8
, I PROCEEDINGS OFTHE INTERNATIONAL SYMPOSIUM ON OEOTECHNICAL ASPECI'S OF UNDERGROUND CONSTRUCTION IN SOfT OROUND - IS·TOKYO'99 TOKYO/JAPAN/19-211ULY 1999 Geotechnical Aspects of Underground Construction in Soft Ground Editedby O.Kusakabe Deptll'tmen/ ofCivil Engineering, Toi,yo Institute ojTechnolop Japan K.Fujita Department ojCivü Engineering. Science University ojTokyo, Chîba, Japan Y.Miyazaki Obayashi Corporation. Tokyo. Japan OFFPRINT A. A. BALKEMA 1ROTTERDAM 1BROOKFIELD 12000 ..

EAU-115.CT.03.A

Embed Size (px)

DESCRIPTION

soft soil

Citation preview

,IPROCEEDINGS OFTHEINTERNATIONALSYMPOSIUM ON OEOTECHNICAL ASPECI'SOF UNDERGROUNDCONSTRUCTION IN SOfT OROUND - ISTOKYO'99TOKYO/JAPAN/19-211ULY 1999Geotechnical AspectsofUnderground Constructionin Soft GroundEditedbyO.KusakabeDeptll'tmen/ ofCivil Engineering, Toi,yo Institute ojTechnolop JapanK.FujitaDepartment ojCiv Engineering. Science University ojTokyo,Chba, JapanY.MiyazakiObayashi Corporation. Tokyo. JapanOFFPRINTA. A. BALKEMA 1ROTTERDAM 1BROOKFIELD12000. .The Rotterdam sheet pile wan field test Test setupD.A.KortGeotechnicaJ Laboratory, DelftUniversity ofTechnology, NetherlandsA.F:vanTolRotterdam PublicWorks anti Geotchnical Laboratory &Delft University ofTechnology, NetherlandsA . J o n k e rCentre forCMlEngineering Research anti Codes,NetherlandsABSTRACT: The recent devc10pmcnt of Eurocodes inthe design prac;ticefot steel sheet pUing bas led te theinitiative for a full scale field test on two steel sheet pi1e waUs in soft soU. The mam goal.of tbis field test1$to e~ the ~ o(t,wo & cm, sincIe strutted steel sheet pi1e w a D $ wim a Iengtb of 19 mdIaad a width of 8 metres. InonewaUapla$tic biaF wl be developed te obtain a tedislnbution of beadinB~ts;the ether waU is composed of double U-piIes te examine the ~ of "obquc beDding".Pof tbis field test aquestion fortypeA ~ was distributed te 50 ~ engineers woddwide.Tbis Paper describes tbesetuPof tbc field test. Tbis test may contnllte te a better understaPding of bothplastic design andsheet pi1e design wim double U-sedionsand ma)' themore lead te a safer ad moreeconomie design of steel sheet pi1e waUs.1 INTRODUCTIONThe introduction of Eurocodes in tbc design practiccfor steel sheet piling ma)'.Jead to a .graua1replacementof natoua.1 building codes by ODeEuropean Stal1dard.ENV 1993-$(CEN 1997) trellt$,together wim ENV 1997-1 (eEN 1994), tbc designof steel sheetpiling. ENV1993-5 offersthepossibility teintroduce plastic lnges in the designofsteelsheetpilewaUs andgives guidance bymeaos of a stepwiseprocedure.If tbc excavation in front of a sheet pile wall iscontinuescribes he !ayoutof tbe test site, tbe soUdata, tbe~ details, tbe test sequenceand a possible__ wbeD dw'blI tbetest tbe plastic ~. isdeveloped. PiaaIlytbe,... motivates tbe questioofor predictions, wbieb bas been distributedto morethan S O specialists in sheet pUe wall design.2 LAYOUT OF TUE TEST SITEFipre 3 shows tbe Iayout of tbe sheet pile walls.TM four Walls are instaUedia. all $lmost squareform. wbich sldes of about 12 metre. The top of tbesheetpilesis atNAP +1;() m (NAPis Dutch~ltvel) ancltbegreeafield.is at NAP .(UDl.tbe flOrth. and tbe south walls are test w$lls. In onferto minlmise tbe comer effects on tbetest walls, fourbentonite screens have beea instal1ed andfourspecial intetface piles have been developed wbiebare ent over a length of 16 metre.2. J Hordt waIlTM north wall consists of 10 double pHes ArbedAZ13.Of tbem.6 foon tbe test wall, 2 tbeinterf'acingpiles AZ13S (see below) and 2 tbe cornerpHes. TM intmonneCting interlocks of tbe doublepiles have been weJded over tbe fulI length but fottbe driving interlocks ae lpecW measures bave beenI9~oooooooooooooooooo\ tol lellilW hoh '1GO 1500-taken. Tbc sheet pdes have .been vlbrated toNAP -18 m. On test piles At. Mand ASinclinometer tUbeshave heen .l~ Test pile A3 isequipped witb 12 earth press!ieeelis. 4 on theexcavated side and 8 on tberetijnh\gside, and testpile A4 witb 40 vibratins wire (VVI) strain gauges.2.2 South waUTbe test sectkln is formed by 7 double U-pilesLarssen 607K fromHoesch,Hl to H7. Tbcinterlocks ofthe doublepiles ha'vebeen .tded butfor tbe drivins interlocks no spec:ialmeasl1reShavebeen talcen. Tbc lOOGt the sbeetpiles bas beeninstailedatNAP-18mette. On~tpiIesH2, H4 andH6inclinometer tubeshave~welded. Test pileH3 isequppedwitb 12earth~ eeUS,4 on theexcavatedside and 8 onthe ~g side and testpileHSwitb 40vibrating w~~ gaup.Tbcsoutb wall is compJetedby 2~ piIes AZl3Sand two~ piles H8 andH9.2.3 &st (l1'lI/ westwallsTbe east andthe west walls are~ formed by 20single pilesLX32 o o m Britisf:l$eel. These piIeshave been .ostalled to NAP-20metre in order tominimise disturt>anceoftbe paijiVe zones of botbtest walls. tbc pilesBS6,B$i4.tJS26 and BS34 areequipped witb inclinometer tubes.2.4 Special interfacepile$ AZJ3SAs the corners of tbc building pit would have astrong infiuence on the test walls. 4 special interfacepileshave been deve1oped.seeFagure 4. Tbese pUes.consistingofAZ13 sectionsareculover alength of16 mette. In order to prevent w~rleabge into thebuilding pitthe gap bas been co~ witb a 2 mmtbielt VLDPE foU. For a betterdl'ivability of thesepiles 2 mette attbcpiletoe and lmetreat tbc top oftbepile are J:rnaitedintact andforthe proteetion oftbc foU tbc speial piles are. plll(l~ in abentonitecolumn wbichteaehes tONAP -USm. Afterdrivingtbe pile is alse cut at tbc top.t5Bentordte sereensBehindeach test wall twe bentonite screens havebeen installed. Tbcbentonite screens.ar eomposed()fbentonite-soilcolW1ln$lifSOO-7QOwhichare mixed-in-place witb a hOliowauger rig. The toe ofthecolumns varies from NAP -13Senclose to the testwaUte NAP -3.5 en at13 metres bebind the testwal1s. Inside tbc building pitthe bentonite screens~l 'I~Figure 4: Special interfacepilesI I I1II1Ihave been left outbecause of possible seepageduring excavation.2.6 Struts and walingsTbc plan of the struts md walings is given in FigureS. Tbc centre line of tbe frame work is at NAP+0.75 m. Tbc stmtsfor the test walls north and southare desi~ in a war thatboth testwallsactindependendy andare not infiunCed by tbe othersheet piles. Tbc differencebetweenthe strut freesis led to thestiffHE600B struts between theeastand the west wal1s. Thestruts and tbe walings areconstrueted as hinged connections wim sufficientrotarioncapacitybetweenthe sheet pile wal1saad theTable 1: Struetural data of tbc sheet piles$ecQllAZt3L601KIx cm4Jm Wxcm ~1m137244t970070030130032205 3 9ITable 2: Summary of soil parametersTrialtial tests (1=2"') SIiffness pIIl'lIInClm V_testsTop level Soil Type r (kNlm3) c'(kNIm~ (0) B so (MPa) Ic (kNJm3) f,. (peat value)(m-.NAP) (t.NImi0.5 sand18 0 30.02.07000I~clay, silty 16.6 6.3 29.43.52000 67.6sfiabtly sandY5.75 put 10.09.318.9 2.7800 65.79.00 put very clayey 10.6 11.820.1 3.2 2000 64.310.50 elI)',humous 13.9 7.0 20.0 5.2 37.612.50 clay, sllghlly 16.2 7.4 27.1 6.2 1400 32.8sandY16.10 clay, highly 12.3 5.0 25.0 10.3 1200 30.7silty17.00 clay, sIlghlIy 16.2 7.427.1 6.2 1000,sandYio 17.50 .sand,siIty, 9.837.9 10.0 1oomedium coarse18.50 saad,coarse 20 0 38.0 10.0 1oo~ ~ Tbc strut frame aclude8 6 pressureeens: 4 eeUs to measm:e tbc Iateral stNtforce of tbcIiortblUId soutb testwaUs and two to measure tbcaxiaiforce in tbc waling of tbcdoubie U testwaIL~ ?3 MATERAL ~ARAMETERS3.1 StiUitural dataTbc most relevant stmeturai data of tbc sheetpile ispresented in Tabie 1. SiaceOM of tbcaims for thisfield tst is to investigate a waU witb a plastic binge,it is important for tbc design tbat tbc failure chanceof tbc north waD is as high as possible, wbicb is ofcourse in contrast witb common designs. Tbereforetbe AZ13 test pi1es have an unusuallow yield stressof about f,=280 N/mm2, wbich results forelastic-plastic stmeturai models in M,,=426 kNmlm'.For tbestmts and walings tbc stiffuess and tbe ultimatestressmay he consi.dered as sulflcient high.3.2 SOUdataTbc soil data isobtained froman extensive soilinvestigatiOl1 programme cOl1sisting of common-usedin situ tests, such as CPT's, vaae tests, andpressurerneter tests and laboratory tests,such asoedorneter tests,triaxialcompressiOl1 and extensiOl1tests(CUR 1998).In Figure 6 a representative CPTis presentedasweU as tbe initialwater pressures. Tbe soil consistsof a 16.5 rnette nonnally consolidated soft clay-peat-clay stratiflCation. Underneatb, tbe normallyCooo"'-'- !MP'Iw_.(1OIlPIl q M g f t ~ M ~Friclloa_Figure 6: CP'fand piezometric headsconsolidated Pleistocene saad layeris found,wbichisconnected to tberiver Maas 2km fartber. Tbcinitialwater pressures in tbe different soillayers isdetermined witb 9 piezorneters and 3 open standpipes,A summaty of the mostrelevant soitdata ispresented in Table 2.540TESTSEQUBNCEefoce tbc start of tbc test,me ~leld level was, a leve! of NAP -1;6 m. In ordClrtomake tbc testte accessible for tbe CPT and bpl'erias,craaes andtber constJ:'tl(m eqtltpment, tbc site was filledI'St with OAmetre dry sand aDd. ~ ffiled llpto Iletresand in total. The test is ~ in 4 ~.tagel!terconstrUCtioo oftbc sheet .pile walIs,tbcmtOtlite screeas andtbc .stmtframe, a dry(Cilvationisexecutedto NAP 4m; bath soit andllter are removedto tbis JevekTbeexcavatiool~t is simated as much aspossible bebind meIStwaU.'age 2l1ewater' in me excavatiOtlis ~toNAP -l.SDlld tbc excavatiOtl is subsequeatty h1creased.to avel ofNAP-7 111. During tbc~vtWOQ .wateJ'vel is kept at NAP -1.S111.age 3)wering the water level to NAPS. Dl in S steps.te lntennediate steps are NAP 2.~m..NAP -3-' m,I\P 4.0m,NAP 4.5 Dl andNAP~S.O Dl. AfterdJeird Stepto NAP 4an evaluationstep is iDtroduced.on:IetCO assessmecritical f~lOad of me north111.'Jge4aintainingtbc fmal water' level of stage 3 for ariod of 6 months.!ring allstage5 measurementsarec.ried out fromch me action effects can be derved, such asera} and transverse walt displcements, strotI'Cs.bendins moments and earth pressures,Ammary of tile activities with acumulative timelJe is given in TabJe 3.EXECUTION OF THETESTIe of tbc difficulties of tbc .desip. is thattbc testtbc wan with a plastic hinge isadestructive testd tbcrefure not tree from danpr.Moreover. the'lering of tbc water level isa lOad COtltro1leddng procedure, whereas tbc pl$Sc mnge bas aTable 3: Test sequcnceIlO. aetivity time

U SQda u te NAP1.25m 0l.2 saadsill te NAP -0.65m 1252 slleet.piIodriYlti 2963.1 dry .cw:avatioate NAP 4.0 m 3313.2 mi WiCJl water te NAP -I.S m 335 excaYllOlluaderWII te NAP -7.0 m 3405.1 ~ ~ te NAP -2.5til 3425.2 I~ water level te NAP -3.5m 3455.3 ~ w.. ~ te NAP 4.0 m 3465.4 evllhraoDoftest da ta5.5~w ~ te NAP 4.5 m 3555.6 lowermJwater level te NAP -5.0m 3596lo1l tmnpcrf~...- lIme&erlIlnIlRotaIioII of top sbeeI piIe wd (ra d]1o +---+--+---1i. 11.2J .3J t 1.,-6-11. ..FJgllFe7: Rotationoftbc sheet pile around tbcstrut due totbc lowering of tbc water leve!softening behaviour due totbc oombinatioo ofyieldingand Iocal buckling (Van Toland Kort.991). Consequendy,if tbc Iowering of the waterlevel in front of tbc sheet pile walt iscontinued aftel'yielding in dJe ultimate libre occurs (sec Fipre I>,Dot only theplastic mnge is developed, but also tbcresistance of this plastic hingedecreases, which maycause asudden and unpredictable deve10pmentof thesecondpiastic binp.In order la COtltrolthe execution of the test, thewater level is lowered withaspeed of 10 cm perbour. The formation of the plastic moge will beobserved inreal time wima tittmeter,wmchmeasuresthe tilt of !he sheetpile cWseto the st.I:Uts,and a piezometer \\'bieb measures tbc water levelinside thebuilding pit: a sudden tilt ofthe sheet piein compari$Otl wit1l the water head inside thebuildinspit indicates tbc formation of tbc plastichinge. sec Fipre 7.5416 PREDICl'ION QUESTIONThe interest ofpredietions in geotecbnka1engineering is elttensive1y discussed by Lambe(1973).Von Wolffersdorff (1997) Otganized (also incooperation wim tbc CUR)a fI.lU~scalefield test andinclU