ÊzCA8l?���?À ��svwxyþ�

��?rwxy4��j��v���8j��Csvw

xy4l?��Arwxy�l?vrs�l��#;�

�A phonon-glass-electron-crystal (PGEC) �¼½#?�v

����Ð�È�A���?À �4l?48��� 

�>¡uÉ¢cÊz�`£Cl?rwxyÉ¢¤8�Ê

4�#rsí|A�¥¦l�>?vj��C+�7uÉ

§��%���¨+�4©ªC>¦8�«��#¡u¬

%É­����4jy�Êz8rwxyÉ��%���

4�®jy�[1]v¯�j©ª>°¿±è�ݲ�¨+�

É¢ctu�l��# Cu2SnS3 (CTS) C³��Êv

´µA P¥¶x·j�� CTS;svwxyÉz{¼

¸�ÊzC InÉÝ�Â�8¹�ɺ»ÊzC¼½v;

ArC H2ɾ�#»¿�Êtu;rsí|É#î�8À

ÁÉÂÃ%���É���%�v

A>BC�

� Table 1C}%n@j�lÉÄ@�8̄ ½ÉÅ ÆCÇ

I�#86<;ȨÉÉ�>4ÊsvËj 450 Ì j 2

F;r�Ê;¤8û�É 750 ÌC{õ¼¸8¼ÊC 2

FÍ;¾rÉÎ�Êv

� {<rÏ�j»¿¼½Ê�@�ÉÐÑ�8ÂHÒ¾Ó

sÔ�(SPS)ÉÎ�ÊvSPS ��AÕÖ�>¾×�ØM

¨Ùs¾rC��#Ú¾Þ�;Ô�ëx@ë@�ÉÎÛ

¾Þ�j8ÜFÍjݧ>Ô�4Þ|�>�vCTS;@

�Éßà%�ÊzC SPS á;з� SPS B;Ô�·É

XRD� EPMAC��#îÉÎ�Êv

� Ô��ÊrstuÉrsìíâã�� (ZEM-3) jâ

ã�ÊvsväåÉæçu�C�¦8���?À �A

èlɾr�8tué;û�ê�5��Êësê�Ê#

î�Êv���?À �A S = dE / ( T2 – T1 ) �6¼½

�v��j8SA���?À �8dE V Aësê8T2-T1

K Aû�êj��v

D>�EFG�

� Fig.1� Fig. 2C CTS1� CTS2; SPSá;з� SPS

B;Ô�·; XRD Ø���ɯ½ì½}%v%í#;

èl;з�Ô�·;î3j CTS;ï�À4ßàjy8

��# CTS 4@�4ßàjyÊv���8Ô�·jA

20~25� ��;ÍCзCA>?ï�À4�ʽ�48ï�

À;DîAjy#?>?vCTS2 jAз�Ô�·;î

3j CTS;ðC SnS>i§�;ñò4ß༽Êv

� Table 1C EPMA;îóô­�«É}%vCTS1AÔ�

ájA Cu poor8 SëSn richj��48 Ô�·jA Cu rich8

SëSn poor�>�#?�v%>õ¤Ô�)C S� Sn4

ö5�Ê�÷�ʽ�vCTS2 jA8з;øùj%j

C�(ófú��ÊKy�ûü�#þ¦8Ô�C��#

Table.1 Composition condition

èlýèMþ

¼½v Cu2S SnS2 In2S3

CTS1 1 1 Ar

CTS2 1 1 0.08 Ar(90%)+H2(10%)

Page 5: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

�ô��%��;;8�>¦ Sn richj S poorj��v

Sn richj����A8ñòC SnSÉ����j��4c

�48S poorj����A��jys8´B;45

j��v

Fig384C¯½ì½ CTS1þ�� CTS2;r5sìíÉ

}%v�½�Ê CTS2;�Û4 CTS1Cþí#��#?

���4ô��vìCsvwxyA 1 ñ¼?vñòÉ

�¦§��� CTS2;svwxy4 CTS1�¦����

Ê���Ê8�½Ê;ñòAsvwxy4�?��4}

�¼½�v

�H>IJK�

´)��ʼ½vC H2ɾ��� SnS >i;ñò4

�E���4õ��Êv¼ÊC8�½Ê;ñòAsvw

xy4�?��4}�¼½Êv

´BA¼½vÉ Ar;�C�8¼ÊC In4svwxy

C���ÀÁÉÂÃ%�ÊzC In ;ú�þÉ1�¼¸

#@�ÉÎÛ�îj��v

LM�N�

1) X. Shi, L. Xi, J. Fan, W. Zhang, and L. Chen: Chem. Mater. 2010,

22, 6029-6031.

2) LvXi8YvBvShi8JvYang8XvShi8LvDvChen8and Wv

Zhang�PHYSICAL REVIEW B 868155201�2012�

Table2 EPMA results

èl Cu/Sn S/(Cu+Sn)

CTS1 з 1.66 1.08

Ô�· 2.08 0.95

CTS2 з 1.23 0.77

Ô�· 1.62 0.87

�(ófþ 2.00 1.00

Fig.1 XRD patterns of CTS1 2���

X����

� � ëCTS� Ô�·

� � � � � з

ë

� � � � ë

ë

ë ë

20 40 60 80

Fig.2 XRD patterns of CTS2 2���

X����

20 40 60 80

Ô�·

з

ë� � ëCTS� � SnS � � � � � � �� �

� ë ë � � � � � � � � � � � � � � �

600

400

200

100 200 300

���?À �

�V

/K

svwxy

S/m

û� �C Fig3. Thermoelectric Performance of CTS1

60

40

20

420

400

380

360

100 200 300

���?À �

�V

/K

svwxy

S/m

û� �C Fig4. Thermoelectric Performance of CTS2

Page 6: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Design of LED light-collecting device according to the ray tracing method

Genki KATAYAMA Masaaki FUJIMOTO Takao SHIMADA and Hidenori KAKEHASHINational Institute of Technology Tsuyama College

LED

CAD

Fig 1120mm LED

LED 14 A B 2

LED OptoSupply OSW4XME3C1S700mA 200lm

Fig 2 1m

25 mmFig 3

Fig 2(a) A (b) B

AB

Fig 1 Schematic of LED module

60

60

60

30

30

606060 3030

LED

Fig 2 Schematic of calculation model

Page 7: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Fig 5 A

B 0

LEDCAD

LED

1)2010

(e) module A

(f) module B

Fig 4 Dependence of mesured illuminance on angle ��

(a) module A

(b) module B

Fig 5 Angle dependence of the calculated and measured values

(c) module A

(d) module B

Fig 3 Dependence of calculated illuminance on angle ��

Page 8: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

2016 1 23

Static magnetic field analysis in a precision stage with 8 magnetic polesHideyuki OJIMA, Kosuke NAMBA, Yuta IZAWA , Kensaku NOMURA

National Institute of Technology, Tsuyama College

Page 9: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•
Page 10: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

2016 1 23

Static magnetic field analysis in a micro probe driven by electromagnetic force

Kosuke NAMBA, Hideyuki OJIMA, Yuta IZAWA, Kensaku NOMURA

National Institute of Technology, Tsuyama College

3

Page 11: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•
Page 12: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Development of the floating photovoltaic system for static water using lane marksHomare SAKAI*, Shinichiro OKE*, Noriyuki YOKOGAWA**, Hiroyuki KAWAGOE**, Eiji AKITA**

*National Institute of Technology, Tsuyama, **Sanyo Road Industry Co., Ltd.

1

1

2

1.7MW

7.5MW 27 11 11

Ciel Terre

2

2

CIGS

CIGS

3

Fig. 1

(2016 01 23 )

Fig. 1 Image of floating PV system using lane marks.

Page 13: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

3.

71 8

1 0.882 N90 8

Fig. 2 1

10.669 N

5.5 kg

1113 Fig. 3

3 2

3

3 I-VFig. 4 I-V

4.

1 14

http://techon.nikkeibp.co.jp/article/NEWS/20150703/426143/?rt=nocnt 2016.01.122http://natgeo.nikkeibp.co.jp/nng/article/20150121/432583/?ST=m_news 2016.01.123 Kim Trapani, Dean L. Millar: The thin film flexible floating PV (T3FPV) array: The concept and development of the prototype (2014)

Fig. 2 Field test of prototype 1.

Fig. 3 Construction of prototype 3.

Fig. 4 Comparison of I-V curve in land and a surface ofthe water.

0 10 20 30 40 500

5

10

Voltage(V)

(mA

/W/m

2 )

2015/12/08/14:54FF:0.55

2015/12/08/15:28FF:0.565

304W/m2

206W/m2

Nor

mal

ized

cur

rent

Page 14: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

CPV

○ * * * **

* **

Measurement of power generation and heat characteristics of a CPV moduleutilizing diffuse irradiance

○Ikuma CHIKI* Hiroki KOIDE* Shinichiro OKE* Noboru YAMADA**

*National Institute of Technology, Tsuyama **Nagaoka University of Technology

CPV

CPV

CPVCPV+ CPV

(1)

CPV+ (2)

CPV+

CPV+

CPV+

3J3J

Si SiSi 3J

3J Si 12Direct Normal Irradiance

string; DNI string Diffuse Irradiancestring; DI string Table1

CPV+ 0.48 m2

59 %

Fig.1CPV+

2015/4/16 4/17 5/8 I-V

Fig.2 GNIDNI 25.6%

2015/4/16/14:15 74.1% 2015/4/17/14:50 I-Va DNI string b DIstring

DI string Pmax

Table1. Specifications of DNI and DI strings.DNI string DI string

12 12500 kW/m2 1.0 kW/m2

6.5 8.538.4 7.2

3J cell Si cellIsc (A) 6.5 8.5Voc (V) 3.2 0.6Dimensions 10 mm×10 mm 156 mm×156 mmEfficiency 39.6% 16.6%Sp

ecifi

catio

nof

cel

ls

StringCell numberMesurement conditionsIsc (A)Voc (V)Cell type

CPV+module

Pyrheliometer Pyranometer

Fig.1 CPV+ module pyrtheliometer, and pyranometer on the sun tracker.

(2016 1 23 )

0 10 20 30 400.0

1.0

2.0

3.0

4.0

Curre

nt(A

)

Voltage(V)

DNI/GNI :

DNI/GNI : 74.1

25.6

a DNI string

Fig.2 I-V curves of DNI and DI strings in different conditions.b DI string

0.0 2.0 4.0 6.0 8.00.0

1.0

2.0

3.0

4.0

Curre

nt(A

)

Voltage(V)

DNI/GNI : 25.6

DNI/GNI : 74.1

DNI/GNI % 25.6 74.1GNI W/m2 668 1012DNI W/m2 171 750P max W/m2 39.2 174FF 0.81 0.78Isc A 0.66 3.38Voc V 35.1 31.4

DNI/GNI % 25.6 74.1GNI W/m2 668 1012GNI-DNI 497 262P max W/m2 30 21.7FF 0.86 0.83Isc A 2.72 2.13Voc V 6.6 6.36

Page 15: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Fig.3 CPV+ DNI string & DI string DNI string

DI stringDNI string 1.13

DI string

CPV

(5)

Figure.4 5

Fig.4 DI string DI string DIstring

2

DNIstring3J

Fig.5 2015/12/28

3JSi

0.73 DI stringDNI string 1.13

JSPS 26820106 26289373

[1] Noboru Yamada et al. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation , Optics Express, A28-A34 (2014)[2] CPV

”, 27, 7-051 (2015)

[3] CPV27

7-6 (2015)[4] CPV

, 27P54(2015)

[5]27 /

P288-289 2015

0

50

100

150

200

250

P(W

/m2 )

CPV+

15:0013:00Time14:00

0.73

Fig.3 Changes of power generation of DNI & DI strings and DNI string

Fig.4 Thermometry points.

Fig.5 Back temperature and ambient temperature

a Back temperature b Ambient temperature

Page 16: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Arduino

Control of solar radiation and temperature by using an automatic environment management system using Arduino

Hiromasa MUKAI, Shinichiro OKE National Institute of Technology, Tsuyama

Arduino

Fig.1

Arduino

3

.

Fig. 2 6

6

246

Fig.3

0.8kWh/m²

6:00

2016 1 23

Fig. 1. Constrution of automatic management system for greenhouse.

Fig. 2. Control flow

Page 17: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

DC 4DC

Arduino LM35DC 2

Fig.4 30 32ON 30

DC 28ON 30

1 Fig.528

ON 30 OFF32 DC ON

30 OFF3 30 2

ON/OFF PWM

Arduino

30 2

24 P1(2012)

PV24

P8 2012 CD-ROM Arduino

26pp.2-5 (2015)

Fig. 3. Shading test

Fig. 4. Control flow

Fig. 5. Operation test

Page 18: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

(2016 1 23 )

* * * ** ***

* ** *** Relationship between of dew condensation and weather conditions in a concentrator PV module

Mitsuharu MORI*,Shinichiro OKE*, Katsuki ANDO*,Yoshishige KEMMOKU**, Kenji ARAKI****National Institute of Technology, Tsuyama ,**Toyohashi Sozo University ,***Toyota Technological Institure

CPV

CPV

CPVCPV

(1) CPV

CPV FF

2013 CPV12

CPV2013 820

1.0 m2 280 WCPV

CPV

2014 1 2015 12

Fig.1 CPVa

b

FF Fig.2

2015 10 3 FF DNIFF

V

FF V

FF V

FFFF

FFFF V

V

FF V3

(a) (b) Fig.1. (a) Dew condensation on the inside surface of the lens at lower position, and (b) other lens at upper position it had no dew condensation.

3 6 9 12 15 18 210.0

0.5

1.0

0.0

0.5

1.0

1.5

FF(−

)

Time(h)

FF

DNI

DN

I(kW

/m2 )

Fig.2. Daily FF and DNI curves in the day that dew condensation was observed (3 Oct. 2015).

Page 19: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

DNI 2.4 kWh/m2

DNI 1.2 kWh/m2

Table 12014 1 2015 12

3 2Fig.3

FF V

Fig.4

3 91 3

Fig.5

0~10

Table 153

6.8CPV

3.5

CPV FFV

FF

JSPS 26820106(1)

2015 pp.289-2922015

Table1. Number of dew condensation days from Jan.2014 to Sep. 2015.

60 56 5367 50 4440 15 13

11171

303

110

10848

266

121

421733

167

145

0102030405060708090

100

1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8 9

Day

per

cent

age(

)

1011122014 2015

Fig.3. Monthly number of dew condensation days and its details.

0

5

10

15

20

25

30

0

5

10

15

1 2 3 4 5 6 7 8 9 101112 1 2 3 4 5 6 7 8 9

(month)

()

2014 2015101112

(hou

r)

6.8 hour

Fig.4. Monthly average duration of dew condensation and average temperature before sunrise.

−5 0 5 10 15 20 25 30 350

5

10

15

( )

(h)

Fig.5. The relationship between the average temperaturebefore sunrise and duration of dew condensation.

Page 20: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

2016 1 23

Construction of Augmented Reality system to operate with a motion sensor -Study of conversion method to the marker coordinates-

(Augmented Reality: AR)CG 3DCG

1)

AR

AR GPSAR ARToolKit2)

AR ARToolKit

3DCG ARAR

ARToolKit

LeapMotionLeap Motion 80 30 11mm

2 LED3

0.01mm

AR Web3DCG

Leap Motion

Leap MotionFig.1

Fig.1 System configuration example

OS Windows7 Professional

Processing LeapMotionLeapMotionP5

31 AR

ARToolKitAR

2 LeapMotion

3

ARtoolKit LeapMotionFig.2

ARToolKit(x,y)=(0,0)

LeapMotionP5Fig.3

(x,y)=(0,0)

LeapMotionP5 xxl xr Fig.4

xl xr

LeapMotionP5 xl

Page 21: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

LeapMotionmm

Fig.2 Comparison of the coordinate system

Fig.3 Coordinate value of LeapMotionP5 library

Fig.4 Corresponding measured values and the real space

Fig.4 LeapMotionP5xl xr

(1) xr

(1)

(2)

y zyr[mm] zr[mm]

(3)

(4)

ARToolKit

4)

(5)

LeapMotionP5(5) Xm,Ym,Zm (2)

(3) (4) xr,yr,zr Fig.2ARtoolKit LeapMotion P5

y,z Ym zr,Zm yr,

Xm

Xm xr

LeapMotion

LeapMotion a,b,c

(6)

Fig.5 a,b,c 0a,b,c LeapMotion

(6) LeapMotionP5

Fig.5 Operating result

LeapMotionP5

LeapMotionP5

1) Augmented Reality AR, ,Vol.51-No.4, p.367 (2010)

2) ARToolKit: http://www.hitl.washington.edu/ARToolKit/ (2007). 3) Leap Motion : https://www.leapmotion.com/ (2014). 4) :3DARToolKit

,74/75 (2008)

y = 1.6138x + 348.91

-200 -100

0 100 200 300 400 500 600 700 800

-300 -200 -100 0 100 200 300

x

x

xl

xr[mm]

Page 22: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Wireless control for small work robot using an one-board microcomputer Kentaro TABUCHI and Takuya MIYASHITA

*National Institute of Technology, Tsuyama College

1) Fig.1300mm 210mm ABS

Fig.1 Small size robot with dual arms

DC 1

1 2

DC6

DC2) Fig.2

Fig.2 Block diagram in wireless control

Android Nexus 7Android

Android

4 DC

Arduino MEGA ADK

Android Bluetooth

Page 23: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

Arduino

6 11

6Fig.3

Fig.3 Circuit for controlling the DC motor

1 6

19

Android

AndroidAndroid Studio

Fig.4

Fig.4 Control software on an android terminal

Android x yz

4

2

Bluetooth Android

AC

1)

25 (2013)

2) Arduino Bluetooth

27 2015

Page 24: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

2016 1 23

* * ** ***

* ** ***

Study on using omnidirectional camera for comunication system Ryousuke TSUBAKI* Noboru YABUKI* Yasuaki SUMI** Takao TSUKUTANI***

*National Institute of Technology,Tsuyama College **Tottori City College of Medical Nurse ***National Institute of Technology,Matsue Collegey

1

LAN

1

2 .

2

3 Z>0

OM

OC

(0,0, ),(0,0, )c c� � XY

OC

OM

OC ( )P(X,Y,Z) p(x,y)

2 2 2

2 2 1X Y Za b�

� � � ( 0)Z �

( 0 , 0 ,c� ( ) (0,0, )c�

Page 25: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

3

VS-C450MR-TK4)

45 227cm

6 Dd , (2)

d = 157.7 ln (D) + 111.25 (2)

.

5

6

( (a))7(b)

(a) 2 (b)

7

1)

2) H. Nakayama, N. Yabuki, H. Inoue, Y. Sumi, T. Tsukutani A Control System for Electrical Appliances using Eye-gaze Input Proc. of ISPACS2012, pp.410-413(2011)

3) : Hyper Omni Vision9

pp.6 9 (1997). 4)

https://www.vstone.co.jp/products/sensor_camera/index.html(2015)

Page 26: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

��

��������� ��������������������� �� �����

������� ��� �����������������

�� !"#$%" " &'"()%%" " *&"+,%%"

%��-./012�3145" " %%��-./012�3"

A Practical application for Non-linear system with CPA-PID controller �Tatsuya OSAKADA*" " Kento KIMURA**" " Hideyuki YAGI**

��� � �� ���� �������������������������� ����������������������" " �

���� � �� ���� �������������������������� �����

678/9:��;�<��=>?@ABCDEF=8G�[email protected]@QEDR8STU ��=EVWXYZ[F \]^_CR STU ��`<ab=cdZ[e8VfHghi@jklDmnogpqrstuvF_w=xyz{|Z[F_w=;}wlD~�nCF^"Vf��8����@Q�F������

�CPA:Control Performance Assessment]"@�vF��=>?@ABCDEF^��<6�ZR������<��mn PIDogpqrstuvF��<��=�VCDEF^lml8����K��Z[F_w=�E��@�F�� ¡q�¢hR[VeABCDE:E^"£��ZR8����K��<������s

AE8��@�F�� ¡q�¢hw<¤¥¦G§¨@©EDª«vF^""

���� ������������� PID������¬­Z®¯nCF PID ��°s±¯F 2) ^PID

��`s Fig1.@²v^�� � � � � � � �� � � � �� � � �� � ��� � � " (1)

__Z8PID ogpqr � �� � �� R³C´C

xµ¶·h,¸¹º»,¼¹º»s8� R½hH¾

h¿º»sMlDEF^Vf, � � � R��§¨Z8K�ÀH�Z®¯nCFÁÂà � �� � sÄED¬­ZMNCF^

� � � � � � � � � � �� � " " (2)

(2)­@(1)­sLÅl¬<�Æ@kÇȯF^� �� � � � � � � � � � � � � � � � � � �� ��� � � (3)

fWl8

� � ��� � � �� �� � � �

�� � � �

� � � �

� � �

� � � ��� � � �� � � � � � �� �� �� � �� �� �� �� �

(4)

PID��`<����R®¯nCF PIDogpqr( � �

� � �� )@ÉÇÊËÌvF^

Fig1. The PID control system

��������G�HIJKÍÎÏÐÑHIJK@QEDR!

����@Q�FÒ��s��@ÓÔlDEF^Vf!ÕÄÖKi×Ø@©EDÙÚº@ÛÜnCDEF^³<fÜ!��§¨ � � � w��¨¹ÅÝ� �� �� <Þ�s±ßlàálDEF���K��

< CPAR��@âã:äåw:F^�Væçèw:F���K��<¤¥¦séê¬

ëC+ìWº»í`wlD¬<�Æ@îïvF^ � � �� � �

�� � � � �� � � (5)�__Z8�K��ogpqr � �� R³C´C

�K��¶·h8º�ð8ìWº»sMlDEF^Nn@8(5)­@çñlf¬<òóº»ôõ¤¥¦s±¯F^

� ��� �� � � � � � � �� � ��� � � � � � � �� � �� �� �� � � � � (6) __ZR, � Ròóº»`@Q�FìWº»s

Ml8 � ��� Rö÷ 08¹ó ��� <øùK�úûü

ýwvF^�_<wÇ8��§¨ � � � w��¨¹ÅÝ � �� ��

<þ�¹óR H2 �¦�sÄED³C´C¬­Z��ZÇF^�

� �� � � � � � �

� � � � � � � � � � � � �

� � �� �� � � �� � �� � � � � � (7) �

fWl8 �� � �� R¬­Z��lDEF^� ��� � � �� � � � � � � �� � � � � �� �� �� � � �� � � (8)

�������" �¬<���ðs��GvF_ws±¯F^�

� � �� � ��� � (9) ­(9)<��ogpqr�s�GN�fwÇ8�

��ð J s��wvF��§¨¹ó �� w��¨

¹Åݹó �� =�7vF^_CnR8i¡q

�<��@[F_w�e �=��F^_Csi¡q� �wEÆ^i¡q� �R�K��=�eÆF;�z:<����sMlfÙ<Z[F^

� !"#$�!%����� &'()*+,!-./0

Fig2.@£��@QEDÄEF�����ks²v^�qr=��vF�s����h@��D�e�v_wZ��s��N�F�kZ[F^"�����k@çlD�hH�KisAE8�K��ogpqrs��vF^"

Page 27: 津山工業高等専門学校2) LvXi8YvBvShi8JvYang 8XvShi8LvDvChen8and Wv Zhang PHYSICAL REVIEW B 868155201 2012 Table2 EPMA results Łl Cu/Sn S/(Cu+Sn) CTS1 —• 1.66 1.08 Ô•

��

""""""""

Fig2. The hot air generator """"""""""""""

Fig3. Saturation temperature of the hot air generator

_<wÇ<�qr<ÁÂÃR 50[�]@j�l8��h< !"s 10[%]#100[%]<K�ÀHÅÝwlD®¯F �̂hH�Ki@�e Fig3=$nCf^Fig3.�e�K��=���Z[F_w=¹mF._C�e8 !" 0[%]#60[%]w !"60[%]#100[%]< 2©@�K��s¹�D±¯DEÊ%&=[F^"���"�$�12345"" !" 0[%]#60[%]' !" 60[%]#100[%]@Q�F�K��ogpqrsÄEDi¡q� �s�Ê^Öh( qr�� ¡q�¢h@��D$f)*s³C´C Fig4.Q�+ Fig5.@²v^Vf8xy<fÜLMz: PID ��°Z[F ZN�w CHR�Z<������s³C´C Fig4.Q�+ Fig5.@²v^"���"67�8�!"#$�!%�"" CHR�sÄED PIDogpqrs��l8PIDÖhiIqg@,ÄlD�����ks PID��Z�!N�������s��vF^_<wÇ'øùK�úûüý<¹óR � � ����

�� Z®¯f-Ú.<��s 3/A�D$nCf)*s³C´CFig4.Q�+ Fig5.@²v^"��9":;"" CHR �<þ�Ãw��Ã<¤¥¦G§¨s��vFw 0[%]#60[%]ZR �

�� <0{§¨R 25[%]

�� <0{§¨R120[%]860[%]#100[%]ZR �

�� <

0{§¨R130[%] �� <0{§¨R110[%]Z[

F_w=¹m�f^"

Fig4.Trade-off curve(MV=0[%]~60[%], <:Estimate Value,=:Measured Value)

Fig5. Trade-off curve(MV=60[%]~100[%], <:Estimate Value,=:Measured Value)

Fig5.@QEDRþ�Ã@�EÃ=��ÃZÙ$nCDEF<Z2E)*WwE¯F V̂f8Fig4.ZR �

� Rþ�ÃwÉÇÊòCDlV�DEF^

9�>?������K��3<CPA-PIDÖhiIqg<,

Ä=ZÇf^45<67wlDR8��@�F�� ¡q�¢h=³C´C 3/lmA¯DQnæ8��<89wlDR:E<Z8/ðsÓ;F_wZ��<<Â"@:F¥qrs$F_w=%&@:�DÊF^""

@:AB�1 )"=!>PID��'?@�A'(1992)-"2 ) *&'BC'�£'DEF¤¥¦G���sâvFo�HqIhKJ�K PID��`<êj�'����������8Vol.44,No.10, pp,809-818(2008)

0 50 10030

35

40

45

Manipulative variable[C]

Tem

pera

ture

[D]

0 20 40 600

20

40

60

Variance of defferential input E[{Eu(k)}�2 ]

Varia

nce

of e

rror

E[{e

(k)} 2

] CHR

ZN

0 20 40 600

20

40

60

CHR

ZN

Variance of defferential input E[{Eu(k)}2 ]

Varia

nce

of e

rror

E[{e

(k)}2 ]