116
TABLE OF CONTENTS MOTOR DATA-ELECTRICAL Terminal Markings and Connections Part Winding Start '" 1 Maximum Locked-Rotor Currents-Three-Phase Starting Characteristics Of Squirrel Cage Three-Phase Motors-8ingle Speed 2 'Three-Phase Motors-Two Speed, Single Winding 6 Single-Phase Motors-Capacitor Start 8 DC Motors And Generators 10 Field Polarities Of DC Machines 12 Full-Load Currents-Motors 13 Squirrel Cage Motors 16 General Speed-Torque Characteristics 17 Full-Load Efficiencies Of Energy Efficient Motors 18 Effect Of Voltage Variation On Motor Characteristics 20 Power Supply And Motor Voltages 20 Effect Of Voltage Unbalance On Motor Performance 21 Induction Motors 22 Allowable Starts And Starting Intervals 23 MOTOR DATA-MECHANICAL NEMA Frame Assignments-Three-Phase Motors 24 NEMA Frame Dimensions IEC Mounting Dimensions-Foot-Mounted IEC Shaft Extension, Key And Keyseat NEMA Shaft Extension And Keyseat NEMA Frame Dimensions-Foot-Mounted NEMA Frame Dimensions IEC Mounting Dimensions-Foot-Mounted IEC Shaft Extension, Key And Keyseat NEMA Shaft Extension And Keyseat NEMA Frame Dimensions-Foot-Mounted AC Machines (Inches) 28 AC and DC Machines (Inches) 40 Dimensions-Continuous Duty AC Motors (Inches) ........ 42 Dimensions-Foot-Mounted DC Machines (Inches) ........ 43 DC Machines (Inches) 44 AC Machines (mm) 46 AC and DC Machines (mm) 58 Dimensions-Continuous Duty AC Motors (mm) 60 Dimensions-Foot-Mounted DC Machines (mm) 61 DC Machines (mm) 62

EASA Pocket Book

  • Upload
    olivoso

  • View
    506

  • Download
    5

Embed Size (px)

Citation preview

Page 1: EASA Pocket Book

TABLE OF CONTENTS

MOTOR DATA-ELECTRICAL Terminal Markings and Connections

Part Winding Start '" 1

Maximum Locked-Rotor Currents-Three-Phase

Starting Characteristics Of Squirrel Cage

Three-Phase Motors-8ingle Speed 2 'Three-Phase Motors-Two Speed, Single Winding 6 Single-Phase Motors-Capacitor Start 8 DC Motors And Generators 10

Field Polarities Of DC Machines 12 Full-Load Currents-Motors 13

Squirrel Cage Motors 16 General Speed-Torque Characteristics 17 Full-Load Efficiencies Of Energy Efficient Motors 18 Effect Of Voltage Variation On Motor Characteristics 20 Power Supply And Motor Voltages 20 Effect Of Voltage Unbalance On Motor Performance 21

Induction Motors 22 Allowable Starts And Starting Intervals 23

MOTOR DATA-MECHANICAL NEMA Frame Assignments-Three-Phase Motors 24 NEMA Frame Dimensions

IEC Mounting Dimensions-Foot-Mounted

IEC Shaft Extension, Key And Keyseat

NEMA Shaft Extension And Keyseat

NEMA Frame Dimensions-Foot-Mounted

NEMA Frame Dimensions

IEC Mounting Dimensions-Foot-Mounted

IEC Shaft Extension, Key And Keyseat

NEMA Shaft Extension And Keyseat

NEMA Frame Dimensions-Foot-Mounted

AC Machines (Inches) 28

AC and DC Machines (Inches) 40

Dimensions-Continuous Duty AC Motors (Inches) ........ 42

Dimensions-Foot-Mounted DC Machines (Inches) ........ 43

DC Machines (Inches) 44

AC Machines (mm) 46

AC and DC Machines (mm) 58

Dimensions-Continuous Duty AC Motors (mm) 60

Dimensions-Foot-Mounted DC Machines (mm) 61

DC Machines (mm) 62

Page 2: EASA Pocket Book

I I

TABLE OF CONTENTS-Continued

CONTRACTORS Power Factor Improvement Of Induction Machines 64 NEMA Size Starters For Three-Phase Motors 66 Starter Enclosures 67 NEMA Code Letters For AC Motors 68 NEMA Size Starters For Single-Phase Motors 69 Derating Factors For Conductors In A Conduit 69 Allowable Ampacities Of Insulated Conductors 70 Motor Protection Devices-Maximum Rating Or Setting 74

TRANSFORMERS Full-Load Currents-Three-Phase Transformers 75 Full-Load Currents-Single-Phase Transformers 76 Transformer Connections 77

ELECTRONICS Semiconductors And Transistors-Symbols

And Connections 85 Resistor Color Codes 87 Capacitor Color Codes 88

MISCELLANEOUS Temperature Classification Of Insulation Systems 89 Resistance Temperature Detectors 89 Dimensions, Weight And Resistance of Solid

Round Copper Wire (AWG and metric) 90 Properties Of Metals And Alloys 94 Determining The Polarization Index

Of Machine Windings 96

USEFUL FORMULAS AND CONVERSIONS Common Fractions Of An Inch-Decimal And

Metric Equivalents 97 Formulas For Electric Motors 98 Formulas For Electrical Circuits 98 Temperature Correction Of Winding Resistance 99 Motor Application Formulas 99 Centrifugal Applications 101 Temperature Conversion Chart 102 Conversion Factors 104

GLOSSARy 117

INDEX 113

Page 3: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS PART WINDINGSTART

NEMA NOMENCLATLlRE-6 LEADS

66 j/(29 8 3 29 8

Delta Wye 1

OPER. MODE L1 L2 L3 OPEN

. START 1 2 3 7,8,9 RUN 1,7 2,8 3,9 -

9/\ l\/~ 3 8 2

Double Delta (Extended Delta)

MOTOR LEADS

NEMA AND IEC NOMENCLATURE-12 LEADS SINGLE VOLTAGE OR LOW VOLTAGE OF DUAL-VOLTAGE MOTORS

NEMA W \U1 iec W5/6 U2Wi ~5

W1 \U6 V6-v§V2 V1

T1 T2 T3 T7 T8 T9

I NEMA 1,6 2,4 3,5 7,12 8,10 9,11

I lEG U1,W2 V1,U2 W1,V2 US,W6 VS,U6 WS,V6

Page 4: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATURE-6 LEADS

SINGLE VOLTAGE EXTERNAL WYE CONNECTION

JOINtHB±! 1 2 3 4&5&6 I

SINGLE VOLTAGE 6 1

EXTERNALDELTA CONNECTION ! \ I L1 [L2 L3 .\

1,6 2,4 3,5 3 4 5 2

SINGLE AND DUAL VOLTAGE WVE-DELTA CONNECTIONS

,)\, 5 2

SINGLE VOLTAGE .­

OPERATING MODE CONNECTION L1 L2 L3 JOIN

START WYE 1 2 3 4&5&6

RUN DELTA 1,6 2,4 3,5 -

DUAL VOLTAGE'

VOLTAGE CONNECTION L1 L2 L3 JOIN

HIGH WYE 1 2 3 4&5&6

LOW DELTA 1,6 2,4 3,5 -'Voltage ratio: 1.732 to 1.

2

Page 5: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATLJRE-9 LEADS

DUAL VOLTAGE WYE·CONNECTED

VOLTAGE L1 L2 L3 JOIN

HIGH 1 2 3 4&7,5&8,6&9

LOW 1 7 28 39 4&5&6

DUAL VOLTAGE DELTA·CONNECTED

VOLTAGE L1 L2 L3 JOIN

HIGH 1 2 3 4&7,5&8,6&9

LOW 1,6,7 2,4,8 3,5,9 -

3

Page 6: EASA Pocket Book

4

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS-SINGLE SPEED

NEMA NOMENCLATURE-12 LEADS

:1 71

10 12 11

6V~5DUAL VOLTAGE EXTERNAL WYE CONNECTION 3/ ~2

VOLTAGE L1 L2 L3 JOIN

HIGH 1 2 3 4&7,5&8,6&9, 10&11&12

LOW 1,7 2,8 3,9 4&5&6, 10&11 &12

:1 1~1

12 11

6V ~5 3/ "'-2

DUAL VOLTAGE WYE-CONNECTED START DELTA·CONNECTED RUN

VOLTAGE CONN. L1 L2 L3 JOIN HIGH WYE 1 2 3 4&7,5&8,6&9,

10&11 &12

DELTA 1,12 2,10 3,11 4&7,5&8,6&9

LOW WYE 1,7 2,8 3,9 4&5&6, 10&11&12

DELTA 1,6,7, 12

2,4,8, 10

3,5,9, 11

-

Page 7: EASA Pocket Book

TERMINAL MARKINGS ANDCONNECTIONS THREE-PHASE MOTORS-SINGLE SPEED

IEC NOMENCLATURE-6 AND 12 LEADS

SINGLE AND DUAL VOLTAGE WYE-DELTA

IU1 W2 \U1

CONNECTIONS U2

SINGLE VOLTAGE W2 V2

wy/ ~V1 /W1

V2

U2

V1

OPER. MODE

CONN. L1 L2 L3 JOIN

START WYE U1 V1 W1 U2&V2&W2

RUN DELTA U1,W2 V1,U2 W1,V2 -

DUAL VOLTAGE>

VOLT. CONN. L1 L2 L3 JOIN

HIGH WYE U1 V1 W1 U2&V2&W2

LOW DELTA U1,W2 V1,U2 W1,V2 -

'Voltage ratio: 1.73210 1.

U1

IU2 W6 ~1

W6

W2WV WV

I U5

U~6 ~5V2 ~1

/W5

W

72W1 V6 V5

\U2

~5

\U6 W-V1

DUAL VOLTAGE WYE-CONNECTED START DELTA-CONNECTED RUN

VOLT. CONN. L1 L2 L3 JOIN

HIGH WYE U1 V1 W1 U2&U5,V2&V5, W2&W5,U6&V6&W6

DELTA U1,W6 V1,U6 W1,V6 U2&U5,V2&V5, W2&W5

LOW WYE U1,U5 V1,V5 W1,W5 U2&V2&W2, U6&V6&W6

DELTA U1,U5, W2,W6

V1,V5, U2,U6

W1,W5, V2,V6

-

5

Page 8: EASA Pocket Book

6

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS-TWO SPEED, SINGLE WINDING

4NEMA NOMENCLATURE-6 LEADS

3 1nCONSTANT TORQUE CONNECTION Low-speed horsepower is half of high-speed horsepower.' 5~6

SPEED L1 L2 L3 TYPICAL CONNECTION

HIGH 6 4 5 1&2&3 JOIN 2WYE

LOW 1 2 3 4-5-6 OPEN 1 DELTA

VARIABLE TORQUE CONNECTION Low-speed horsepower is one-fourth of high-speed horsepower:

SPEED L1 L2 L3 TYPICAL CONNECTION

HIGH 6 4 5 1&2&3 JOIN 2WYE

LOW 1 2 3 4-5-6 OPEN 1 WYE

4

1CONSTANT HORSEPOWER CONNECTION :6:Horsepower is the same at both speeds, 5 2 6

SPEED L1 L2 L3 TYPICAL CONNECTION

HIGH 6 4 5 1-2-3 OPEN 1 DELTA

LOW 1 2 3 4&5&6 JOIN 2WYE

'CAUTION: On European motors horsepower variance with speed may not be the same as shown above,

Page 9: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS-TWO SPEED, SINGLE WINDING

2UIEC NOMENCLATURE-6 LEADS

CONSTANT TORQUE CONNECTION jk2V 1U 2W

SPEED l1 L2 L3 TYPICAL CONN.

HIGH 2W 2U 2V 1U&1V&1W JOIN 2WYE

LOW 1U 1V 1W 2U-2V-2W OPEN 1 DELTA

VARIABLE TORQUE CONNECTION

2U 1 W 1V

2V~1U 2W

SPEED L1 L2 L3 TYPICAL CONN.

HIGH 2W 2U 2V 1U&1V&1WJOIN 2WYE

LOW 1U 1V 1W 2U-2V-2W OPEN 1 WYE

7

Page 10: EASA Pocket Book

8

TERMINALMARKINGSAND CONNECTIONS SINGLE-PHASE MOTORS-CAPACiTOR-START

NEMA NOMENCLATURE

--""'.-------- P1 THERMAL

SINGLE VOLTAGE PROTECTOR

4

~---- 8

O AUXILIARY (START) WINDING

E--::::-:::::- 5 CAP SWITCH

ROTATION L1 L2

CCW 1,8 4,5

CW 1,5 4,8

DUAL VOLTAGE (MAIN WINDING ONLY) Auxiliary winding is always at low voltage rating; capacitor should be rated accordingly.

,.....~-----P1 THERMAL PROTECTOR

~----8

O ~Y~&~~Y (START)

E----::::-::- 5 CAP SWITCH

VOLTAGE ROTATION L1 L2 JOIN

HIGH CCW 1 4,5 2&3&8

CW 1 4,8 2&3&5

LOW CCW 1,3,8 2,4,5 -

CW 1,3,5 2,4,8 -

Page 11: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS SINGLE-PHASE MOTORS-CAPACiTOR-START

NEMA NOMENCLATURE

DUAL VOLTAGE (MAIN AND AUXILIARY WINDING) Capacitors in auxiliary windings are rated for lower voltage.

;-A< -----Pl THERMAL PROTECTOR

VOLTAGE ROTATION L1 L2 JOIN

HIGH CCW 1,8 4,5 2&3,6&7

CW 1,5 4,8 2&3,6&7

LOW CCW 1,3,6,8 2,4,5,7 -~

CW 1,3,5,7 2,4,6,8 -

The switch in the auxiliary winding circuit has been omitted from this diagram. The connections to the switch must be made so that both auxiliary windings become de-energized when the switch is open.

ROTATION: CCW - Counter-clockwise

CW - Clockwise

The direction of shaft rotation can be determined by facing the end of the motor opposite the drive.

TERMINAL MARKINGS IDENTIFIED BY COLOR 1-Blue 5-Black Pl-No color assigned 2-White 6-No color assigned P2-Brown 3-0range 7-No color assigned 4-Yellow 8-Red NEMA MG 1-2003, 2.41. Note: May not apply for some definite­purpose motors.

9

Page 12: EASA Pocket Book

10

TERMINAL MARKINGS AND CONNECTIONS FOR DC MOTORS(NEMANOMENCLATURE)

SHUNT MOTOR

INTERPOLES

F~ __"tjA1 ARMATURE

SHUNT FIELD

A2 - F2

LINE LINE

COMPOUND MOTOR

SHUNT FIELD

INTERPOLES SERIES FIELDARMATURE

A2 Sl S2 - F2Fj _ t_IA1 LINE LINE

SERIES MOTOR

SERIES FIELD

ARMATURE S1 S2 _A2+ A1

LINE LINE

All connections are for counterclockwise rotation facing the end opposite thedrive. Forclockwise rotation, interchange A1andA2. Somemanufacturers connectthe interpole winding ontheA2side of the armature. When the shunt field is separately excited, the same polarities must beobserved fora given rotation,

Page 13: EASA Pocket Book

TERMINAL MARKINGS AND CONNECTIONS FOR DC GENERATORS (NEMANOMENCLATURE)

SHUNT GENERATOR

INTERPOLES

F~ __"t jA1 ARMATURE

SHUNT FIELD

A2 - F2

LINE LINE

COMPOUND GENERATOR

SHUNT FIELD

INTERPOLES

+I ARMATURE

Fj A1 A2

LINE LINE

All connections are for counterclockwise rotation facing the end opposite the drive. For clockwise rotation, interchange A1 and A2. Some manufacturers connect the interpole winding on the A2 side of the armature. For the above generators, the shunt field may be either self­excited or separately excited. When it is self-excited, connections should be made as shown by the dotted lines. When the shunt field is separately excited, it is usually isolated from the other windings of the machine, but the polarity orthe voltage applied to the shunt field should be as shown for the particular rotation and armature polarity.

NEMA MG 1-2003,2.14, Note 5.

11

Page 14: EASA Pocket Book

12

FIELD POLARITIES OF DC MACHINES

W ..J

~ Z Ci :;:

POLARITY OF MAIN ANDINTERPOLES

The diagram above shows the polarity of interpoles with respect to the polarity of the main poles.

For a motor, the polarity of the interpole is the same as that of the main pole preceding it in the direction of rotation.

For a generator, the polarity of the interpole is the same as that of the main pole following it in the direction of rotation.

Page 15: EASA Pocket Book

FULL-LOAD CURRENTS OF DC MOTORS* (RUNNING AT BASE SPEED)

'For conductor sizing only.

FULL-LOAD CURRENT IN AMPEREst

RATED ARMATURE VOLTAGE

HP 90V 120V 180V 240V 500V 550V .25 4.0 3.1 2.0 1.6 - -.33 5.2 4.1 2.6 2.0 - -.5 6.8 5.4 2.73.4 - -.75 7.69.6 4.8 3.8 --

-1 12.2 6.1 4.79.5 -13.2 8.3 6.61.5 - - -

- 17 8.52 10.8 --- 25 16 12.2 - -3

-275 - 40 20 --7.5 58 29 13.6 12.2-

7610 --- 1838 16

- 2715 - 55 24 20

-- 3472- - 31 -25 43 38- 89

- -30 - 106 51 46 -40

-140 67 61- -17350 - - 83 75

60 - - - 206 99 90 -75 255 123 111- -

100 -

341 164 148- - -- 425125 205 185--

-506 246 222150 - -675- 330 294

OVER 200 HP

Approx.

200 -

1.7 1.5- - 3.4-Amps/hp

t Tnese are average direct-current quantities.

Branch-circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating.

Armature current varies inversely as applied voltage.

Example: 40 hp motor, 300 volt armature 240

Armature current s t-tu x -~112amps 300

The above table is based on Table 430.147 of the National Electrical Code", 2002. National Electrical Code® and NEC®are registered trade marks of the National Fire Protection Association, Inc. Quincy, MA 02269.

13

Page 16: EASA Pocket Book

FULL-LOAD CURRENTS THREE-PHASE SQUIRREL CAGE AND WOUND-ROTOR MOTORS'

'For conductor sizing only

FULL-LOAD CURRENT IN AMPERES

HP 200V 208V 230V 460V 575V 2300V 4000V .5 2.5 2.4 2.2 1.1 0.9 - -.75 3.7 3.5 3.2 1.6 1.3 - -

1 4.8 4.6 4.2 2.1 1.7 - -

1.5 6.9 6.6 6.0 3.0 2.4 - -2 7.8 7.5 6.8 3.4 2.7 - -3 11.0 10.6 9.6 4.8 3.9 - -5 17.5 16.7 15.2 7.6 6.1 - -7.5 25.3 24.2 22 11 9 - -

10 32.2 30.8 28 14 11 - -

15 48.3 46.2 42 21 17 - -20 62.1 59.4 54 27 22 - -25 78.2 74.8 68 34 27 - -30 92 88 80 40 32 - -40 120 114 104 52 41 - -50 150 143 130 65 52 - -60 177 169 154 77 62 16 9 75 221 211 192 96 77 20 11

100 285 273 248 124 99 26 14

125 359 343 312 156 125 31 18 150 414 396 360 180 144 37 21 200 552 528 480 240 192 49 28

250 - - - 302 242 60 35 300 - - - 361 289 72 41 350 - - - 414 336 83 48

400 - - - 477 382 95 55 450 - - - 515 412 103 59 500 - - - 590 472 118 68

OVER 200 HP

Approx. Amps/hp

2.75 2.64 2.4 1.2 .96 .24 .14

Branch-circuit conductors supplying a single motor shall have an ampacity not less than 125 percent of the motor full-load current rating. Based on Table 430.150 of the National Electrical Code." 2002.

14

Page 17: EASA Pocket Book

FULL-LOAD CURRENTS THREE-PHASE SYNCHRONOUS MOTORS (UNITY POWER FACTOR) AND SINGLE-PHASE MOTORS'

"For conductor sizing only

THREE-PHASE SYNCHRONOUS MOTORS FULL·LOAD CURRENT IN AMPERES

HP RATED VOLTAGE

460V 575V 2300V 4000V

100 100 80 20 12 125 125 100 25 14 150 150 120 30 17 200 200 160 40 23 250 250 200 50 29 300 300 240 60 35

350 353 282 71 41 400 403 322 80 46 500 500 400 100 58

600 600 480 120 69 700 705 564 141 81 800 805 644 161 93

900 905 724 181 104 1000 960 768 192 110

SINGLE·PHASE MOTORS FULL·LOAD CURRENT IN AMPERES

RATED VOLTAGE

HP 115V 200V 20BV 230V

.167

.25

.34

4.4 5.8 7.2

2.5 3.3 4.1

2.4 3.2 4.0

2.2 2.9 3.6

.5

.75 1

1.5 2 3

9.8 13.8 16

20 24 34

5.6 7.9 9.2

11.5 13.8 19.6

5.4 7.6 8.8

11 13.2 18.7

4.9 6.9 8

10 12 17

I

5 7.5

10

56 80

100

32.2 46 57.5

30.8 44 55

I

28 40 50

I I

Branch-circuit conductors supplying a single motorshall have anampacity not less than 125 percent of the motor full-load current rating. Based onTable 430.148 of theNational Electrical code", 2002.

15

Page 18: EASA Pocket Book

MAXIMUM LOCKED·ROTOR CURRENTS THREE-PHASE SQUIRREL CAGEMOTORS t\lEMA DESIGNS B, C AND D

LOCKED·ROTOR CURRENT IN AMPERES

HP

1

2 3

5

10

15 20 25

30 40 50

60 75

100

125 150

1 200

250 300 350

400 450 500

RATED VOLTAGE, 60 Hz I

200V 230V 460V 575V 2300V 4000V

.5 23 20 10 8

.75 29 25 12 10 34 30 15 12

1.5 46 40 20 16

1

57 50 25 20 74 64 32 26

106 92 46 37 7.5 146 127 63 51

186 162 81 65

267 232 116

1

93 333 290 145 116 420 365 182 146

1

500 435 217 174 667 580 290 232 834 725 362 290

1000 870 435 348 87 50 1250 1085 542 434 108 62 1665 1450 725 580 145 83

2085 1815 907 726 181 104 2500 2170 1085 868 217 125 3335 2900 1450 1160 290 167

4200 3650 1825 1460 365 210

1

5060 4400 2200 1760 440 253 5860 5100 2550 2040 510 293

6670 5800 2900 2320 580 333 7470 6500 3250 2600 650 374 8340 7250 3625 2900 725 417

The locked-rotor currentofDesignB,C and Dconstant-speed induction motors,when measured with rated voltage and frequency impressed and with rotorlocked,shall not exceed the above values. Reference: NEMA MG 1-2003,12.35.1.See NEMA MG 1-2003,12.35.2 for50 Hz,380volts.

16

Page 19: EASA Pocket Book

C

GENERAL SPEED-TORQUE CHARACTERISTICS THREE-PHASE INDUCTION MOTORS

100

¥80 Q. Ul Ul

5 60 l: e

.s::: u ~ 40 Ul

'5 'if. :; 20

~ Ul

o o

-,.~"":"':":~: ..

:::~::::-:.:'::: .. ::::",:,,-.. ......"'.,",. Design D "",,:...;:- (5 % slip)

\' \ '"'' ". i J

i \~i/t' ./

/1 / / ,, i ,../·'IDoS;gn A, i , ,.\ I.,

, .' Design B ---..{ ,/ \.--- Design C

I \, I

I

\ ,,\. \, \ •...•...,.~. \.

30025020015010050

Torque (% of full-load torque)

NEMA DESIGN

LOCKED ROTOR TORQUE

BREAKDOWN TORQUE

LOCKED ROTOR CURRENT SLIP

RELATIVE EFFICIENCY

B 70·275%­ 175 - 300%­ 600 - 800% 0.5-5% Medium or High

Applications: Fans, blowers, centrifugal pumps and compressors, motor-generator sets, etc., where starting torque requirements are relatively low.

200 - 250%-1190 - 225%- 1600 - 800% 11-5% IMedium

Applications: Conveyors, crushers, stirring machines, agitators, reciprocating pumps and compressors, etc., where starting under load is required.

D 275% 1275% 1600 - 800% 1;'5% IMedium

Applications: High peak loads with or without flywheels, such as punch presses, shears,elevators, extractors, winches, hoists, oil-well pumping, and wire-drawing machines.

Based on NEMA MG 10-2001, Table 1. NEMA Design A is a variation of Design B having higher locked-rotor current.

"Hiqher values are for motors having lower horsepower ratings.

17

Page 20: EASA Pocket Book

FULL-LOAD EFFICIENCIES THREE-PHASE, SQUIRREL CAGE, ENERGY EFFICIENT OPEN MOTORS (NEMA DESIGNS A AND B)

HP

2 POLE 4 POLE 6 POLE

NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY

1.0 82.5 80.0 80.0 77.0 1.5 82.5 80.0 84.0 81.5 84.0 81.5 2.0 84.0 81.5 84.0 81.5 85.5 82.5 3.0 84.0 81.5 86.5 84.0 86.5 84.0 5.0 85.5 82.5 87.5 85.5 87.5 85.5 7.5 87.5 85.5 88.5 86.5 88.5 86.5

10.0 88.5 86.5 89.5 87.5 90.2 88.5 15.0 89.5 87.5 91.0 89.5 90.2 88.5 20.0 90.2 88.5 91.0 89.5 91.0 89.5 25.0 91.0 89.5 91.7 90.2 91.7 90.2 30.0 91.0 89.5 92.4 91.0 92.4 91.0 40.0 91.7 90.2 93.0 91.7 93.0 91.7 50.0 92.4 91.0 93.0 91.7 93.0 91.7 60.0 93.0 91.7 93.6 92.4 93.6 92.4 75.0 93.0 91.7 94.1 93.0 93.6 92.4

100.0 93.0 91.7 94.1 93.0 94.1 93.0 125.0 93.6 92.4 94.5 93.6 94.1 93.0 150.0 93.6 92.4 95.0 94.1 94.5 93.6 200.0 94.5 93.6 95.0 94.1 94.5 93.6 250.0 94.5 93.6 95.4 94.5 95.4 94.5 300.0 95.0 94.1 95.4 94.5 95.4 94.5 350.0 95.0 94.1 95.4 94.5 95.4 94.5 400.0 95.4 94.5 95.4 94.5 450.0 95.8 95.0 95.8 95.0 500.0 95.8 95.0 95.8 95.0

The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as "energy efficient." Nominal efficiency represents a value which should be usedto compute the energy consumption of a motor or group of motors.

Reference: NEMAMG 1-2003,12.59, Table 12-11.

The Energy Policy Act of 1992 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 1992 is the same as that listed inthe tablefor 1.0to 200.0 hpmotors.

18

Page 21: EASA Pocket Book

FULL-LOAD EFFICIENCIES THREE-PHASE, SQUIRREL CAGE, ENERGY EFFICIENT ENCLOSED MOTORS (NEMA DESIGNS AAND B)

HP

2 POLE 4 POLE 6 POLE

NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY

1.0 75.5 72.0 82.5 80.0 80.0 77.0 1.5 82.5 80.0 84.0 81.5 85.5 82.5 2.0 84.0 81.5 84.0 81.5 86.5 84.0

3.0 85.5 82.5 87.5 85.5 87.5 85.5 5.0 87.5 85.5 87.5 85.5 87.5 85.5 7.5 88.5 86.5 89.5 87.5 89.5 87.5

10.0 89.5 87.5 89.5 87.5 89.5 87.5 15.0 90.2 88.5 91.0 89.5 90.2 88.5 20.0 90.2 88.5 91.0 89.5 90.2 88.5

25.0 91.0 89.5 92.4 91.0 91.7 90.2 30.0 91.0 89.5 92.4 91.0 91.7 90.2 40.0 91.7 90.2 93.0 91.7 93.0 91.7

50.0 92.4 91.0 93.0 91.7 93.0 91.7 60.0 93.0 91.7 93.6 92.4 93.6 92.4 75.0 93.0 91.7 94.1 93.0 93.6 92.4

100.0 93.6 92.4 94.5 93.6 94.1 93.0 125.0 94.5 93.6 94.5 93.6 94.1 93.0 150.0 94.5 93.6 95.0 94.1 95.0 94.1

200.0 95.0 94.1 95.0 94.1 95.0 94.1 250.0 95.4 94.5 95.0 94.1 95.0 94.1 300.0 95.4 94.5 95.4 94.5 95.0 94.1

350.0 95.4 94.5 95.4 94.5 95.0 94.1 400.0 95.4 94.5 95.4 94.5 450.0 95.4 94.5 95.4 94.5 500.0 95.4 94.5 95.8 95.0

The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as "energy efficient." Nominal efficiency represents a value which should be used to compute the energy consumption of a motor orgroup of motors.

Reference: NEMA MG 1-2003, 12.59, Table 12-11.

The Energy Policy Act of 1992 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 1992 is the same as thatlisted inthe table for 1.0to 200.0 hpmotors.

19

Page 22: EASA Pocket Book

20

EFFECTOF VOLTAGE VARIATION ON INDUCTIONMOTORCHARACTERISTICS

PERCENT VOLTAGE VARIATION

+5 +10 +15 -15 -10 -5 0

·20 I---+--+-+--+-+--+~,

-15 -10 -5 0 +5 +10 +15

POWER SUPPLY AND MOTOR VOLTAGES

NOMINAL POWER MOTOR UTILIZATION SYSTEM VOLTAGE, (NAMEPLATE) VOLTAGE, VOLTS VOLTS

120 115 208 200 240 230 480 460 600 575

2400 2300 4160 4000 6900 6600

Reference: NEMA MG 10-2001.

Page 23: EASA Pocket Book

EFFECTOF VOLTAGE UNBALANCE ON MOTOR PERFORMANCE

When the line voltages applied to a polyphase induction motor are not equal, unbalanced currents in the stator windings will result. A small percentage voltage unbalance will result in a much larger percentage current unbalance. Consequently, the temperature rise of the motor operating at a particular load and percentage voltage unbalance will be greater than for the motor operating under the same conditions with balanced voltages. Should voltages be unbalanced, the rated horsepower of the motor should be multiplied by the factor shown in the graph below to reduce the possibility of damage to the motor. Operation of the motor at above a 5% voltage unbal­ance condition is not recommended. Alternating current, three-phase motors normally are designed to operate successfully under running conditions at rated load when the voltage unbal­ance at the motor terminals does not exceed 1%. Performance will not nec­essarily be the same as when the motor is operating with a balanced voltage at the motor terminals. (Note: NEMA MG 1-2003, 12.45 recommends against operating a motor with a voltage unbalance greater than 1%. This will in­crease operating temperature, vibration, nuisance trips and failures.)

MEDIUM MOTOR DERATING FACTOR DUE TO UNBALANCED VOLTAGE

1.0c:: f2 o it 0.9 CJ z

~ 0.8 UJ o

I"­r---. ........ ~

r-, <,-, ~

1 234 5

% VOLTAGE UNBALANCE

Percent voltage Max. volt. deviation from avg. volt. unbalance = 100 x Average volt.

Example: With voltages of 460, 467, and 450, the average is 459, the maximum deviation from the average is 9, and the

Percent unbalance = 100 x .JL = 1.96% 459

Reference: N~MA MG1-2003, 14.36.

21

Page 24: EASA Pocket Book

STARTING CHARACTERISTICS OF SQUIRREL CAGEINDUCTION MOTORS

STARTING VOLTAGE LINE MOTOR METHOD AT MOTOR CURRENT TORQUE

Full-Voltage Value 100 100 100

Autotransformer 80% tap 80 64' 64 65% tap 65 42' 42 50% tap 50 25' 25

Primary Resistor Typical Rating 80 80 64

Primary Reactor 80% tap 80 80 64 65% tap 65 65 42 50% tap 50 50 25

Series-Parallel 100 25 25

Wye-Delta 100 33 33

Part-Winding (1/2-1/2) 2 to 12 Poles 100 70 50 14 and more Poles 100 50 50

Solid-state Soft Start Variable Variable Vairable

Variable Freq. Drive v/Hz constant Variable Variable

• Autotransformer magnetizing currentnot included. Magnetizing cur­rent is usuallyless than25 percentof motorfull-load current.

22

Page 25: EASA Pocket Book

ALLOWABLE STARTSAND STARTING INTERVALS DESIGN AAND B MOTORS

2POLE 4POLE 6 POLE HP A B C A B C A B C

1 15 1.2 75 30 5.8 38 34 15 33 1.5 12.9 1.8 76 25.7 8.6 38 29.1 23 34 2 11.5 2.4 77 23 11 39 26.1 30 35 3 9.9 3.5 80 19.8 17 40 22.4 44 36

5 8.1 5.7 83 16.3 27 42 18.4 71 37 7.5 7.0 8.3 88 13.9 39 44 15.8 104 39

10 6.2 11 92 12.5 51 46 14.2 137 41 15 5.4 16 100 10.7 75 50 12.1 200 44

20 4.8 21 110 9.6 99 55 10.9 262 48 25 4.4 26 115 8.8 122 58 10.0 324 51 30 4.1 31 120 8.2 144 60 9.3 384 53 40 3.7 40 130 7.4 189 65 8.4 503 57

50 3.4 49 145 6.8 232 72 7.7 620 64 60 3.2 58 170 6.3 275 85 7.2 735 75 75 2.9 71 180 5.8 338 90 6.6 904 79

100 2.6 92 220 5.2 441 110 5.9 1181 97

125 2.4 113 275 4.8 542 140 5.4 1452 120 150 2.2 133 320 4.5 640 160 5.1 1719 140 200 2.0 172 600 4.0 831 300 4.5 2238 265 250 1.8 210 1000 3.7 1017 500 4.2 2744 440

Where: A = Maximum number ofstarts perhour. B = Maximum product of starts perhourtimes loadWk2. C = Minimum restoroff timeinseconds between starts.

Ailowable starts perhouris the lesser of (1) A or (2) B divided bytheloadWk2, i.e.,

Starts perhours Aor __B_ , whichever is less. Load Wk'

Example: 25 hp,4 pole, loadWk2 ~ 50 From Table, A= 8.8, B = 122.

Starts perhour = 152J1 = 2.44

Calulaled value is lessthanA. Therefore ailowable starts/hour = 2.44. Note: Tableis based onfollowing conditions: 1. Applied voltage andfrequency inaccordance withNEMA MG1-2003, f 2.44. 2. During theaccelerating period, theconnected load torque is equal to or lessthan

atorque which varies asthesquare ofthespeed andisequal to100 percent ofrated torque at rated speed.

3. External load Wk2 equal to or less thanthevalues iisted in MG1-2003, 12.54. Forotherconditions, consull themanufacturer. Reference: NEMA MG10·2001, Table 7.

23

Page 26: EASA Pocket Book

~ NEMA FRAME ASSIGNMENTS THREE-PHASE OPEN MOTORS-GENERAL PURPOSE

NEMA PROGRAM HP

36D0 RPM 1800 RPM 1200 RPM 900 RPM

ORIG.

-

1952 RERATE

-

1964 RERATE

-

ORIG.

203

1952 RERATE

182

1964 RERATE

143T

ORIG.

204

1952 RERATE

184

1964 RERATE

145T

ORIG.

225

1952 RERATE

213

1964 RERATE

182T1 1.5 203

204

182

184

143T

145T

204

224

184

184

145T

145T

224

225

184

213

182T

184T

254

254

213

215

184T

213T2 3 224

225

184

213

145T

182T

225

254

213

215

182T

184T

254

284

215

254U

213T

215T

284

324

254U

256U

215T

254T5 7.5 254

284

215

254U

184T

213T

284

324

254U

256U

213T

215T

324

326

256U

284U

254T

256T

326

364

284U

286U

256T

284T10 15 324

326

256U

284U

215T

254T

326

364

284U

286U

254T

256T

364

365

324U

326U

284T

286T

365

404

326U

364U

286T

324T20 25 3648 286U 256T 364 324U 284T 404 364U 324T 405 365U 326T

Page 27: EASA Pocket Book

- - -- - - - -

- - - - -- - - - - - - - -

30

40

50 60

75 100

125

150

200 250

3648 3248 284T8 365 326U 286T 405 365U 326T 444 404U 364T 3658 3268 286T8 444 404U 364T404 364U 324T 445 405U 365T

4048 364U8 324T8 4058 365U8 326T 445 405U 365T 504U 444U 404T

4058 365U8 326T8 4448 404U8 364T8 1 504U 444U 404T 505 445U 405T

4448 404U8 364T8 4458 405U8 365T81 505 445U 405T - - 444T 4458 405U8 365T8 5048 444U8 404T8 1 - - 444T - - 445T

5048 444U8 404T8 5058 445U8 405T81 - - 445T 5058 445U8 405T8 -- - 444T8 1

-

- - 445T8

1 When motors are to be used with V-belts or chain drive, the correct frame size is the one shown but with the suffix letter 8 omitted. For the corresponding shaft extension dimensions, see Pages 28-31.

- - 444T8 - - 445T81

I\J V1

Page 28: EASA Pocket Book

~ NEMA FRAME ASSIGNMENTS THREE-PHASE TEFC MOTORS-GENERAL PURPOSE

NEMA 3600 RPM 1800 RPM 1200 RPM 900 RPM PROGRAM

HP 1952 1964

ORIG. RERATE RERATE

- - -

1952 1964 ORIG. RERATE RERATE

203 182 143T

ORIG.

204

1952 1964 RERATE RERATE

184 145T

OR/G.

225

1952 1964 RERATE RERATE

213 182T1 1.5 203 182 143T

204 184 145T

204 184 145T

224 184 145T

224

225

184 182T

213 184T

254

254

213 184T

215 213T2 3 224 184 182T

225 213 184T

225 213 182T

254 215 184T

254

284

215 213T

254U 215T

284

324

254U 215T

256U 254T5 7.5 254 215 213T

284 254U 215T

284 254U 213T

324 256U 215T

324

326

256U 254T

284U 256T

326

364

284U 256T

286U 284T10 15 324 256U 254T

326 286U 256T

326 284U 254T

364 286U 256T

364

365

324U 284T

326U 286T

365

404

326U 286T

364U 324T20 25 3658 324U 284T8 365 324U 284T 404 364U 324T 405 365U 326T

Page 29: EASA Pocket Book

- - -- - - -

30

40

50

60

75

100

125

150

404S 326S 286TS

405S 364US 324TS

444S 365US 326TS

445S 405US 364TS

504S 444US 365TS

505S 445US 405TS

- - 444TS - - 445TS

404 326U 286T

405 364U 324T

444S 365US 326T

445S 405US 364TSt

504S 444US 365TSt

505S 445US 405TSt

- - 444TSt - - 445TSt

405 365U 326T

444 404U 364T

445 405U 365T

504U 444U 404T

505 445U 405T

- - 444T

- - 445T

-

444 404U 364T

445 405U 365T

504U 444U 404T

505 445U 405T

- - 444T

- - 445T

-

tWhen motors are to be used with V-belt or chain drives, the correct frame size is the frame size shown but with the suffix letter S omitted. For the corresponding shaft extension dimensions, see Pages 28-31.

I\) -J

Page 30: EASA Pocket Book

S3 NEMA FRAME DIMENSIONS* FOOT-MOUNTED AC MACHINES

* Dimensions in inches

FRAME KEYSEAT DESIGNATIONS D E 2F BA H" U N-W VMIN. R ESMfN. S

1---­42 2.62 1.75 1.69 2.06 0.28 0.3750 1.12 0.328 Flat 48 3.00 2.12 2.75 2.50 0.34 0.5000 1.50 0.453 Flat 48H 3.00 2.12 4.75 2.50 0.34 0.5000 1.50 0.453 Flat 56 3.50 2.44 3.00 2.75 0.34 0.6250 1.88 0.517 1.41 0.188 56H 3.50 2.44 5.00 2.75 0.34 0.6250 1.88 0.517 1.41 0.188 66 4.12 2.94 5.00 3.12 0.41 0.7500 2.25 0.644 1.91 0.188

143 3.50 2.75 4.00 2.25 0.34 0.7500 2.00 1.75 0.644 1.41 0.188 143T 3.50 2.75 4.00 2.25 0.34 0.8750 2.25 2.00 0.771 1.41 0.188 145 3.50 2.75 5.00 2.25 0.34 0.7500 2.00 1.75 0.644 1.41 0.188 145T 3.50 2.75 5.00 2.25 0.34 0.8750 2.25 2.00 0.771 1.41 0.188 182 4.50 3.75 4.50 2.75 0.41 0.8750 2.25 2.00 0.771 1.41 0.188 182T 4.50 3.75 4.50 2.75 0.41 1.1250 2.75 2.50 0.986 1.78 0.250 184 4.50 3.75 5.50 2.75 0.41 0.8750 2.25 2.00 0.771 1.41 0.188 184T 4.50 3.75 5.50 2.75 0.41 1.1250 2.75 2.50 0.986 1.78 0.250 203 5.00 4.00 5.50 3.12 0.41 0.7500 2.25 2.00 0.644 1.53 0.188 204 5.00 4.00 6.50 3.12 0.41 0.7500 2.25 2.00 0.644 1.53 0.188

--~._--~~

Page 31: EASA Pocket Book

213 5.25 4.25 5.50 3.50 0.41 1.1250 3.00 2.75 0.986 2.03 0.250 213T 5.25 4.25 5.50 3.50 0.41 1.3750 3.38 3.12 1.201 2.41 0.312 215 5.25 4.25 7.00 3.50 0.41 1.1250 3.00 2.75 0.986 2.03 0.250 215T 5.25 4.25 7.00 3.50 0.41 1.3750 3.38 3.12 1.201 2.41 0.312 224 5.50 4.50 6.75 3.50 0.41 1.0000 3.00 2.75 0.859 2.03 0.250 225 5.50 4.50 7.50 3.50 0.41 1.0000 3.00 2.75 0.859 2.03 0.250 254 6.25 5.00 8.25 4.25 0.53 1.1250 3.38 3.12 0.986 2.03 0.250

1-­254U 6.25 5.00 8.25 4.25 0.53 1.3750 3.75 3.50 1.201 2.78 0.312 254T 6.25 5.00 8.25 4.25 0.53 1.625 4.00 3.75 1.416 2.91 0.375 256U 6.25 5.00 10.00 4.25 0.53 1.3750 3.75 3.50 1.201 2.78 0.312 256T 6.25 5.00 10.00 4.25 0.53 1.625 4.00 3.75 1.416 2.91 0.375 284 7.00 5.50 9.50 4.75 0.53 1.2500 3.75 3.50 1.112 2.03 0.250 284U 7.00 5.50 9.50 4.75 0.53 1.625 4.88 4.62 1.416 3.78 0.375 284T 7.00 5.50 9.50 4.75 0.53 1.875 4.62 4.38 1.591 3.28 0.500 284T8 7.00 5.50 9.50 4.75 0.53 1.625 3.25 3.00 1.416 1.91 0.375 286U 7.00 5.50 11.00 4.75 0.53 1.625 4.88 4.62 1.416 3.78 0.375 286T 7.00 5.50 11.00 4.75 0.53 1.875 4.62 4.38 1.591 3.28 0.500 286T8 7.00 5.50 11.00 4.75 0.53 1.625 3.25 3.00 1.416 1.91 0.375 324 8.00 6.25 10.50 5.25 0.66 1.625 4.88 4.62 1.416 3.78 0.375 324U 8.00 6.25 10.50 5.25 0.66 1.875 5.62 5.38 1.591 4.28 0.500 3248 8.00 6.25 10.50 5.25 0.66 1.625 3.25 3.00 1.416 1.91 0.375 324T 8.00 6.25 10.50 5.25 0.66 2.125 5.25 5.00 1.845 3.91 0.500 324T8 8.00 6.25 10.50 5.25 0.66 1.875 3.75 3.50 1.591 2.03 0.500 326 8.00 6.25 12.00 5.25 0.66 1.625 4.88 4.62 1.416 3.78 10.375 326U 8.00 6.25 12.00 5.25 0.66 1.875 5.62 5.38 1.591 4.28 0.500 3268 8.00 6.25 12.00 5.25 0.66 1.625 3.25 3.00 1.416 1.91 0.375 326T 8.00 6.25 12.00 5.25 0.66 2.125 5.25 5.00 1.845 3.91 0.500 326T8 8.00 6.25 12.00 5.25 0.66 1.875 3.75 3.50 1.591 2.03 0.500ro

(0

Page 32: EASA Pocket Book

~ NEMA FRAME DIMENSIONS FOOT-MOUNTED AC MACHINES-CONTINUED o ~'.n ----- -.­- ~

= 0 "H"DlA. 0 , @ J

t Dimensions in inches --2F- BA" 4·HQlES -../ -E -E--­•FRAME KEYSEAT DESIGNATIONS D E 2F SA H** U N-W V MIN. R ESMIN. S

364 9.00 7,00 11.25 5.88 0.66 1.875 5.62 5.38 1.591 4.28 0.500 364S 9.00 7.00 11.25 5.88 0.66 1_625 3-25 3_00 1.416 1.91 0.375 364U 9.00 7,00 11.25 5.88 0.66 2_125 6.38 6.12 1.845 5.03 0.500 364US 9.00 7.00 11.25 5.88 0.66 1.875 3.75 3.50 1.5~~ 2.03 0.500 364T 9.00 7.00 11-25 5.88 0.66 2.375 5.88 5.62 2.021 4.28 0.625 364TS 9.00 7.00 11.25 5.88 0.66 1.875 3.75 3.50 1.591 2.03 0.500 365 9.00 7.00 12.25 5.88 0.66 1.875 5.62 5.38 1.591 4.28 0.500 365S 9.00 7.00 12.25 5.88 0.66 1.625 3.25 3.00 1.416 1.91 0.375 365U 9.00 7.00 12.25 5.88 0.66 2.125 6.38 6.12 1.845 5.03 0.500 365US 9.00 7.00 12.25 5.88 0.66 1.875 3.75 3.50 1.591 2.03 0.500 365T 9.00 7.00 12.25 5.88 0.66 2.375 5_88 5.62 2.021 4.28 0.625 365TS 9.00 7.00 12.25 5.88 0.66 1.875 3.75 3.50 1.591 2.03 0.500 404 10.00 8.00 12.25 6.62 0.81 2.125 6.38 6.12 1.845 5.03 0.500 404S 10.00 8.00 12.25 6.62 0.81 1.875 3.75 3.50 1.591 2.03 0.500 404U 10.00 8.00 12.25 6.62 0.81 2.375 7.12 6.88 2.021 5.53 0.625 404US 10.00 8.00 12.25 6.62 0.81 2.125 4.25 '1.00 1.845 2.78 0.500 404T 10.00 8.00 12.25 6.62 0.81 2.875 7.25 7.00 2.450 5.65 0.750 404TS 10.00 8.00 12.25 6.62 0.81 2.125 4.25 4.00 1.845 2.78 0.500 405 10.00 8.00 13.75 6.62 0.81 2.125 6.38 6.12 1.845 5.03 0.500 405S 10.00 8.00 13.75 6.62 0.81 1.875 3.75 3.50 1.591 2.03 0.500

Page 33: EASA Pocket Book

405U 10.00 8.00 13.75 6.62 0.81 2.375 7.12 6.88 2.021 5.53 0.625 405U5 10.00 8.00 13.75 6.62 0.81 2.125 4.25 4.00 1.845 2.78 0.500 405T 10.00 8.00 13.75 6.62 0.81 2.875 7.25 7.00 2.450 5.65 0.750 405T5 10.00 8.00 13.75 6.62 0.81 2.125 4.25 4.00 1.845 2.78 0.500

444 11.00 9.00 14.50 7.50 0.81 2.375 7.12 6.88 2.021 5.53 0.625 4445 11.00 9.00 14.50 7.50 0.81 2.125 4.25 4.00 1.845 2.78 0.500 444U 11.00 9.00 14.50 7.50 0.81 2.875 8.62 8.38 2.450 7.03 0.750 444U5 11.00 9.00 14.50 7.50 0.81 2.125 4.25 4.00 1.845 2.78 0.500

444T 11.00 9.00 14.50 7.50 0.81 3.375 8.50 8.25 2.880 6.91 0.875 444T5 11.00 9.00 14.50 7.50 0.81 2.375 4.75 4.50 2.021 3.03 0.625 445 11.00 9.00 16.50 7.50 0.81 2.375 7.12 6.88 2.021 5.53 0.625 4455 11.00 9.00 16.50 7.50 0.81 2.125 4.25 4.00 1.845 2.78 0.500

445U 11.00 9.00 16.50 7.50 0.81 2.875 8.62 8.38 2.450 7.03 0.750 445U5 11.00 9.00 16.50 7.50 0.81 2.125 4.25 4.00 1.845 2.78 0.500 445T 11.00 9.00 16.50 7.50 0.81 3.375 8.50 8.25 2.880 6.91 0.875 445T5 11.00 9.00 16.50 7.50 0.81 2.375 4.75 4.50 2.021 3.03 0.625

447T 11.00 9.00 20.00 7.50 0.81 3.375 8.50 8.25 2.880 6.91 0.875 447T5 11.00 9.00 20.00 7.50 0.81 2.375 4.75 4.50 2.021 3.03 0.625 449T 11.00 9.00 25.00 7.50 0.81 3.375 8.50 8.25 2.880 6.91 0.875 449T5 11.00 9.00 25.00 7.50 0.81 2.375 4.75 4.50 2.021 3.03 0.625

504U 12.50 10.00 16.00 8.50 0.94 2.875 8.62 8.38 2.450 7.28 0.750 5045 12.50 10.00 16.00 8.50 0.94 2.125 4.25 4.00 1.845 2.78 0.500 505 12.50 10.00 18.00 8.50 0.94 2.875 8.62 8.38 2.450 7.28 0.750 5055 12.50 10.00 18.00 8.50 0.94 2.125 4.25 4.00 1.845 2.78 0.500

Reference: NEMA MG 1-2003,4.4.1. "Frames 48 to 66, inclusive: the Hdimension is Widthof Sial. Frames 143 to 5058, inciusive: the Hdimensionis Diameter of Hole.

~

Page 34: EASA Pocket Book

_AHl --I ~ NEMA FRAME DIMENSIONS· BO

.k SF

TYPE C FACE-MOUNTING FOOT OR -1 ...... B8 MOUNTING.. J,..--ffi,URFACE n~t:URFACE

FOOTLESS AC MOTORS OIMENSIONS ~~ -- I d -IESI -11-5

~~~~ES AJ~t::ATER 15 ."..... J -Ii (j-{'f·~~-'

I

NAK Be_I I! 1\

t:3I-BC

" Dimensions in inches

FRAME OESIGNATIONSt AJ AK BA

BB MIN BC

BO MAX

BF HOLE

U AH

KEVSEAT

NUMBER TAP SIZE

BOLT PENETRATION ALLOWANCE R

ES MIN S

42C 3.750 3.000 2.062 0.16 -0.19 5.00 4 1/4-20 0.3750 1.312 0.328 Flat 48C 3.750 3.000 2.50 0.16 -0.19 5.625 4 1/4-20 0.5000 1.69 0.453 Flat 56C 5.875 4.500 2.75 0.16 -0.19 6.50 4 3/8-16 0.6250 2.06 0.517 1.41 0.188 66C 5.875 4.500 0.16 -0.19 6.50 4 3/8-16 0.7500 2.44 0.644 0.188

143TC and 145TC 5.875 4.500 2.75 0.16 +0.12 6.50 4 3/8-16 0.56 0.8750 2.12 0.771 1.41 0.188 182C and 184C 5.875 4.500 0.16 +0.12 6.50 4 3/8-16 0.56 0.8750 2.12 0.771 0.188 182TC and 184TC 7.250 8.500 3.50 0.25 +0.12 9.00 4 1/2-13 0.75 1.1250 2.62 0.986 1.78 0.250 182TCH and 184TCH 5.875 4.500 3.50 0.16 +0.12 6.50 4 3/8-16 0.56 1.1250 2.62 0.986 1.78 0.250

213C and 215C 7.250 8.500 0.25 +0.25 9.00 4 112-13 0.75 1.1250 2.75 0.986 0.250 213TC and 215TC 7.250 8.500 4.25 0.25 +0.25 9.00 4 1/2-13 0.75 1.3750 3.12 1.201 2.41 0.312 254UC and 256UC 7.250 8.500 0.25 +0.25 10.00 4 1/2-13 0.75 1.3750 3.50 1.201 0.312 254TC and 256TC 7.250 8.500 4.75 0.25 +0.25 10.00 4 1/2-13 0.75 1.625 3.75 1.416 2.91 0.375

Page 35: EASA Pocket Book

284UC and 286UC 9.000 10.500 0.25 +0.25 11.25 4 1/2-13 0.75 1.625 4.62 1.416 0.375 284TC and 286TC 9.000 10.500 4.75 0.25 +0.25 11.25 4 1/2-13 0.75 1.875 4.38 1.591 3.28 0.500 284TSC and 286TSC 9.000 10.500 4.75 0.25 +0.25 11.25 4 1/2-13 0.75 1.625 3.00 1.416 1.91 0.375 324UC and 326UC 11.000 12.500 0.25 +0.25 14.00 4 5/8-11 0.94 1.875 5.38 1.591 0.500

324SC and 326SC 11.000 12.500 0.25 +0.25 14.00 4 5/8-11 0.94 1.625 3.00 1.416 0.375 324TC and 326TC 11.000 12.500 5.25 0.25 +0.25 14.00 4 5/8-11 0.94 2.125 5.00 1.845 3.91 0.500 324TSC and 326TSC 11.000 12.500 5.25 0.25 +0.25 14.00 4 5/8-11 0.94 1.875 3.50 1.591 2.03 0.500 364UC and 365UC 11.000 12.500 0.25 +0.25 14.00 8 5/8-11 0.94 2.125 6.12 1.845 0.500

364USC and 365USC 11.000 12.500 0.25 +0.25 14.00 8 5/8-11 0.94 1.875 3.50 1.591 0.500 364TC and 365TC 11.000 12.500 5.88 0.25 +0.25 14.00 8 5/8-11 0.94 2.375 5.62 2.021 4.28 0.625 364TSC and 365TSC 11.000 12.500 5.88 0.25 +0.25 14.00 8 5/8-11 0.94 1.875 3.50 1.591 2.03 0.500 404UC and 405UC 11.000 12.500 0.25 +0.25 15.50 8 5/8-11 0.94 2.375 6.88 2.021 0.625

404USC and 405USC 11.000 12.500 0.25 +0.25 15.50 8 5/8-11 0.94 2.125 4.00 1.845 0.500 404TC and 405TC 11.000 12.500 6.62 0.25 +0.25 15.50 8 5/8-11 0.94 2.875 7.00 2.450 5.65 0.750 404TSC and 405TSC 11.000 12.500 6.62 0.25 +0.25 15.50 8 5/8-11 0.94 2.125 4.00 1.845 2.78 0.500 444UC and 445UC 14.000 16.000 0.25 +0.25 18.00 8 5/8-11 0.94 2.875 8.38 2.450 0.750

444USC and 445USC 14.000 16.000 0.25 +0.25 18.00 8 5/8-11 0.94 2.125 4.00 1.845 0.500 444TC and 445TC 14.000 16.000 7.50 0.25 +0.25 18.00 8 5/8-11 0.94 3.375 8.25 2.880 6.91 0.875 444TSC and 445TSC 14.000 16.000 7.50 0.25 +0.25 18.00 8 5/8-11 0.94 2.375 4.50 2.021 3.03 0.625 447TC and 449TC 14.000 16.000 7.50 0.25 +0.25 18.00 8 5/8-11 0.94 3.375 8.25 2.880 6.91 0.875

447TSC and 449TSC 14.000 16.000 7.50 0.25 +0.25 18.00 8 5/8-11 0.94 2.375 4.50 2.021 3.03 0.625 504UC and 505C 14.500 16.500 0.25 +0.25 18.00 4 5/8-11 0.94 2.875 8.38 2.450 0.750 504SC and 505SC 14.500 16.500 0.25 +0.25 18.00 4 5/8-11 0.94 2.125 4.00 1.845 0.500

Reference: NEMA MG 1-2003, 4.4.4. tSee Pages 28-31 for dimensions D, E, 2F and H. For tolerances on dimensions, face runout and permissible eccentricity of mounting rabbet, see NEMA MG 1-2003, 4.4.4, 4.11 and 4.12.

CAl CAl

Page 36: EASA Pocket Book

--

~ NEMA FRAME DIMENSIONS'" TYPE 0 FLANGE-MOUNTING FOOT OR FOOTLESS AC MOTORS

* Dimensions in inches

-IF:~l

~~~ :;II["~BE_~JI_BC~BA~-BC

KEYS EAT BF HOLE

RECOMMENDED ESBB BD BE TAPFRAME NUMBER BOLT LENGTH R MINMIN Be MAX NOM SIZE AH 5DESIGNATIONSt AJ AK BA U

1.25 0.8750 2.25 0.771 1.419.000 2.75 0.25 0.00 11.00 0.50 4 0.53 0.188143TD and 145TD 10.00 0.50 0.53 1.25 0.8750 2.25 0.77110.00 9.000 0.25 0.00 11.00 4 0.188182D and 184D 0.50 4 0.53 1.25 1.1250 2.7510.00 9.000 3.50 0.25 0.00 11.00 0.986 1.78 0.250182TD and 184TD

11.00 4 0.53 1.25 1.1250 0.2509.000 0.25 0.00 0.50 3.00 0.986213D and 215D 10.00

0.25 0.00 11.00 4 0.53 1.25 1.3750 3.38 1.201 2.41 0.3129000 4.25 0.5021310 and 215TD 10.00 2.0011.000 0.25 0.00 14.00 0.75 4 0.81 1.3750 3.75 1.201 0.312254UD and 256UD 12.50

0.75 1.625 4.00 1.41612.50 11.000 4.75 0.25 0.00 14.00 4 0.81 2.00 2.91 0.375254TD and 256TD 0.75 4 4.88 1.41611.000 0.25 14.00 0.81 2.00 1.625 0.375284UD and 286UD 12.50 0.00

14.00 0.75 4 0.81 1.875 4.62 1.591 0.50012.50 11.000 4.75 0.25 0.00 2.00 3.28284TD and 286TD 0.75 4 0.81 2.00 1.625 1.416 1.91 0.37511.000 4.75 0.25 0.00 14.00 3.25284T5D and 286T5D 12.50 0.75 4 0.81 2.00 1.875 1.59114.000 0.25 0.00 18.00 5.62 0.500324UD and 326UD 16.00 0.75 4 0.81 2.00 1.625 3.25 1.416 0.37514.000 0.25 0.00 18.003245D and 3265D 16.00

Page 37: EASA Pocket Book

324TO and 326TO 16.00 14.000 5.25 0.25 0.00 18.00 0.75 4 0.81 2.00 2.125 5.25 1.845 3.91 0.500 324TSO and 326TSO 16.00 14.000 5.25 0.25 0.00 18.00 0.75 4 0.81 2.00 1.875 3.75 1.591 2.03 0.500 364UO and 365UO 16.00 14.000 0.25 0.00 18.00 0.75 4 0.81 2.00 2.125 6.38 1.845 0.500 364USO and 365USO 16.00 14.000 0.25 0.00 18.00 0.75 4 0.81 2.00 1.875 3.75 1.591 0.500

364TO and 365TO 16.00 14.000 5.88 0.25 0.00 18.00 0.75 4 0.81 2.00 2.375 5.88 2.021 4.28 0.625 364TSO and 365TSO 16.00 14.000 5.88 0.25 0.00 18.00 0.75 4 0.81 2.00 1.875 3.75 1.591 2.03 0.500 404UO and 405UO 20.00 18.000 0.25 0.00 22.00 1.00 8 0.81 2.25 2.375 7.12 2.021 0.625 404USO and 405USO 20.00 18.000 0.25 0.00 22.00 1.00 8 0.81 2.25 2.125 4.25 1.845 0.500

404TO and 405TO 20.00 18.000 6.62 0.25 0.00 22.00 1.00 8 0.81 2.25 2.875 7.25 2.450 5.65 0.750 404TSO and 405TSO 20.00 18.000 6.62 0.25 0.00 22.00 1.00 8 0.81 2.25 2.125 4.25 1.845 2.78 0.500 444UO and 445UO 20.00 18.000 0.25 0.00 22.00 1.00 8 0.81 2.25 2.875 8.62 2.450 0.750 444USO and 445USO 20.00 18.000 0.25 0.00 22.00 1.00 8 0.81 2.25 2.125 4.25 1.845 0.500

444TO and 445TO 20.00 18.000 7.50 0.25 0.00 22.00 1.00 8 0.81 2.25 3.375 8.50 2.880 6.91 0.875 444TSO and 445TSO 20.00 18.000 7.50 0.25 0.00 22.00 1.00 8 0.81 2.25 2.375 4.75 2.021 3.03 0.625 447T0 and 449TO 20.00 18.000 7.50 0.25 0.00 22.00 1.00 8 0.81 2.25 3.375 8.50 2.880 6.91 0.875

447TSO and 449TSO 20.00 18.000 7.50 0.25 0.00 22.00 1.00 8 0.81 2.25 2.375 4.75 2.021 3.03 0.625 504UO and 5050 22.00 18.000 0.25 0.00 25.00 8 0.81 2.875 8.62 2.450 0.750 504S0 and 505S0 22.00 18.000 0.25 0.00 25.00 8 0.81 2.125 4.25 1.845 0.500

Reference: NEMA MG 1-2003, 4.4.6. tSee Pages 28-31 for dimensions 0, E, 2F and H. For tolerances on dimensions, face runout and permissible eccentricity of mounting rabbet, see NEMA MG 1-2003, 4.4.6, 4.11 and 4.12.

W 01

Page 38: EASA Pocket Book

W NEMA FRAME DIMENSIONS* 0>

TYPE JM AND JP FACE-MOUNTING, CLOSED-COUPLED, AC PUMP MOTORS

143-1&4 JPRnd JM FRAMES 14$o1l'A21:}.36SJP JP and JM

Sf HOLE _ CI8o!1S2 R.H

143-184;;;:~~:~ ~R

"""JM~tfi'Q-:J I-S·~, r"-' .t a /I 1-'5­ -I .'l.~ ftt .. :.... ::-r~!::.EL -EM r, j-.--fUN'!" r Er - 'I ENcr6Slll3 R.H.

~C-:;=:g::j~/

1<13·184JPIIOdJM.,. Dimensions in inches

FRAME DESIGNATIONS U AHt AJ AK BB

BD MAX

BF

NUMBER TAP SIZE

BOLT PENETRATION ALLOWANCE

143JM and 145JM

143JP and 145JP

0.8745 0.8740 0.8745 0.8740

4.281 4.219 7.343 7.281

5.875

5.875

4.500 4.497 4.500 4.497

0.156 0.125 0.156 0.125

6.62

6.62

4

4

3/8-16

3/8-16

0.56

0.56

182JM and 184JM 0.8745 0.8740

4.281 4.219

5.875 4.500 4.497

0.156 0.125

6.62 4 3/8-16 0.56

Page 39: EASA Pocket Book

182JP and 184JP 0.8745 0.8740

7.343 7.281

5.875 4.500 4.497

0.156 0.125

6.62 4 3/8-16 0.56

213JM and 215JM 0.8745 0.8740

4.281 4.219

7.250 8.500 8.497

0.312 0.250

9.00 4 1/2-13 0.75

213JP and 215JP 1.2495 1.2490

8.156 8.094

7.250 8.500 8.497

0.312 0.250

9.00 4 1/2-13 0.75

254JM and 256JM 1.2495 1.2490

5.281 5.219

7.250 8.500 8.497

0.312 0.250

10.00 4 1/2-13 0.75

254JP and 256JP 1.2495 1.2490

8.156 8.094

7.250 8.500 8.497

0.312 0.250

10.00 4 1/2-13 0.75

284JM and 286JM 1.2495 1.2490

5.281 5.219

11.000 12.500 12.495

0.312 0.250

14.00 4 5/8-11 0.94

284JP and 286JP 1.2495 1.2490

8.156 8.094

11.000 12.500 12.495

0.312 0.250

14.00 4 5/8-11 0.94

324JM and 326JM 1.2495 1.2490

5.281 5.219

11.000 12.500 12.495

0.312 0.250

14.00 4 5/8-11 0.94

324JP and 326JP 1.2495 1.2490

8.156 8.094

11.000 12.500 12.495

0.312 0.250

14.00 4 5/8-11 0.94

364JP and 365JP 1.6245 1.6240

8.156 8.094

11.000 12.500 12.495

0.312 0.250

14.00 4 5/8-11 0.94

Reference: NEMA MG 1-2003, 18.250.

tAH dimension measuredwith the shaft pulled by hand away from the motor to the limit of end play.

w For tolerances on face runout, permissible eccentricityof mounting rabbet and permissible shaft runout, see NEMA MG 1-2003, 18.250,Tables 1 'l and 2.

Page 40: EASA Pocket Book

w NEMA FRAME DIMENSIONS* CD

TYPE JM AND JP FACE-MOUNTING, CLOSED-COUPLED, AC PUMP MOTORS

FRAMES 143-184 143-184JPanllJM BB - - 213-3&5JP213-326 JM JPandJMt------'.H-~L'43_1B4 JP and JM Z13-36SJP~'-- H

rr-c "Ea--I ee -- - 213-32l>JMI t 'rQ~ I'S­

EPj t • -. _~1-" .',"1·......· I, _I.~_S..

",.,,,,,.1./: -/-"'- ­143-1842:p3-328JM~_ET- ENCllll;li3RH._./ .. * Dimensions in inches

EN TAP KEYSEAT DRILL BOLT

FRAME TAP DEPTH PENETRATION EP ER ES DESIGNATIONS EL EM SIZE MAX ALLOWANCE MIN Eat MIN R MIN S ETt

143JM and 145JM 1.156 T:i54

1.0000 0.9995

3/8-16 1.12 0.75 1.156 0.640 0.610

4.25 0.771-0.756 1.65 0.190-0.188 2.890 2.860

143JP and 145JP 1.156 T:i54

1.0000 0.9995

3/8-16 1.12 0.75 1.156 1.578 1.548

7.312 0.771-0.756 1.65 0.190-0.188 5.952 5.922

182JM and 184JM 1.250 1.0000 3/8-16 1.12 0.75 1.250 0.640 4.25 0.771-0.756 1.65 0.190-0.188 2.890 1.248 0.9995 0.610 2.860

Page 41: EASA Pocket Book

182JP and 184JP 1.250 1.0000 3/8-16 1.12 0.75 1.250 1.578 7.312 0.771-0.756 1.65 0.190-0.188 5.952 1.248 0.9995 1.548 5.922

213JM and 215JM 1.250 1.0000 318-16 1.12 0.75 1.750 0.640 4.25 0.771-0.756 1.65 0.190-0.188 2.890 1.248 0.9995 0.610 2.860

213JP and 215JP 1.750 1.3750 1/2-13 1.50 1.00 1.750 2.390 8.125 1.112-1.097 2.53 0.252-0.250 5.890 1.748 1.3745 2.360 5.860

254JM and 256JM 1.750 1.3750 1/2-13 1.50 1.00 1.750 0.640 5.25 1.112-1.097 2.53 0.252-0.250 3.015 1.748 1.3745 0.610 2.985

254JP and 256JP 1.750 1.3750 1/2-13 1.50 1.00 1.750 2.390 8.125 1.112-1.097 2.53 0.252-0.250 5.890 1.748 1.3745 2.360 5.860

284JM and 286JM 1.750 1.3750 1/2-13 1.50 1.00 2.125 0.645 5.25 1.112-1.097 2.53 0.252-0.250 3.020 1.748 1.3745 0.605 2.980

284JP and 286JP 1.750 1.3750 1/2-13 1.50 1.00 2.125 2.390 8.125 1.112-1.097 2.53 0.252-0.250 5.895 1.748 1.3745 2.360 5.855

324JMand 326JM 1.750 1.3750 1/2-13 1.50 1.00 2.125 0.645 5.25 1.112-1.097 2.53 0.252-0.250 3.020 1.748 1.3745 0.605 2.980

324JPand 326JP 1.750 1.3750 1/2-13 1.50 1.00 2.125 2.395 8.125 1.112-1.097 2.53 0.252-0.250 5.895

364JP and 365JP

1.748

2.125 2.123

1.3745

1.7500 1.7495

1/2-13 1.50 1.00 2.500

2.355

~395

2.355 8.125 1.41~ 0.377-0.375

5.855

5.895 5.855

Reference: NEMAMG1-2003, 18.250. tEO andETdimensions measured with theshaftpulledby handawayfromthemotorto thelimitof endplay. For tolerances onfacerunout, permissible eccentricity of mounting rabbet andpermissible shaftrunout, seeNEMAMG 1-2003, 18.250, Tables 1 and2.

W <0

Page 42: EASA Pocket Book

<!:) rsc MOUNTING DIMENSIONS* FOOT-MOUNTED AC AND DC MACHINES

C·,. Dimensions in inches B

FRAME NUMBER H A B C K

BOLT OR SCREW

56M 2.20 3.55 2.80 1.40 0.23 M5 63 M 2.48 3.95 3.15 1.55 0.28 M6 71 M 2.79 4.40 3.55 1.75 0.28 M6 80 M 3.14 4.90 3.95 1.95 0.40 M8 90 S 3.54 5.50 3.95 2.20 0.40 M8 90 L 3.54 5.50 4.90 2.20 0.40 M8 100 S 3.93 6.30 4.40 2.50 0.48 M10 100 L 3.93 6.30 5.50 2.50 0.48 M10 112 S 4.40 7.50 4.50 2.75 0.48 M10 112 M 4.40 7.50 5.50 2.75 0.48 M10 132 S 5.19 8.50 5.50 3.50 0.48 M10 132 M 5.19 8.50 7.00 3.50 0.48 M10

Page 43: EASA Pocket Book

160 S 6.29 10.00 7.00 4.25 0.58 M12 160 M 6.29 10.00 8.25 4.25 0.58 M12 160 L 6.29 10.00 10.00 4.25 0.58 M12 180 S 7.08 11.00 8.00 4.75 0.58 M12 180 M 7.08 11.00 9.50 4.75 0.58 M12 180 L 7.08 11.00 11.00 4.75 0.58 M12 200 S 7.87 12.50 9.00 5.25 0.73 M16 200 M 7.87 12.50 10.50 5.25 0.73 M16 200 L 7.87 12.50 12.00 5.25 0.73 M16 225 S 8.85 14.00 11.25 5.85 0.73 M16 225 M 8.85 14.00 12.25 5.85 0.73 M16 250 S 9.84 16.00 12.25 6.60 0.95 M20 250 M 9.84 16.00 13.75 6.60 0.95 M20 280 S 11.02 18.00 14.50 7.50 0.95 M20 280 M 11.02 18.00 16.50 7.50 0.95 M20 315 S 12.40 20.00 16.00 8.50 1.11 M24 315 M 12.40 20.00 18.00 8.50 1.11 M24 355 S 13.97 24.00 19.70 10.00 1.11 M24 355 M 13.97 24.00 22.05 10.00 1.11 M24 355 L 13.97 24.00 24.80 10.00 1.11 M24 400 S 15.74 27.00 22.05 11.00 1.38 M30 400 M 15.74 27.00 24.80 11.00 1.38 M30 400 L 15.74 27.00 27.95 11.00 1.38 M30

lEG 60072-1 Standards. ..,. Dimensions, except tor bolt and screw sizes, are shown in inches (rounded oft). Bolt and screw sizes are shown in millimeters. ~ For tolerances on dimensions, see lEG 60072-1, 6.1, Foot-Mounted Machines, Table 1. (Note: Data in lEG tables is shown in millimeters.)

Page 44: EASA Pocket Book

42

isc SHAFT EXTENSION, KEY AND KEYSEAT DIMENSIONS* CONTINUOUS DUTYAC MOTORS

<10 Dimensions in inches

I KEY KEYSEAT MAX. TORQUE

0 E F GO F GE GA (LB FT)

0.2756 0.63 0.078 0.078 0.078 0.048 0.307 0.184 0.3543 0.79 0.118 0.118 0.118 0.071 0.401 0.465 0.4331 0.91 0.157 0.157 0.157 0.099 0.492 0.922

0.5512 1.18 0.196 0.196 0.196 0.119 0.629 2.07 0.6299 1.57 0.196 0.196 0.196 0.119 0.708 3.02 0.7087 1.57 0.236 0.236 0.236 0.138 0.807 5.24

0.7480 1.57 0.236 0.236 0.236 0.138 0.846 6.09 0.8661 1.97 0.236 0.236 0.236 0.138 0.964 10.3

I 0.9449 1.97 0.314 0.275 0.314 0.160 1.062 13.3

1.1024 2.36 0.314 0.275 0.314 0.160 1.220 23.2 1.2598 3.15 0.393 0.314 0.393 0.200 1.377 36.9 1.4961 3.15 0.393 0.314 0.393 0.200 1.614 66.4

1.6535 4.33 0.472 0.314 0.472 0.200 1.771 92.2

1.8898 4.33 0.551 0.354 0.551 0.220 2.027 148 2.1654 4.33 0.629 0.393 0.629 0.240 2.322 262

2.3622 5.51 0.708 0,433 0.708 0.280 2.519 332 2.5591 5.51 0.708 0.433 0.708 0.280 2.716 465 2.7559 5.51 0.787 0,472 0.787 0.300 2.933 590

2.9528 5.51 0.787 0,472 0.787 0.300 3.129 738 3.1496 6.69 0.866 0.551 0.866 0.355 3.346 922 3.3465 6.69 0.866 0.551 0.866 0.355 3.543 1180

I a.sasa 6.69 0.984 0.551 0.984 0.355 3.740 1401

3.7402 6.69 0.984 0.551 0.984 0.355 3.937 1696 3.9370 8.27 1.102 0.629 1.102 0.395 4.173 2065 4.3307 8.27 1.102 0.629 1.102 0.395 4.566 2950

lEG 60072-1 Standards. All dimensions are rounded oft. Fortolerances on dimensions, see lEG 60072-1,7, Shaft Extension, Keys and Keyways Dimensions, Table 4. (Note: Data in lEG tables is shown in millimeters.)

Page 45: EASA Pocket Book

FWNEMA SHAFT EXTENSION AND FN1KEYSEAT~ WKEYSEAT DIMENSIONS* ~irr I ~~ FOOT-MOUNTED DC MACHINES

Lit t I r::1 ~I

I--=-FN.FW.. Dimensions in inches

FRAME

DRIVE END-BELT DRIVE DRIVE END-DiRECT-CONNECTED DRIVE END OPPOSITE DRIVE-5TRAIGHT

SHAFT EXTENSION KEYSEAT SHAFT EXTENSION KEYSEAT SHAFT EXTENSION KEYSEAT FR FES

MIN FSDESIGNATIONS U N-W V

MIN

0.375 1.12 0.500 1.50

0.625 1.88

R ES S MIN

0.328 Flat 0.453 Flat

0.517 1.41 0.188

U N-W V MIN

0.375 1.12 0.500 1.50

0.625 1.88

R ES S MIN

0328 Flal 0.453 Flal 0.517 1.41 0.188

FU FN­ FV FW MIN

42 4B 56 56H 0.625 1.88

0.875 2.25 2.00

0.517 t.41 0.188

0.771 0.91 0.188

0.625 1.88 0.517 1.41 0.188

0.625 1.25 1.00 0.517 0.66 0.188142AT·1412AT 162AT·1610AT 0.8750 1.75 1.50

1.125 2.25 2.00

0.771 0.91 0.188

0.986 1.41 0.250

0.625 1.25 1.00

0.875 1.75 1.50

0.517 0.66

0.771 0.91

0.188

0.188182AT·181 OAT 213AT·2110AT 1.375 2.75 2.50

1.625 3.25 3.00

1.201 1.78 0.312

1.416 2.28 0.375

1.125 2.25 2.00

1.375 2.75 2.50

0.986 1.41

1.201 1.78

0.250

0.312253AT·259AT 283AT·289AT 1.875 3.75 3.50

2.125 4.25 4.00

1.591 2.53 0.500

1.845 3.03 0.500

1.625 3.25 3.00

1.875 3.75 3.50

1.416 2.28

1.591 2.53

0.375

0.500323AT·329AT 363AT·369AT 2.375 4.75 4.50

2.625 5.25 5.00

2.021 3.53 0.625

2.275 4.03 0.625

2.125 4.25 4.00

2.375 4.75 4.50

1.845 3.03

2.210 3.53

0.500

0.625403AT-409AT 443AT·449AT 2.875 5.75 5.50

3.25 6.50 6.25

2.450 4.53 0.750

2.831 5.28 0.750

2.625 5.25 5.00

2.875 5.75 550

2.275 4.03

2.450 4.53

0.625

0.750502AT·509AT 5B3A·58BA 3.25 9.75 9.50 2.831 8.28 0.750 2.875 5.75 5.50 2.450 4.28 0.750 683A·688A 3.625 10.88 10.62 3.134 9.53 0.875 3.250 6.50 6.25 2.831 5.03 0.750

-I>­ Reference: NEMA MG 1-2003, 4.5.1, 4.5.2 and 4.5.3. For tolerances on dimensions, see NEMA MG 1-2003, 4.9. c.:>

Page 46: EASA Pocket Book

44

NEMA FRAME DIMENSIONS* FOOT-MOLINTED DC MACHINES

Q t -E- -E-I ~H~--A-­

FRAME A MAX BMAX 0 E 2F BA H

42 48 56 56H

142AT 143AT 144AT 145AT

7.00 7.00 7.00 7.00

6.75 7.25 7.75 8.25

2.62 3.00 3.50 3.50 3.50 3.50 3.50 350

1.75 2.12 2.44 2.44 2.75 2.75 2.75 2.75

1.69 2.75 3.00 5.00 3.50 4.00 4.50 5.00

2.06 2.50 2.75 2.75 2.75 2.75 2.75 2.75

0.28 0.34 0.34 0.34 0.34 0.34 034 0.34

146AT 147AT 148AT 149AT

7.00 7.00 7.00 7.00

8.75 9.50

10.25 11.25

3.50 3.50 3.50 3.50

2.75 2.75 2.75 2.75

5.50 6.25 7.00 8.00

2.75 2.75 2.75 2.75

034 0.34 0.34 0.34

1410AT 1411AT 1412AT 162AT

7.00 7.00 7.00 8.00

12.25 13.25 14.25 6.00

3.50 3.50 3.50 4.00

2.75 2.75 2.75 3.12

9.00 10.00 11.00 4.00

2.75 2.75 2.75 2.50

0.34 0.34 0.34 0.41

163AT 164AT 165AT 166AT

8.00 8.00 8.00 8.00

6.50 7.00 7.50 8.20

4.00 4.00 4.00 4.00

3.12 3.12 312 3.12

4.50 5.00 5.50 6.25

2.50 2.50 2.50 2.50

0.41 0.41 0.41 0.41

167AT 168AT 169AT

1610AT

8.00 8.00 8.00 8.00

9.00 10.00 11.00 12.00

4.00 4.00 4.00 4.00

3.12 3.12 3.12 3.12

7.00 8.00 9.00

10.00

2.50 2.50 2.50 2.50

0.41 0.41 0.41 0.41

182AT 183AT 184AT 185AT

9.00 9.00 9.00 9.00

6.50 7.00 7.50 8.25

4.50 4.50 4.50 4.50

3.75 3.75 3.75 3.75

4.50 500 5.50 6.25

2.75 2.75 2.75 2.75

0.41 0.41 0.41 0.41

186AT 187AT 188AT 189AT

9.00 9.00 9.00 9.00

9.00 10.00 11.00 12.00

4.50 4.50 4.50 4.50

3.75 3.75 3.75 3.75

7.00 8.00 9.00

10.00

2.75 2.75 2.75 2.75

0.41 0.41 0.41 0.41

1810AT 213AT 214AT 215AT

9.00 10.50 10.50 10.50

13.00 7.50 8.25 9.00

4.50 5.25 5.25 5.25

3.75 4.25 4.25 4.25

11.00 5.50 6.25 7.00

2.75 3.50 3.50 3.50

0.41 0.41 0.41 0.41

216AT 217AT 218AT 219AT

10.50 10.50 10.50 10.50

10.00 11.00 12.00 13.00

5.25 5.25 5.25 5.25

4.25 4.25 4.25 4.25

8.00 9.00

10.00 11.00

3.50 3.50 3.50 3.50

0.41 0.41 0.41 0.41

2110AT 253AT 254AT 255AT

10.50 12.50 12.50 12.50

14.50 9.50

10.75 11.50

5.25 6.25 6.25 6.25

4.25 5.00 5.00 5.00

12.50 7.00 8.25 9.00

3.50 4.25 4.25 4.25

0.41 0.53 0.53 0.53

256AT 257AT 258AT 259AT

12.50 12.50 12.50 12.50

12.50 13.50 15.00 16.50

6.25 6.25 6.25 6.25

5.00 5.00 5.00 5.00

10.00 11.00 12.50 14.00

4.25 4.25 4.25 4.25

0.53 0.53 0.53 0.53

Page 47: EASA Pocket Book

NEMA FRAME DIMENSIONS* FOOT-MOUNTED DC MACHINES-CONTINUED

* Dimensions in inches FRAME A MAX BMAX 0 E 2F BA Ht 283AT 14.00 11.00 7.00 5.50 8.00 4.75 0.53 284AT 14.00 12.50 7.00 5.50 950 4.75 0.53 2B5AT 14.00 13.00 7.00 5.50 10.00 4.75 0.53 286AT 14.00 14.00 7.00 5.50 11.00 4.75 0.53 287AT 1400 15.50 7.00 5.50 12.50 4.75 0.53 2BBAT 14.00 17.00 7.00 5.50 14.00 4.75 0.53 289AT 14.00 19.00 7.00 5.50 16.00 4.75 0.53 323AT 16.00 12.50 8.00 6.25 9.00 5.25 0.66 324AT 16.00 14.00 8.00 6.25 10.50 5.25 0.66 325AT 16.00 14.50 8.00 6.25 11.00 5.25 0.66 326AT 16.00 15.50 8.00 6.25 12.00 5.25 0.66 327AT 16.00 17.50 8.00 6.25 14.00 525 0.66 328AT 16.00 19.50 8.00 6.25 16.00 5.25 0.66 329AT 16.00 21.50 B.OO 6.25 18.00 5.25 0.66 363AT 18.00 14.00 9.00 7.00 10.00 5.88 0.81 364AT 18.00 15.25 9.00 7.00 11.25 5.88 0.81 365AT 18.00 16.25 900 7.00 12.25 5.88 0.81 366AT 18.00 lB.OO 9.00 7.00 14.00 5.88 O.Bl 367AT 18.00 20.00 9.00 7.00 16.00 5.88 0.81 388AT 1800 22.00 900 7.00 18.00 5.88 0.81 389AT 18.00 24.00 9.00 7.00 20.00 5.88 0.81 403AT 20.00 15.00 10.00 8.00 1100 6.62 0.94 4MAT 20.00 16.25 10.00 8.00 12.25 6.62 0.94 405AT 20.00 1775 10.00 8.00 13.75 6.62 0.94 406AT 20.00 20.00 10.00 8.00 16.00 662 0.94 407AT 20.00 22.00 10.00 8.00 18.00 6.62 0.94 408AT 20.00 24.00 10.00 8.00 20.00 6.62 0.94 409AT 20.00 26.00 10.00 8.00 22.00 6.62 0.94 443AT 22.00 16.50 11.00 9.00 12.50 7.50 1.06 444AT 22.00 18.50 11.00 9.00 15.00 7.50 1.06 445AT 22.00 20.50 11.00 9.00 16.50 7.50 1.06 446AT 22.00 22.00 11.00 9.00 18.00 7.50 1.06 447AT 22.00 24.00 11.00 9.00 20.00 7.50 1.06 44BAT 22.00 26.00 11.00 9.00 22.00 7.50 1.06 449AT 22.00 29.00 11.00 9.00 25.00 7.50 1.06 502AT 25.00 17.50 12.50 10.00 12.50 8.50 1.19 503AT 25.00 19.00 12.50 10.00 14.00 8.50 1.19 504AT 25.00 21.00 12.50 10.00 16.00 B.50 1.19 505AT 25.00 23.00 12.50 10.00 lBOO 8.50 1.19 506AT 25.00 25.00 12.50 10.00 20.00 8.50 1.19 507AT 25.00 27.00 12.50 10.00 22.00 8.50 1.19 508AT 25.00 30.00 12.50 10.00 25.00 8.50 1.19 509AT 25.00 33.00 12.50 1000 28.00 8.50 1.19 583A 29.00 21.00 14.50 11.50 16.00 10.00 1.19 584A 29.00 23.00 14.50 11.50 18.00 10.00 1.19 585A 29.00 25.00 14.50 11.50 20.00 10.00 1.19 586A 29.00 27.00 14.50 1150 22.00 10.00 1.19 587A 29.00 30.00 14.50 11.50 25.00 10.00 1.19 58BA 29.00 33.00 14.50 11.50 28.00 10.00 1.19 6B3A 34.00 25.00 17.00 1350 20.00 11.50 1.19 6B4A 34.00 27.00 17.00 13.50 22.00 11.50 1.19 685A 34.00 30.00 17.00 13.50 25.00 11.50 1.19 686A 34.00 33.00 17.00 13.50 28.00 11.50 1.19 687A 34.00 37.00 17.00 13.50 32.00 11.50 1.19 688A 34.00 41.00 17.00 13.50 36.00 11.50 1.19

References and tolerances on dimensions. NEMA MG 1-2003, 4.5.1,4.5.2, 4.5.3and 4.9. t Frames 42 to 56H, inclusive-The H dimension is Width of Slot. Frames 142ATto 688A, inclusiv~The Hdimension is Diameter of Hole.

45

Page 48: EASA Pocket Book

~

-IETJI-~ KEYSEAT

3~aR

I~.:J t t

,. Dimensions in millimeters

NEMA FRAME DIMENSIONS* FOOT-MOUNTEDAC MACHINES

FRAME KEYSEAT DESIGNATIONS D E 2F SA H** U N-W V MIN. R ESMIN. S

42 66 44.5 43 52 7.5 9.52 28 8.3 Flat 48 76 54.0 70 64 9.0 12.70 38 11.5 Flat 48H 76 54.0 121 64 9.0 12.70 38 11.5 Flat 56 88 62.0 76 70 9.0 15.87 48 13.1 36 4.80 56H 88 62.0 127 70 9.0 15.87 48 13.1 36 4.80 66 104 74.5 127 79 11 19.05 57 16.3 49 4.80

143 88 70.0 102 57 9 19.05 51 45 16.3 36 4.80 143T 88 70.0 102 57 9 22.22 57 51 19.5 36 4.80 145 88 70.0 127 57 9 19.05 51 45 16.3 36 4.80 145T 88 70.0 127 57 9 22.22 57 51 19.5 36 4.80 182 114 95.5 114 70 11 22.22 57 51 19.5 36 4.80 182T 114 95.5 114 70 11 28.57 70 64 25.0 46 6.35 184 114 95.5 140 70 11 22.22 57 51 19.5 36 4.80 184T 114 95.5 140 70 11 28.57 70 64 25.0 46 6.35 203 127 101.5 140 79 11 19.05 57 51 16.3 39 4.80 204 127 101.5 165 79 11 19.05 57 51 16.3 39 4.80

Page 49: EASA Pocket Book

213 133 108.0 140 89 11 28.57 76 70 25.0 52 6.35 213T 133 108.0 140 89 11 34.92 86 80 30.5 62 7.95 215 133 108.0 178 89 11 28.57 76 70 25.0 52 6.35 215T 133 108.0 178 89 11 34.92 86 80 30.5 62 7.95 224 139 114.5 171 89 11 25.40 76 70 21.8 52 6.35 225 139 114.5 191 89 11 25.40 76 70 21.8 52 6.35 254 158 127.0 210 108 14 28.57 86 80 25.0 52 6.35 254U 158 127.0 210 108 14 34.92 95 89 30.5 71 7.95 254T 158 127.0 210 108 14 41.27 102 96 35.9 74 9.55 256U 158 127.0 254 108 14 34.92 95 89 30.5 71 7.95 256T 158 127.0 254 108 14 41.27 102 96 35.9 74 9.55 284 177 139.5 241 121 14 31.75 95 89 28.2 52 6.35 284U 177 139.5 241 121 14 41.27 124 118 35.9 97 9.55 284T 177 139.5 241 121 14 47.62 117 112 40.4 84 12.70 284T8 177 139.5 241 121 14 41.27 83 77 35.9 49 9.55 286U 177 139.5 279 121 14 41.27 124 118 35.9 97 9.55 286T 177 139.5 279 121 14 47.62 117 112 40.4 84 12.70 286T8 177 139.5 279 121 14 41.27 83 77 35.9 49 9.55 324 203 159.0 267 133 17 41.27 124 118 35.9 97 9.55 324U 203 159.0 267 133 17 47.62 143 137 40.4 109 12.70 3248 203 159.0 267 133 17 41.27 83 77 35.9 49 9.55 324T 203 159.0 267 133 17 53.97 133 127 46.8 100 12.70 324T8 203 159.0 267 133 17 47.62 95 89 40.4 52 12.70 326 203 159.0 305 133 17 41.27 124 118 35.9 97 9.55 326U 203 159.0 305 133 17 47.62 143 137 40.4 109 12.70 3268 203 159.0 305 133 17 41.27 83 77 35.9 49 9.55 326T 203 159.0 305 133 17 53.97 133 127 46.8 100 12.70 326T8 203 159.0 305 133 17 47.62 95 89 40.4 52 12.70

Reference: NEMA MG 1-2003,4.4.1. "Frames 42 to 66, inclusive: the H dimension is Width of 810t;Frames 143 to 5058, inclusive: the H dimension is Diameter of Hole. .,. For tolerances on dimensions see NEMA MG 1-2003, 4.4.1 and 4.9. (Note: Data in NEMA tables is shown in inches.) -..J

Page 50: EASA Pocket Book

&; NEMA FRAME DIMENSIONS* FOOT-MOUNTEDAC MACHINES -CONTINUED

• Dimensions in millimeters

KEYSEAT

-IEll-II-~ ~::::=L~a R

I~:.:=I t I

FRAME KEYSEAT

DESIGNATIONS D E 2F BA H** U N-W VMIN. R ESMIN. S 364 228 178.0 286 149 17 47.62 143 137 40.4 109 12.70 3648 228 178.0 286 149 17 41.27 83 77 35.9 49 9.55 364U 228 178.0 286 149 17 53.97 162 156 46.8 128 12.70 364U8 228 178.0 286 149 17 47.62 95 89 40.4 52 12.70 364T 228 178.0 286 149 17 60.32 149 143 51.3 109 15.90 364T8 228 178.0 286 149 17 47.62 95 89 40.4 52 12.70 365 228 178.0 311 149 17 47.62 143 137 40.4 109 12.70 3658 228 178.0 311 149 17 41.27 83 77 35.9 49 9.55 365U 228 178.0 311 149 17 53.97 162 156 46.8 128 12.70 365U8 228 178.0 311 149 17 47.62 95 89 40.4 52 12.70 365T 228 178.0 311 149 17 60.32 149 143 51.3 109 15.90 365T8 228 178.0 311 149 17 47.62 95 89 40.4 52 12.70 404 254 203.0 311 168 21 53.97 162 156 46.8 128 12.70 4048 254 203.0 311 168 21 47.62 95 89 40.4 52 12.70 404U 254 203.0 311 168 21 60.32 181 175 51.3 141 15.90 404U8 254 203.0 311 168 21 53.97 108 102 46.8 71 12.70

Page 51: EASA Pocket Book

404T 254 203.0 311 168 21 73.02 184 178 62.2 144 19.05 404TS 254 203.0 311 168 21 53.97 108 102 46.8 71 12.70 405 254 203.0 349 168 21 53.97 162 156 46.8 128 12.70 405S 254 203.0 349 168 21 47.62 95 89 40.4 52 12.70 405U 254 203.0 349 168 21 60.32 181 175 51.3 141 15.90 405US 254 203.0 349 168 21 53.97 108 102 46.8 71 12.70 405T 254 203.0 349 168 21 73.02 184 178 62.2 144 19.05 405TS 254 203.0 349 168 21 53.97 108 102 46.8 71 12.70 444 279 228.5 368 191 21 60.32 181 175 51.3 141 15.90 444S 279 228.5 368 191 21 53.97 108 102 46.8 71 12.70 444U 279 228.5 368 191 21 73.02 219 213 62.2 179 19.05 444US 279 228.5 368 191 21 53.97 108 102 46.8 71 12.70 444T 279 228.5 368 191 21 85.72 216 210 73.1 176 22.25 444TS 279 228.5 368 191 21 60.32 121 115 51.3 77 15.90 445 279 228.5 419 191 21 60.32 181 175 51.3 141 15.90 445S 279 228.5 419 191 21 53.97 108 102 46.8 71 12.70 445U 279 228.5 419 191 21 73.02 219 213 62.2 179 19.05 445US 279 228.5 419 191 21 53.97 108 102 46.8 71 12.70 445T 279 228.5 419 191 21 85.72 216 210 73.1 176 22.25 445TS 279 228.5 419 191 21 60.32 121 115 51.3 77 15.90 447T 279 228.5 508 191 21 85.72 216 210 73.1 176 22.25 447TS 279 228.5 508 191 21 60.32 121 115 51.3 77 15.90 449T 279 228.5 635 191 21 85.72 216 210 73.1 176 22.25 449TS 279 228.5 635 191 21 60.32 121 115 51.3 77 15.90 504U 317 254.0 635 216 24 73.02 219 213 62.2 185 19.05 504S 317 254.0 635 216 24 53.97 108 102 46.8 71 12.70 505 317 254.0 457 216 24 73.02 219 213 62.2 185 19.05 505S 317 254.0 457 216 24 53.97 108 102 46.8 71 12.70

Reference: NEMA MG 1-2003, 4.4.1. .p.. "Frames 42 to 66, inclusive: Ihe H dimension is Width of Sial; Frames 143 to 505S, inclusive: the H dimension is Diameter of Hole. <0 For tolerances on dimensions see NEMA MG 1-2003, 4.4.1 and 4.9. (Note: Data in NEMA tables is shown in inches.)

Page 52: EASA Pocket Book

<.n o NEMA FRAME DIMENSIONS*

TYPE C FACE-MOUNTING FOOT OR FOOTLESS AC MOTORS

• Dimensions in millimeters

.. ~II~URFACE

I ---,1 ~ -....... I jJi':~·-

_I I tBe

I~-~r-;

~·f:: l ~11~:'l1~G .dl'ii4 1--lrs

:q~u:k t t

';Ifnl-Be

~BA-=I

BFHOLE

BOLT KEYSEAT

FRAME BB BD TAP PENETRATION ES DESIGNATIONSt AJ AK BA MIN BC MAX NUMBER SIZE ALLOWANCE U AH R MIN S

42C 95.25 76.20 52.4 4 -5 127 4 1/4·20 9.52 33 8.3 Flat 48C 95.25 76.20 64 4 -5 142 4 1/4-20 12.70 43 11.5 Flat 56C 149.25 114.30 70 4 -5 165 4 3/8-16 15.87 52 13.1 36 4.80 66C 149.25 114.30 4 -5 165 4 3/8-16 19.05 62 16.3 4.80

143TC and 145TC 149.25 114.30 70 4 +3 165 4 3/8-16 14 22.22 54 19.5 36 4.80 182C and 184C 149.25 114.30 4 +3 165 4 3/8-16 14 28.57 67 19.5 4.80 182TC and 184TC 184.15 215.90 89 7 +3 228 4 1/2-13 19 28.57 67 25.0 46 6.35 182TCH and 184TCH 149.25 114.30 89 4 +3 165 4 3/8-16 14 28.57 67 25.0 46 6.35

213C and 215C 184.15 215.90 7 +6 228 4 1/2-13 19 28.57 70 25.0 6.35 213TC and 215TC 184.15 215.90 108 7 +6 228 4 1/2-13 19 34.92 79 30.5 62 7.95 254UC and 256UC 184.15 215.90 7 +6 254 4 1/2-13 19 34.92 89 30.5 7.95 254TC and 256TC 184.15 215.90 121 7 +6 254 4 1/2-13 19 41.27 95 35.9 74 9.55

Page 53: EASA Pocket Book

284UC and 286UC 228.60 266.70 7 +6 285 4 1/2-13 19 41.27 117 35.9 9.55 284TC and 286TC 228.60 266.70 121 7 +6 285 4 1/2-13 19 47.62 111 40.4 84 12.70 284TSC and 286TSC 228.60 266.70 121 7 +6 285 4 1/2-13 19 41.27 76 35.9 49 9.55 324UC and 326UC 279.40 317.5 7 +6 355 4 5/8-11 24 47.62 137 40.4 12.70

324SC and 326SC 279.40 317.5 7 +6 355 4 5/8-11 24 41.27 76 35.9 9.55 324TC and 326TC 279.40 317.5 133 7 +6 355 4 5/8-11 24 53.97 127 46.8 100 12.70 324TSC and 326TSC 279.40 317.5 133 7 +6 355 4 5/8-11 24 47.62 89 40.4 52 12.70 364UC and 365UC 279.40 317.5 7 +6 355 8 5/8-11 24 53.97 155 46.8 12.70

364USC and 365USC 279.40 317.5 7 +6 355 8 5/8-11 24 47.62 89 40.4 12.70 364TC and 365TC 279.40 317.5 149 7 +6 355 8 5/8-11 24 60.32 143 51.3 109 15.90 364TSC and 365TSC 279.40 317.5 149 7 +6 355 8 5/8-11 24 47.62 89 40.4 52 12.70 404UC and 405UC 279.40 317.5 7 +6 393 8 5/8-11 24 60.32 175 51.3 15.90 404USC and 405USC 279.40 317.5 7 +6 393 8 5/8-11 24 53.97 102 46.8 12.70 404TC and 405TC 279.40 317.5 168 7 +6 393 8 5/8-11 24 73.02 178 62.2 144 19.05 404TSC and 405TSC 279.40 317.5 168 7 +6 393 8 5/8-11 24 53.97 102 46.8 71 12.70 444UC and 445UC 355.60 406.4 7 +6 457 8 5/8-11 24 73.02 213 62.2 19.05

444USC and 445USC 355.60 406.4 7 +6 457 8 5/8-11 24 53.97 102 46.8 12.70 444TC and 445TC 355.60 406.4 191 7 +6 457 8 5/8-11 24 85.72 210 73.1 176 22.25 444TSC and 445TSC 355.60 406.4 191 7 +6 457 8 5/8-11 24 60.32 114 51.3 77 15.90 447TC and 449TC 355.60 406.4 191 7 +6 457 8 5/8-11 24 85.72 210 73.1 176 22.25

447TSC and 449TSC 355.60 406.4 191 7 +6 457 8 5/8-11 24 60.32 114 51.3 77 15.90 504UC and 505C 368.30 419.1 7 +6 457 4 5/8-11 24 73.02 213 62.2 19.05 504SC and 505SC 368.30 419.1 7 +6 457 4 5/8-11 24 53.97 102 46.8 12.7

Reference: NEMA MG 1-2003,4.4.4. ·'Dimensions, except for tap sizes, are shown in millimeters (rounded off). Tap sizes are in inches. tSee Pages 46-49 for dimensions 0, E. 2F and H. For tolerances on dimensions, face runout and permissible eccentricity of mounting rabbet, see NEMA MG 1-2003,4.4.4,4.11 and 4.12. (Note: Data

~ in NEMA tables is shown in inches.)

Page 54: EASA Pocket Book

01 I\) NEMA FRAME DIMENSIONS*

TYPE 0 FLANGE-MOUNTING FOOT OR FOOTLESS AC MOTORS

... Dimensions in millimeters

-'F~l,~ ' -¥-Uf-Jr

","'IL 80-1.1- _ --BA

{ Be

FRAME DESIGNATIONSt AJ AK BA BB BC

BD MAX

BE NOM

BF HOLE

U AH

KEYSEAT

NUMBER SIZE RECOMMENDED BOLT LENGTH R

ES MIN S

143TO and 145TO 254.0 228.60 70 6 0 279 13 4 13 32 22.22 57 19.5 36 4.80 1820 and 1840 254.0 228.60 6 0 279 13 4 13 32 22.22 57 19.5 4.80 182TO and 184TO 254.0 228.60 90 6 0 279 13 4 13 32 28.57 70 25.0 46 6.35 2130 and 2150 254.0 228.60 6 0 279 13 4 13 32 28.57 76 25.0 6.35

213TO and 215TO 254.0 228.60 108 6 0 279 13 4 13 32 34.92 86 30.5 62 7.95 254UO and 256UO 317.5 279.40 6 0 355 19 4 21 51 34.92 95 30.5 7.95 254TO and 256TO 317.5 279.40 121 6 0 355 19 4 21 51 41.27 102 35.9 74 9.55 284UO and 286UO 317.5 279.40 6 0 355 19 4 21 51 41.27 124 35.9 9.55

Page 55: EASA Pocket Book

284TD and 286TD 317.5 279.40 121 6 0 355 19 4 21 51 47.62 117 40.4 84 12.70 284TSD and 286TSD 317.5 279.40 121 6 0 355 19 4 21 51 41.27 83 35.9 49 9.55 324UD and 326UD 406.5 355.6 6 0 457 19 4 21 51 47.62 143 40.4 12.70 324SD and 326SD 406.5 355.6 6 0 457 19 4 21 51 41.27 83 35.9 9.55

324TD and 326TD 406.5 355.6 133 6 0 457 19 4 21 51 53.97 133 46.8 100 12.70 324TSD and 326TSD 406.5 355.6 133 6 0 457 19 4 21 51 47.62 95 40.4 52 12.70 364UD and 365UD 406.5 355.6 6 0 457 19 4 21 51 53.97 162 46.8 12.70 364USD and 365USD 406.5 355.6 6 0 457 19 4 21 51 47.62 95 40.4 12.70

364TD and 365TD 406.5 355.6 149 6 0 457 19 4 21 51 60.32 149 51.3 109 15.90 364TSD and 365TSD 406.5 355.6 149 6 0 457 19 4 21 51 47.62 95 40.4 52 12.70 404UD and 405UD 508.0 457.2 6 0 558 25 8 21 57 60.32 181 51.3 15.90 404USD and 405USD 508.0 457.2 6 0 558 25 8 21 57 53.97 108 46.8 12.70

404TD and 405TD 508.0 457.2 168 6 0 558 25 8 21 57 73.02 184 62.2 144 19.05 404TSD and 405TSD 508.0 457.2 168 6 0 558 25 8 21 57 53.97 108 46.8 71 12.70 444UD and 445UD 508.0 457.2 6 0 558 25 8 21 57 73.02 219 62.2 19.05 444USD and 445USD 508.0 457.2 6 0 558 25 8 21 57 53.97 108 46.8 12.70

444TD and 445TD 508.0 457.2 191 6 0 558 25 8 21 57 85.72 216 73.1 176 22.25 444TSD and 445TSD 508.0 457.2 191 6 0 558 25 8 21 57 60.32 121 51.3 77 15.90 447TD and 449TD 508.0 457.2 191 6 0 558 25 8 21 57 85.72 216 73.1 176 22.25

447TSD and 449TSD 508.0 457.2 191 6 0 558 25 8 21 57 60.32 121 51.3 77 15.90 504UD and 505D 559.0 457.2 6 0 635 8 21 73.02 219 62.2 19.05 504SD and 505SD 559.0 457.2 6 0 635 8 21 53.97 108 46.8 12.70

Reference: NEMA MG 1-2003, 4.4.6. All dimensions are rounded off.t See Pages 46-49 for dimensions D, E, 2F and H. For tolerances on dimensions, face runout and permissible eccentricity of mounting rabbet, see NEMA MG 1-2003, 4.4.6, 4.11 and 4.12. (Note: Data

(}l w in NEMA tables is shown in inches.)

Page 56: EASA Pocket Book

01..,. NEMA FRAME DIMENSIONS* TYPE JM AND JP FACE-MOUNTING, CLOSED-COUPLED, AC PUMP MOTORS

143-184JPandJM FRAMES 213-365 JP FRAMES143-184

143·184JP and JM ~BB'I--------.AH--L 213-365JP 213-326JM JPandJM 213-36SJP 326 J M ----B--AH-----2130

BF HOLE 213-326JM~ 'EQ__ I 'R-­ _ Cfa9!12RH

rr-c 'T,a- eH /_BS- !D~;;.N! .BD • t

' MAX ~ tt t '......... --. _11_' IMAX t AJ AK _... _ AK AJ E - EL - M - -I[ ~'" r- Be -~ ! - Be ~ ~j~ ~~,···I ~ ;,';-1:;:0i-ET

-- ­143-184JPandJM/

• Dimensions in miiiimeters

BF

BOLT FRAME BD TAP PENETRATION DESIGNATIONS U AHt AJ AK BB MAX NUMBER SIZE ALLOWANCE

143JM and 145JM 22.21 108 149.25 114.30 3.5 168 4 3/8-16 14

143JP and 145JP 22.21 186 149.25 114.30 3.5 168 4 3/8-16 14

182JM and 184JM 22.21 108 149.25 114.30 3.5 168 4 3/8-16 14

Page 57: EASA Pocket Book

182JP and 184JP

213JM and 215JM

213JP and 215JP

254JM and 256JM

254JP and 256J P

284JM and 286JM

284JP and 286JP

324JM and 326JM

324JP and 326JP

364JP and 365JP

22.21

22.21

31.73

31.73

31.73

31.73

31.73

31.73

31.73

41.26

186

108

207

134

207

134

207

134

207

207

149.25

184.15

184.15

184.15

184.15

279.40

279.40

279.40

279.40

279.40

114.30

215.90

215.90

215.90

215.90

317.5

317.5

317.5

317.5

317.5

3.5

7

7

7

7

7

7

7

7

7

168

228

228

254

254

355

355

355

355

355

4

4

4

4

4

4

4

4

4

4

3/8-16

1/2-13

1/2-13

1/2-13

1/2-13

5/8-11

5/8-11

5/8-11

5/8-11

5/8-11

14

19

19

19

19

24

24

24

24

24

Relerence: NEMA MG 1-2003, 18.250. Dimensions, except lor tap sizes, are shown in millimeters (rounded off). Tap sizes are in inches. For tolerances on dimensions, refer to equivalent dimension in inches on Pages 36-37.

tAH dimension measured with the shalt pulled by hand away from the motor to the urmt of end play. For tolerances on face runout, pemnissible eccentricity of mounting rabbet and pemnissible shalt runout, see NEMA MG 1-2003, 18.250, Tables 1 and 2. (Note: Data in NEMA tables is shown in inches.)

g:

Page 58: EASA Pocket Book

01 0> NEMA FRAME DIMENSIONS*

TYPE JM AND JP FACE-MOUNTING, CLOSED-COUPLED, AC PUMP MOTORS

r FRAMES 213-3fi5JP FRAMES 143-184 143-10\Jl~~~~JM Ba 213-326JM JPandJlol _____'" ~~AH--__ 213-365 JP 213.a26j~~''-lt

14 8

AH 3-1B4JP nd JM EO-I ER -- 213326JM

ec-. ~H t /~r.~;'~~H T I-Es-EP - Jl --~1 jMAX t AJ ~ jMAX + AI( AJ1.- I M ~ _','_s ~ • ,. "1H t A" ~DlBr---- EL -~ - -- E,l ~ ~t

143_184213_365JP~I-ET--_././ _ET_I ENClass3RH.. 2]p3-326JM""""­

"'Dimensions in millimeters

FRAME

EN

EP ER

KEYSEAT

TAP

TAP DRILL DEPTH

BOLT PENETRATION ES

DESIGNATIONS EL EM SIZE MAX ALLOWANCE MIN EO' MIN R MIN S ET'

143JM and 145JM 29.35 25.40 3/8-16 28 19 30 16.0 108 19.5 42 4.80 73.0

143JP and 145JP 29.35 25.40 3/8-16 28 19 30 40.0 186 19.5 42 4.80 151.0

182JM and 184JM 31.75 25.40 3/8-16 28 19 32 16.0 108 19.5 42 4.80 73.0

Page 59: EASA Pocket Book

182JP and 184JP

213JM and 215JM

213JP and 215JP

254JM and 256JM

254J P and 256J P

284JM and 286JM

284JP and 286JP

324JM and 326JM

324JP and 326JP

364J P and 365JP

31.75

31.75

44.45

44.45

44.45

44.45

44.45

44.45

44.45

53.95

25.40

25.40

34.92

34.92

34.92

34.92

34.92

34.92

34.92

44.45

3/8-16

3/8-16

1/2-13

1/2-13

1/2-13

1/2-13

1/2-13

1/2-13

1/2-13

1/2-13

28

28

38

38

38

38

38

38

38

38

19

19

25

25

25

25

25

25

25

25

32

45

45

45

45

54

54

54

54

64

40.0

16.0

60.5

16.0

60.5

16.0

60.5

16.0

60.5

60.5

186

108

207

134

207

134

207

134

207

207

19.5

19.5

28.2

28.2

28.2

28.2

28.2

28.2

28.2

35.9

42

42

65

65

65

65

65

65

65

65

4.80

4.80

6.40

6.40

6.40

6.40

6.40

6.40

6.40

9.55

151.0

73.0

149.5

76.5

149.5

76.5

149.5

76.5

149.5

149.5

Reference: NEMA MG 1-2003, 18.250.

Dimensions, exceptfortap sizes,are shownin millimeters (rounded off). Tap sizes are in inches. For tolerances on dimensions, refer to equivalent dimension in inches on Pages 38-39 of this manual.

tEa and ET dimensions measured with the shaft pulled by hand away from the motor to the limit of end play. For tolerances onface runout, permissible eccentricity of mounting rabbet and permissibleshaftrunout, see NEMA MG 1-2003, 18.250, Tables 1 and 2. (Note: Data in NEMA tables is shown in inches.)

U1 '-I

Page 60: EASA Pocket Book

~ iec MOUNTING DIMENSIONS· FOOT-MOUNTED AC AND DC MACHINES

"'Dimensions in millimeters

J1l2< C· B

FRAME NUMBER H A B C K

BOLT OR SCREW

56M 56 90 71 36 5.8 M5 63 M 63 100 80 40 7 M6 71 M 71 112 90 45 7 M6 80 M 80 125 100 50 10 M8 90 S 90 140 100 56 10 M8 90 L 90 140 125 56 10 M8

100 S 100 160 112 63 12 M10 100 L 100 160 140 63 12 M10 112 S 112 190 114 70 12 M10 112 M 112 190 140 70 12 M10 132 S 132 216 140 89 12 M10 132 M 132 216 178 89 12 M10

Page 61: EASA Pocket Book

~~

1608 160 254 178 108 14.5 M12 160 M 160 254 210 108 14.5 M12 160 L 160 254 254 108 14.5 M12 1808 180 279 203 121 14.5 M12 180 M 180 279 241 121 14.5 M12 180 L 180 279 279 121 14.5 M12 2008 200 318 228 133 18.5 M16 200 M 200 318 267 133 18.5 M16 200 L 200 318 305 133 18.5 M16 2258 225 356 286 149 18.5 M16 225 M 225 356 311 149 18.5 M16 2508 250 406 311 168 24 M20 250 M 250 406 349 168 24 M20 2808 280 457 368 190 24 M20 280 M 280 457 419 190 24 M20 3158 315 508 406 216 28 M24 315 M 315 508 457 216 28 M24 3558 355 610 500 254 28 M24 355 M 355 610 560 254 28 M24 355 L 355 610 630 254 28 M24 4008 400 686 560 280 35 M30 400 M 400 686 630 280 35 M30 400 L 400 686 710 280 35 M30

~ lEG 60072-1 Standards. For tolerances on dimensions, see lEG 60072-1, 6.1, Foot-Mounted Machines, Table 1.

Page 62: EASA Pocket Book

rsc SHAFT EXTENSION, KEY AND KEYSEAT DIMENSIONS* CONTINUOUS DUTYAC MOTORS

*Dimensions in millimeters

D E

KEY KEYSEAT

GA

MAX. TORQUE (Nm)F GD F GE

7 16 2 2 2 1.2 7.8 0.25 9 20 3 3 3 1.8 10.2 0.63

11 23 4 4 4 2.5 12.5 1.25

14 30 5 5 5 3 16 2.8 16 40 5 5 5 3 18 4.1 18 40 6 6 6 3.5 20.5 7.1

19 40 6 6 6 3.5 21.5 8.25 22 50 6 6 6 3.5 24.5 14 24 50 8 7 8 4 27 18

28 60 8 7 8 4 31 31.5 32 80 10 8 10 5 35 50 38 80 10 8 10 5 41 90

42 110 12 8 12 5 45 125 48 110 14 9 14 5.5 51.5 200 55 110 16 10 16 6 59 355

60 140 18 11 18 7 64 450 65 140 18 11 18 7 69 630 70 140 20 12 20 7.5 74.5 800

75 140 20 12 20 7.5 79.5 1000 80 170 22 14 22 9 85 1250 85 170 22 14 22 9 90 1600

90 170 25 14 25 9 95 1900 95 170 25 14 25 9 100 2300

100 210 28 16 28 10 106 2800 110 210 28 16 28 10 116 I4000

IEC 60072-1 Standards. For tolerances on dimensions, see IEC60072-1,7, Shaft Extension, Keys and Keyways Dimensions,Table 4. Alternative shaft sizes are available; check with the manufacturer.

60

Page 63: EASA Pocket Book

FW

~-fN-1NEMA SHAFT EXTENSION AND KEYSEAT DIMENSIONS* rroitFOOT-MOUNTED DC MACHINES

lJtt~FW I ... Dimensions in miUimeters

DRIVE END-BELT DRIVE DRIVE END-DiRECT-CONNECTED DRIVE END OPPOSITE DRIVE-5TRAIGHT

KEVSEAT SHAFT EXTENSION FRAME SHAFT EXTENSION KEVSEAT SHAFT EXTENSION KEVSEAT U N-W VDESIGNATIONS U N-W V R ES S R ES S FU FN- FV FR FES FS

MIN MIN MIN MIN MINFW MIN 9.52 28 8.3 Flal 9.52 28 8.3 Flat42

12.70 38 11.5 Flat 12.70 3848 11.5 Flat 15.87 48 13.1 36 4.80 15.87 4856 13.1 36 4.80 15.87 48 13.1 36 4.80 1587 48 13.1 36 4.8056H

142AT·1412AT 22.22 57 51 19.5 24 4.80 15.87 32 26 13.1 17 4.80 162AT-I 61OAT 19.5 24 4.8022.22 44 39 15.87 32 26 13.1 17 4.80 182AT-I 81OAT 28.57 57 51 25.0 36 6.35 22.22 44 39 19.5 24 480 213AT-211 OAT 34.92 70 64 30.5 46 7.95 28.57 57 51 25.0 36 6.35 253AT-259AT 41.27 83 77 35.9 58 9.55 34.92 70 64 30.5 46 7.95 283AT-289AT 47.62 95 89 40.4 65 12.70 41.27 83 77 35.9 58 9.55 323AT-329AT 53.97 108 102 46.8 77 12.70 47.62 95 89 40.4 65 12.70 363AT-369AT 60.32 121 115 51.3 90 15.90 53.97 108 102 46.8 77 1270 403AH09AT 66.67 133 127 577 103 15.90 60.32 121 115 51.3 90 1590 443AH49AT 73.02 146 140 62.2 116 19.05 66.67 133 127 57.7 103 15.90 502AT-509AT 82.55 165 159 71.9 135 19.05 73.02 146 140 62.2 116 19.05 583A-588A 82.55 248 242 71.9 211 19.05 73.02 146 140 62.2 109 19.05 683A-6B8A 92.07 276 270 79.6 243 22.25 82.55 165 159 71.9 12B 19.05

~ Reference: NEMAMG 1-2003, 4.5.1, 4.5.2 and 4.5.3. Alldimensions are rounded off.Fortolerances, see NEMA MG 1-2003, 4.9. (Note:Datain NEMA tablesisshownininches.)

Page 64: EASA Pocket Book

NEMA FRAME DIMENSIONS· FOOT-MOUNTED DC MACHINES

"Dimensions in millimeters

FRAME DESIGNATIONS

42 48 56 56H

142AT 143AT 144AT 145AT 146AT 147AT 148AT 149AT

1410AT 1411AT 1412AT 162AT 163AT 164AT 165AT 166AT 167AT 168AT 169AT

1610AT 182AT 183AT 184AT 185AT 186AT 187AT 188AT 189AT

1810AT 213AT 214AT 215AT 216AT 217AT 218AT 219AT

2110AT 253AT 254AT 255AT 256AT 257AT 258AT 259AT 283AT 284AT 285AT

A B MAX MAX D E 2F BA Ht

66 44.5 43 52 8 76 54.0 70 64 9 88 62.0 76 70 9 88 62.0 127 70 9

177 171 88.5 70.0 90 70 9 177 184 88.5 70.0 102 70 9 177 196 88.5 70.0 114 70 9 177 209 88.5 70.0 127 70 9 177 222 88.5 70.0 140 70 9 177 241 88.5 70.0 159 70 9 177 260 88.5 70.0 178 70 9 177 285 88.5 70.0 203 70 9 177 311 88.5 70.0 222 70 9 177 336 88.5 70.0 254 70 9 177 361 88.5 70.0 279 70 9 203 152 101.5 79.0 102 64 11 203 165 101.5 79.0 114 64 11 203 177 101.5 79.0 127 64 11 203 190 101.5 79.0 140 64 11 203 208 101.5 79.0 159 64 11 203 228 101.5 79.0 178 64 11 203 254 101.5 79.0 203 64 11 203 279 101.5 79.0 229 64 11 203 304 101.5 79.0 254 64 11 228 165 114.0 95.5 114 70 11 228 177 114.0 95.5 127 70 11 228 190 114.0 95.5 140 70 11 228 209 114.0 95.5 159 70 11 228 228 114.0 95.5 178 70 11 228 254 114.0 95.5 203 70 11 228 279 114.0 95.5 229 70 11 228 304 114.0 95.5 254 70 11 228 330 114.0 95.5 279 70 11 266 190 133.0 108.0 140 89 11 266 209 133.0 108.0 159 89 11 266 228 133.0 108.0 178 89 11 266 254 133.0 108.0 203 89 11 266 279 133.0 108.0 229 89 11 266 304 133.0 108.0 254 89 11 266 330 133.0 108.0 279 89 11 266 368 133.0 1080 318 89 11 317 241 158.5 127.0 178 lOB 14 317 273 158.5 127.0 210 108 14 317 292 158.5 127.0 229 108 14 317 317 158.5 127.0 254 108 14 317 342 158.5 127.0 279 108 14 317 381 158.5 127.0 318 108 14 317 419 158.5 127.0 356 108 14 355 279 177.5 139.5 203 121 14 355 317 177.5 139.5 241 121 14 355 330 177.5 139.5 254 121 14

I

62

Page 65: EASA Pocket Book

I

NEMA FRAME DIMENSIONS* FOOT-MOUNTED DCMACHINES-CONTINUED

*Dimensionsin millimeters.

FRAME A B DESIGNATIONS MAX MAX 0 E 2F BA Ht

286AT 355 355 177.5 139.5 279 121 14 287AT 355 393 177.5 139.5 318 121 14 288AT 355 431 177.5 139.5 356 121 14 289AT 355 482 177.5 139.5 406 121 14 323AT 406 317 203.0 159.0 229 133 17 324AT 406 355 203.0 159.0 267 133 17 325AT 406 368 203.0 159.0 279 133 17 326AT 406 393 203.0 159.0 305 133 17 327AT 406 444 203.0 159.0 356 133 17 328AT 406 495 203.0 159.0 406 133 17 329AT 406 546 203.0 159.0 457 133 17 363AT 457 355 228 178.0 254 149 21 364AT 457 387 228 178.0 286 149 21 365AT 457 412 228 178.0 311 149 21 366AT 457 457 228 178.0 356 149 21 367AT 457 508 228 178.0 406 149 21 368AT 457 558 228 178.0 457 149 21 369AT 457 609 228 178.0 508 149 21 403AT 508 381 254 203.0 279 168 24 404AT 508 412 254 203.0 311 168 24 405AT 508 450 254 203.0 349 168 24 406AT 508 508 254 203.0 406 168 24 407AT 508 558 254 203.0 457 168 24 408AT 508 609 254 203.0 508 168 24 409AT 508 660 254 203.0 559 168 24 443AT 558 419 279 228.5 318 191 27 444AT 558 469 279 228.5 381 191 27 445AT 558 520 279 228.5 419 191 27 446AT 558 558 279 228.5 457 191 27 447AT 558 609 279 228.5 508 191 27 448AT 558 660 279 228.5 559 191 27 449AT 558 736 279 228.5 635 191 27 502AT 635 444 317 254.0 318 216 31 503AT 635 482 317 254.0 356 216 31 504AT 635 533 317 254.0 406 216 31 505AT 635 584 317 254.0 457 216 31 506AT 635 635 317 254.0 508 216 31 507AT 635 685 317 254.0 559 216 31 508AT 635 762 317 254.0 635 216 31 509AT 635 838 317 254.0 711 216 31 583A 736 533 368 292.0 406 254 31 584A 736 584 368 292.0 457 254 31 585A 736 635 368 292.0 508 254 31 586A 736 685 368 292.0 559 254 31 587A 736 762 368 292.0 635 254 31 588A 736 838 368 292.0 711 254 31 683A 863 635 431 343.0 508 292 31 684A 863 685 431 343.0 559 292 31 685A 863 762 431 343.0 635 292 31 686A 863 838 431 343.0 711 292 31 687A 863 939 431 343.0 813 292 31 688A 863 1041 431 343.0 914 292 31

t Frames 42 to 56H,..mcluslve-the H dimension IS WIdth of Slot.Frames 142ATto S8BA, inclusive-theH dimension is DiameterofHole.Reference andtolerances ondimensions: NEMAMG 1-2003,4.5.1, 4.5.2_and 4.5.3 and 4.9. (Note: Data in NEMAtables is shown in inches.) Alldimensions are rounded off.

63

Page 66: EASA Pocket Book

POWERFACTOR IMPROVEMENT OF INDUCTION MOTORLOADS

When power factor correction capacitors are used, the total corrective kVAR on the load side of the motor controller should not exceed the value required to raise the no-load power factor to unity. Corrective kVAR in excess of this value may cause over excitation that results in high transient voltages, currents and torques that can increase safety hazards to personnel and possibly damage the motor or driven equipment.

Do not connect power factor correction capacitors at motor terminals on elevator motors, multispeed motors, plugging or jogging applications or open transition, wye-delta, auto-trans­former starting and some part-winding start motors.

If possible, capacitors should be located at posi­tion NO.2 (see diagram). 4 BUS

This does not change the P

r~-..,

DISCONNECT-----+--f I COMBINATIONcurrent flowing through I I-MOTOR I I CONTROLLERmotor overload protectors.

FUSE----t- :Connection of capacitors I I at position NO.3 requires a I I

change of overload protec­ CONTACTOR----}- :

tors. Capacitors should be OVERLOAD : DEVICE-~I­located at position No. 1

t; J::_c:i---{for applications listed in Paragraph 2 above. Be sure bus power factor is not increased above 95 percent under all loading conditions to avoid over excitation.

Note: The use of power capacitors for power factor correction on the load side of an electronic power supply connected to an induction motor is not recommended. The proper application of such capacitors requires an analysis of the motor, electronic power supply, and load characteristics as a function of speed to avoid potential overexcitation of the motor, harmonic reso­nance, and capacitor overvoltage. For such applications, the drive manufacturer should be consulted. (NEMA MG 1-2003, 14.44.5)

64

Page 67: EASA Pocket Book

CAPACITOR KVAR RATING FOR POWER-FACTOR IMPROVEMENT CAPACITOR MULTIPLIERS FOR KILOWATT LOAD

(To give capacitor kVAR required to improve power factor from original to desired value, see example below.)

ORIGINAL DESIRED POWER FACTOR - PERCENT POWER FACTOR, 100 95 90 85 80PERCENT

60 1.333 1.004 0.849 0.713 0.583 62 1.266 0.937 0.782 0.646 0.516 64 1.201 0.872 0.717 0.581 0.451 66 1.138 0.809 0.654 0.518 0.388

68 1.078 0.749 0.594 0.458 0.328 70 1.020 0.691 0.536 0.400 0.270 72 0.964 0.635 0.480 0.344 0.214 74 0.909 0.580 0.425 0.289 0.159 76 0.855 0.526

I

0.371 0.235 0.105 77 0.829 0500 0.345 0.209 0.079 78 0.802 0.473 0.318 0.182 0.052 79 0.766 0.447 0.292 0.156 0.026 80 0.750 0.421 0.266 0.130 81 0.724 0.395 0.240 0.104 82 0.698 0.369 0.214 0.078 83 0.672 0.343 0.188 0.052 84 0.646 0.317 0.162 0.026 85 0.620

I

0.291 0.136 86 0.593 0.264 0.109 87 0.567 0.238 0.083 88 0.540 0.211 0.056 89 0.512 0.183 0.028 90 0.484 0.155 Example: Assume total plant 91 0.456 0.127 load is 100 kW at 60 percent 92 0.426 0.097 power factor. Capacitor kVAR 93 0.395 0.066 rating necessary to improve 94 0.363 0.034 power factor to 80 percent is

95 0.329 found by rnultiplyinq kW (100)

96 0.292 by muitiplier in table (0.583), whichgives kVAR (58.3).Near­

97 0.251 est standard rating (60 kVAR) 99 0.143 should be recommended.

65

Page 68: EASA Pocket Book

~ NEMA SIZE STARTERS FOR THREE-PHASE MOTORS

MAXIMUM HORSEPOWER-THREE·PHASE MOTORS

NEMA AUTOTRANSFORMER PART·WINDING WYE-DELTAFULL VOLTAGE SIZE STARTING STARTINGSTARTING STARTING

460V 200V 460V200V 230V 230V 200V 230V 460V 200V 230V 460V 575V575V 575V 575V

- - -- - -00 1.5 1.5 2 - - --- -0 - -3 3 5 - - - -

1 7.5 10 7.5 157.5 7.5 10 10 10 15 1010 2 25 10 15 25 20 2510 15 40 20 25 40 3 7525 30 50 25 30 40 50 75 40 5050 4 40 40 75 75 75 15050 100 50 100 150 60

75 3005 75 100 200 100 200 150 150 150 150350 -6 200 400 150 400 700150 200 300 600 300 350

- -7 - 300 450 1000300 600 600 900 500 500 700 750 15008 450 900 450 900 1400- - 800-

-- -9 1600 1600 1300 1500 3000800 800 2600 1500

Page 69: EASA Pocket Book

STARTER ENCLOSURES

TYPE 1 2 3 3R 3S 4 4X 5 6

6P

12 12K 13

7

8

9 10

NEMA ENCLOSURE General Purpose-Indoor Dripproof-Indoor Dusttight, Raintight, Sleettight-Outdoor Raintight, Sleet Resistant-Outdoor Dusttight, Raintight, Sleettight-Outdoor Watertight, Dusttight, Sleet Resistant-indoor& Outdoor Watertight, Dusttight, Corrosion-Resistant-Indoor & Outdoor Dusttight, Dripproof-Indoor Occasionally Submersible, Watertight, Sleet Resistant­Indoor & Outdoor Watertight, Sleet Resistant-Prolonged Submersion­Indoor & Outdoor Dusttight and Driptight-Indoor Dusttight and Driptight, with Knockouts-Indoor Oiltight and Dusttight-Indoor HAZARDOUS LOCATION STARTERS Class I, Group A, S, C or D Hazardous Locations-Indoor Class I, Group A, S, C or 0 Hazardous Locations­Indoor & Outdoor Class II, Group E, F or G Hazardous Locations-Indoor Requirements of Mine Safety and Health Administration

CONVERSION OF NEMATYPE NUMBERS TO IEC CLASSIFICATION DESIGNATIONS (Cannot beused toconvert iEC Classification Designations toNEMA Type Numbers)

NEMA ENCLOSURE IEC ENCLOSURE TYPE NUMBER CLASSIFICATION DESIGNATION 1 IP10 2 IP11 3 IP54 3R IP14 3S IP54 4 and4X IP56 5 IP52 6and6P IP67 12and12K IP52 13 IP54

Note: This comparison isbased ontests specified inlEG Publication 60529 (2001-02). Reference: Information intheabove tables isbased onNEMA 250-1997.

67

Page 70: EASA Pocket Book

NEMA CODE LETIERS FOR AC MOTORS

NEMA CODE LETTERS FOR LOCKED-ROTOR KVA The letter designations for locked-rotor kVA per horsepower as mea­sured at full voltage and rated frequency are as follows.

LEITER KVA PER DESIGNATION HORSEPOWER'

A 0.0 - 3.15 B 3.15 - 3.55 C 3.55 - 4.0

D 4.0 -4.5 E 4.5 - 5.0 F 5.0 - 5.6 G 5.6 - 6.3

H 6.3 - 7.1 J 7.1 - 8.0

LEITER KVA PER DESIGNATION HORSEPOWER'

K 8.0 - 9.0 L 9.0 - 10.0 M 10.0 - 11.2

N 11.2 - 12.5 P 12.5 -14.0 R 14.0 - 16.0 S 16.0 - 18.0

T 18.0 - 20.0 U 20.0 - 22.4 V 22.4 - &up

• Locked kVA per horsepower range includes the lower figure up to, but not lncludinq, the higher figure. For example, 3.14 is designated by letter A and 3.15 by letter B.

Reference: NEMA MG 1-2003, 10.37.2.

CODE LETTERS USUALLY APPLIED TO RATINGS OF MOTORS NORMALLY STARTED ON FULL VOLTAGE

CODE LETTERS F G H J K L

Horse­power

3-phase 15 up 10-7.5 5 3 2-1.5 1

l-phase - 5 3 2-1.5 1-.75 .5

STARTING KVA PER HORSEPOWER FOR AC MOTORS

Volts x Locked-Rotor Amps {1 for 10 Starting kVA per hp = 1000x hp x 1.732for 30

68

Page 71: EASA Pocket Book

NEMA SIZE STARTERS FOR SINGLE-PHASE MOTORS

SIZE OF

CONTINUOUS CURRENT RATING

HORSEPOWER AT AT

CONTROLLER (AMPERES) 115V 230V

00 9 '/3 1 0 18 1 2 1 27 2 3 1P 36 3 5 2 45 3 7'12 3 90 7'12 15

Reference: NEMA ICS2-1993, Table 2-4-2.

DERATING FACTORS FOR CONDUCTORS IN A CONDUIT (PAGES 70 - 72)

PERCENT OF VALUES IN NUMBER OF TABLES AS ADJUSTED CURRENT CARRYING FOR TEMPERATURE IF CONDUCTORS NECESSARY

4-6 80 7-9 70 10-20 50 21-30 45 31-40 40 41 & Above 35

Reprinted with permission from NFPA 70-2002, National Electrical Code," copyright © 2002, National Fire Protection Association, Quincy, Massachusetts 02269.

69

Page 72: EASA Pocket Book

ALLOWABLE AMPACITIES OF NOT MORE THAN THREE INSULATED CONDUCTORS RATED 0-2000 VOLTS, 60 0TO 90° C (140~O 194° F), IN RACEWAY OR CABLE OR EARTH (DIRECTLY BURIED)

Based on ambient air temperature of300 C (860 Fl. Forderating factors for moreconductors see Page 69.

SIZE TEMPERATURERATINGOF CONDUCTOR SIZE

60~ C 75" C 90· C 60· C 75" C 90· C (140" F) (167' F) (194" f) (140· F) (167" F) (194° F)

TYPES TYPES TYPES TYPES TYPES TYPES TW FEPW 185, SA, TW, RH,RHW TBS,SA, UF RH,RHW, 515, FEP, UF THHW, SIS, THHN,

AWG THHW, FEPB, MI, THW, THHW, AWG kcmil THW, RHH, RHW-2, THWN, THWN-2, kernil

THWN, THHW,THHN, XHHW, RHH,RHW-2, XHHW, THW·2, USE USE·2, USE,ZW THWN·2 XHH,XHHW,

USE·2,XHH, XHHW·2,'ZW-2 XHHW, XHHW-2,ZW-2

ALUMINUMOR COPPER·CLAD ALUMINUMCOPPER

18 - - - - -- 14 - - - -16 - 18 -

20 20 - - -14 25 -12 25 20 25 1225 30 20

30 25 35 1010 35 40 30 4540 55 30 40 88 50

75 60 66 55 65 40 50 95 65 75 44 70 85 55

75110 85 33 85 100 65 115 130 75 90 100 22 95 130 150 100 115 11 110 85

135 110110 125 150 170 100 120 210 175 135 150 210145 195 115

155 175 310310 165 200 225 130 4/04/0 195 230 260 150 180 205

250250 255 290 170 205 230215 285 190 230 255 300300 240 320 310 210 250 280 350350 260 350

225 305 400400 280 335 380 270 320 260 310 350 500500 380 430

285 385 600600 355 420 475 340 310 375 420 700700 385 520460

435 750750 400 475 535 320 385 450 800410 490 555 330 395800

425 480 900435 585 355900 520

500 1000375 445455 545 6151000 485 545 12501250 495 590 665 405

705 520 585 15001500 520 625 435 1750 735 545650 455 615 1750545

20002000 665 750 470 560 630560

AMPACITYCORRECTIONFACTORS AMB. TEMP, ·C ~g;':~W~~~~~~E::6~~i~~~~~P~~~~~~T~ ~X~+6:~ffij~~ ~~Iow.

AMB. TEMP." F

21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-70 71·80

1.0B 1.00

.91

.82

.71

.58

.41 ---

f.05 1.00

.94

.88

.82

.75

.67 58 .33 -

1.04 1.00

96 .91 .87 .82 .76 71 .58 .41

1.0B 1.00

.91

.82

.71

.58

.41 ---

1.05 1.00

94 .88 .82 .75 .67 5. .33 -

1.04 1.00

.96

.91

.87

.82

.76

.71

.58

.41

70-77 78-86 87-95

96-104 105-113 114-122 123-131 132-140 141-158 159-176

The abovetable is based on Table310.16of the National Electrical COd~, 2002. National Electrical Code~ and NEO~ are registered trade marksOfthe NationalFire ProtectionAssociation, Inc.QUincy, MA02269.

70

Page 73: EASA Pocket Book

ALLOWABLE AMPACITIES OF SINGLE INSULATED CONDUCTORS RATED 0-2000 VOLTS, IN FREEAIR

Based on ambient air temperature of 30° C (8BO F).Forderating factors for moreconductors seePage69.

SIZE TEMPERATURE RATINGOF CONDUCTOR SIZE

60 0 C 75' C 90' C 60· C 75° C 90' C (140· F) (167" F) (194" F) (140' F) (167" F) (194' F)

TYPES TYPES TYPES TYPESTYPES TYPES TW,UF FEPW, TSS,SA, RH,RHW T8S, SA, TW,UF

RH,RHW, THHW, SIS,THHN, THHW,AWG THW, THHW, AWG

THW-2,kcmll ·2, THWN, kcml1~N, XHHW, THWN·2, RHH,RHW-2, XHHW, THW-2,

ZW USE-2,THW ·2 ~~t:E~ XHH,XHHW,USE-2,XHH. XHHW-2,ZW·2 XHHW,

XHHW·2,ZW·2

ALUMINUMORCOPPER-cLADALUMINUMCOPPER ~ -18 - 18 - - -

16 - - - -24 - -14 - - - -25 30 35

30 1212 30 35 40 25 35 10 40 55 40 40 1050 35

60 80 45 55 88 70 60

80 105 75 66 95 60 80 4105 125 140 100 1104 80

120 145 165 115 33 95 130 140 190 135 22 170 110 150

11 165 195 220 130 155 175

230 205195 260 150 180 1/01/0 225 265 175 210 235 2/0210 300

310 200 240 275 3/0260 3503/0 315 4/0360 405 235 2804/0 300

250 405 265 315 355 250340 455 290 395375 445 505 350 300300

445 350350 420 505 570 330 395 545 615 490 400400 355 425455

545 500620 700 405 485500 515

780 540 615 600575 690 455600 700595 675700 630 755 855 500

700 750785 885 515 620750 655 800920 645 725680 825 535BOO 900985 700 785730 870 580900

750780 935 1055 625 8451000 100012509601250 890 1065 1200 710 855

950 1075 15001500 980 1175 1325 795 1050 11851750 1070 1280 1445 875

13351155 1385 1560 960 1150 ~65~2000

I

i

AMPACITYCORRECTIONFACTORS

AMB. TEMP.OC ~~~:~W~:~~5~E::6~:i~~~~~Rp~~~~~?~T~ ~:~f8:~~t~~ ~~~ow.

AMB. TEMP.O F

21-25 1.08 1.05 1.04 1.08 1.05 1.04 70-77 2&-30 1.00 1.00 1.00 1.00 1.00 1.00 78-86 31-35 .91 .94 .96 .91 .94 .96 87-95 36-40 .82 .BB .91 .82 .88 .91 96-104 41-45 .71 .82 .87 .71 .62 .67 105-113 46-50 .58 .75 .82 .58 .75 .B2 114-122 51-55 .41 .67 .76 .41 .67 .76 123-131 56-60 - .58 .71 - .58 .71 132-140 61-70 - .33 .58 - .33 .58 141-158 71-80 - - .41 - - .41 159-176

The abovetable is basedonTable 310.17of the National Electrical Code~, 2002. National Electrical Code'iJ and NECfIare registeredIrade marksof the National FireProtectionAssociation, Inc.Quincy, MA02269,

71

Page 74: EASA Pocket Book

ALLOWABLE AMPACITIES OF THREE SINGLE INSULATED CONDUCTORS RATED 0-2000 VOLTS, 1500TO 250° C (302° FTO 482° F) IN RACEWW OR CABLE

Basedonambient alrtemperanse of40c C(1040 Fl. Forderating tactors formoreconductors seePage69.

SIZE TEMPERATURE RATINGOF CONDUCTOR SiZE

150° C (302' F)

200" C (392' F)

250° C (482' F)

150" C (302' F)

AWG kcmil

TYPEZ rfPES FEP, FEPB, PFA

rfPES PFAH,TFE

TYPEZ AWG kcmil

I

COPPER NICKELOR NICKEL-COATED COPPER

ALUMINUM OR COPPER·CLAD ALUMINUM

14 12 10 8

34 43 55 76

36 45 60 83

39 54 73 93

-30 44 57

14 '2 '0 8

6 4 3 2 1

96 120 143 160 '86

110 125 152 171 '97

117 148 166 191 215

75 94

109 124 145

6 4 3 2,

1/0 210 310 410

215 251 288 332

229 260 297 346

244 273 30B 36'

169 198 227 260

1/0 210 310 4/0

AMPACITY CORRECTION FACTORS

AMB. TEMP." C

FORAMBIENTTEMPERATURES OTHERTHAN40" C (104" F), MULTIPLYTHE AMPACrTlESSHOWNABOVEBY THE APPROPRIATE FACTORSHOWNBELOW,

AMB. TEMP." F

41·50 .95 .97 .98 .95 105-122 51-60 .90 .94 .95 .90 123-140 61-70 .85 90 .93 .85 141-158 71-80 .80 .87 .90 .80 159-176 81-90 .74 .83 .87 .74 117-194

91~100 .67 .79 .85 .67 195-212 101-120 .52 .71 .79 .52 213-248 121-140 .30 .61 .72 .30 249-284 141-160 - .50 .85 ~ 285-320 161-180 - .35 .58 - 321-356 181-200 - - 49 - 357-392 201-225 - - .35 - 393-437

Theabovetable is basedon Table310.18of the NationalElectricalCodefJ, 2002.NationalElectrical CodefJ and NE~ are registeredtrade marksof theNationalFireProtectionAssociation,Inc.Quincy, MA02269.

72

Page 75: EASA Pocket Book

ALLOWABLE AMPACIl"IES FOR SINGLE INSULATED CONDUCTORS RATED 0-2000 VOLTS,1500TO 250° C (3D2"T0 482° Fl, IN FREE AIR

Based on ambient air temperature of 40<1 C (104 <I F).

SIZE TEMPERATURE RAnNG OF CONDUCTOR SIZE

150 0 C 200· C 250· C 150° C (302° F) (3920 F) (482° F) (302° F)

AWG TVPEZ TYPES TYPES TYPEZ AWG kcmiJ FEP, PFAH, TFE kcmll

FEPB,PFA

COPPER NICKEL OR ALUMINUM OR NICKEL·COATED COPPER-CLAD COPPER ALUMINUM

14 46 54 59 - 14 12 60 68 78 47 12 10 80 90 107 63 10 8 106 124 142 83 8

6 155 165 205 112 6 4 190 220 278 148 4 3 214 252 327 170 3 2 255 293 381 198 2 1 293 344 440 228 1

1/0 339 399 532 263 1/0 2/0 390 467 591 305 2/0 3/0 451 546 708 351 3/0 4/0 529 629 830 411 4/0

AMPACITYCORRECTIONFACTORS

AMB. TEMP.' C

FORAMBIENT TEMPERATURES OTHERTHAN40· C(104° Fl, MULTIPLY THE AMPACITIESSHOWNABOVE BY THE APPROPRIATEFACTORSHOWNBELOW.

AMB. TEMP." F

41-50 .95 .97 .98 .95 105-120 51-60 .90 .94 .95 .90 123-140 61-70 .85 .90 .93 .85 141-158 71-80 .80 .87 .90 .80 159-176 81-90 .74 B3 87 .74 177-194

91-100 .67 .79 .83 .67 195-212 101-120 .52 .71 .79 .52 213-248 121-140 .30 .61 .72 30 249·284 141-160 - .50 .65 - 285-320 161-180 - .35 .58 - 321-356 181-200 - - .49 - 357·392 201-225 - - .35 - 393-437

Theabove table is basedon Table 310.19 of the NationalElectricalCocev,2002. NationalElectrical Codeeand NEC8are registeredtrade marksof the National FireProtectionAssocialion, Inc. Quincy, MA 02269.

73

Page 76: EASA Pocket Book

~ MOTOR PROTECTION DEVICES MAXIMUM RATING OR SETIING OF MOTOR BRANCH-CIRCUIT SHORT-CIRCUIT AND GROUND-FAULT PROTECTIVE DEVICES

TYPE OF MOTOR

PERCENT OF FULL-LOAD CURRENT

NONTIME DELAY FUSE

DUAL ELEMENT (TIME-DELAY) FUSE

INSTANTANEOUS TRIP BREAKER

INVERSE TIME BREAKER

AC SINGLE-PHASE MOTORS 300 175 800 250

AC THREE-PHASE MOTORS OTHER THAN WOUND-ROTOR AC SQUIRREL CAGE:

Other thanDesign Eor Design B Energy Elf.

Design Eor Design B Energy Elficient

Synchronous

300 300 300

175 175 175

800 1100 800

250 250 250

AC WOUND-ROTOR 150 150 800 150 DIRECT-CURRENT

(CONSTANT VOLTAGE) 150 150 250 150

Reference: Table 430.52,National Electrical Code," 2002.

Page 77: EASA Pocket Book

I

FULL-LOAD CURRENTS THREE-PHASE TRANSFORMERS

FULL-LOAD CURRENTIN AMPERES

KVA RATING

RATED VOLTAGE (LINE TO LINE)

208V 240V 480V 600V 2400V 4160V

3 6 9

8.3 16.6 25

7.2 14.4 21.6

3.6 7.2

10.8

2.9 5.8 8.7

.72 1.44 2.16

.42

.83 1.25

15 22.5 25

41.6 62 69

36 54 60

18 27 30

14.4 21.6 24

3.6 5.4 6

2.1 3.1 3.5

I 30 37.5 45

83 104 125

72 90

108

36 45 54

29 36 43

7.2 9

10.8

4.15 5.2 6.25

50 75

112.5

139 208 312

120 180 270

60 90

135

48 72

108

12 18 27

7 10.4 15.6

150 225 300

416 625 830

360 542 720

180 271 360

144 217 290

36 54 72

20.8 31.2 41.5

500 600 750

1390 1665 2080

1200 1443 1800

600 722 900

480 577 720

120 144 180

69.4 83

104 139 208 277 346 694

1040 1386

1000 1500 2000

2775 4150 5550

2400 3600 4800

1200 1800 2400

960 1440 1930 2400 4800 7200 9600

240 360 480 600

1200 1800 2400

2500 5000 7500

10000

6950 13900 20800 27750

6000 12000 18000 24000

3000 6000 9000

12000

For other kVA ratings or voltages:

Amperes = kVAX1000 Volts x 1.732

75

Page 78: EASA Pocket Book

I

FULL-LOAD CURRENTS SINGLE-PHASE TRANSFORMERS

FULL-LOAD CURRENT IN AMPERES

RATED VOLTAGE KVA RATING 120V 20BV 240V 4BOV 600V 2400V

1 8.3 4.8 4.2 2.1 1.7 .42 1.5 12.5 7.2 6.2 3.1 2.5 .62

2 16.7 9.6 8.3 4.2 3.3 .83

3 25 14.4 12.5 6.2 5.0 1.25 5 41.7 24 20.8 10.4 8.3 2.1 7.5 62.5 36.1 31.2 15.6 12.5 3.1

10 83.4 48 41.6 20.8 16.7 4.16 15 125 72 62.5 31.2 25 6.25 25 208 120 104 52 41.7 10.4

37.5 312 180 156 78 62.5 15.6 50 417 240 208 104 83.5 20.8

75 625 361 312 156 125 31.2

100 834 480 416 208 167 41.6 125 1042 600 520 260 208 52.0

167.5 1396 805 698 349 279 70.0

200 1666 960 833 416 333 83.3 250 2080 1200 1040 520 417 104

333 2776 1600 1388 694 555 139

500 4170 2400 2080 1040 835 208

For other kVA ratings or voltages:

Amperes = kVA x 1000 Volts

76

Page 79: EASA Pocket Book

TRANSFORMER CONNECTIONS TYPICAL OIL-FILLED TRANSFORMERS

B PRIMARY 3-PHASE 3-WIRE c:

HI H2

b

3-PHASEPOWERLOAD :D.c ISECONDARY 3-PHASE 4,wIRE 120/240-VDLT5

LIGHTINGLOAD

DELTA·DELTA FOR LIGHTING AND POWER-This connection is often used to supply a small single-phase lighting load and three­phase power load simultaneously. As shown in the diagram, the mid-tap of the secondary of one transformer is grounded. Thus, the small lighting load is connected across the transformer with the mid-tap and the ground wire common to both 120 volt circuits. The single-phase lighting load reduces the available three-phase capacity. This connection requires special watt-hour metering and is not available from all utilities. The dotted line indicates that the tank of transformer with single-phase load is grounded.

PRIMARY _ /\ B

3·PHASE 3-WI"'RE'----__r-__--4 + HI

3-PHASEPOWERLOAD ==j:t=====4!:@j~~=~ SECONDARY 3-PHASE 4-WlAE 120/240-VOLT5

LIGHTINGLOAD

OPEN-DELTA FOR LIGHTING AND POWER-Where the secondary ioad is a combination of singie-phase lighting and three-phase power, the open-delta connected bank is frequently used. This connection is used when the single-phase lighting load is large as compared with the three-phase power load. Here two different size transformers may be used with the lighting load connected across the larger rated unit. The useful capacity Ofthe open-delta bank is 87 percent ofthe capacity of the installed units when the transformers are identical. The capacity is 57 percent of a three transformer bank. The dotted line indicates that the tank of transformer with single-phase load is grounded .

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

77

Page 80: EASA Pocket Book

TRANSFORMER CONNECTIONS TYPICAL OIL-FILLED TRANSFORMERS

------------..,....----c 3-PHASE 3-WI!2..EPRIMARY ~==T==::;;;S;;;;;t;;;;~=AB

a<J

H1

SECONDARYI 3-PHASE 3-WIRE c

WVE-DELTA FOR POWER' Often it is desirable to increase the voltage of a circuit from 2400 to 4160 volts to increase its potential capacity. This diagram shows such a system after it has been changed to 4160 volts. The previously delta-connected distribution transformer primaries are now connected from iine to neutral, so that no major change in equipment is necessary. The primary neutral should not be grounded or tied into the system neutral since a single-phase ground fault may resuit in extensive blowing of fuses fhroughout the system.

BPRIMARY -------------,-----c A3-PHASE A A C3-WI~RE~::::::::::r::::::::~~;;*;;;;;~;;;~;;;;;~::=B

a<J

H2H1

~;~:~:~;ER LOAD __+_+__1-­__--.""""'''''...­

3-PHASE 4-WIRE

120/240-VDlT8 LIGHTINGLOAD

WVE-DELTA FOR LIGHTING AND POWER' This diagram shows the connections for the wye-delta bank to supply both light and power. This connection is similar to the delta-delta bank with only the primary connections changed. The primary neutral should not be grounded or tied into the system neutral, since a single-phase ground fault may result in extensive blowing of fuses throughout the system. The single-phase load reduces the available three­phase capacity. Thisconnection requires speciaiwatt-hour metering. The dotted line indicates that the tank of transformer with single-phase load is grounded.

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

78

c

Page 81: EASA Pocket Book

I

TRANSFORMER CONNECTIONS TYPICAL OIL-FILLED TRANSFORMERS

PRIMARY 8

3·PHASE 3-W'R~E~=~F=:::;~1~c~=== .. NEUTRAL

H1 H2

SECONDARY

3-PHASE 3-WIRE

OPENWYE·DELTA " When operating wye-delta and one phase is disabled, service may be maintained at reduced load as shown. The neutral in this case must be connected to the neutral of the stepup bank through a copper conductor. The system is unbalanced, electro­statically and electro-magnetically, so that telephone interference may be expected if the neutral is connected to ground. The useful capacity of the open wye-delta bank is 87 percent of the capacity of the installed transformers when the two units are identical. The capacity is 57 percent of a three transformer bank.

PRIMARY

SECONDARY

3-PHASE 4-WIRE

H2H1

3-PHASE 3-W'R",E'-_1~~==;:=~~§j:;;;~:=::=;__

NEUTRAL

DELTA-WYE FORLIGHTING AND POWER" In the previous banks the single-phase lighting load is all on one phase, resulting in unbalanced primary currents in anyone bank. To eliminate this difficulty, the delta-wye system finds many uses. Here the neutral of the secondary three-phase system is grounded, and the single-phase loads are connected between the different phase wires and the neutral, while the three-phase loads are connected to the phase wires. Thus, the single-phase load can be balanced on three phases in each bank, and banks may be paralled if desired. Dotted lines indicate that fhe transformer tanks are grounded .

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

79

Page 82: EASA Pocket Book

I

TRANSFORMER CONNECTIONS TYPICAL OIL-FILLED TRANSFORMERS

PRIMARY ;=======;=====+====;A~-:~:::L 4"WI",RE~_"""' -t-' f ­

H2H1

SECONDARY

3-PHASE 4·WIRE

NEUTRAL

WYE·WYE FOR LIGHTING AND POWER' This diagram shows a system on which the primary voltage was increased from 2400 volts to 4160 volts to increase the potential capacity of the system. The previously delta-connected distribution transformers are now connected from line to neutral. The secondaries are connected in wye. In this system, the primary neutral is connected to the neutral of the supply voltage through a metallic conductor and carried with the phase conductor to minimize telephone interference. If the neutral 01the transformer is isolated from the system neutral, an unstable condition results althe transformer neutral caused primarily by third harmonicyoltages. "the transformer neutral is connected to ground, the possiblity of telephone interference is greatly enhanced. There is also a possibility of resonance between the line capacitance to ground and the magnetizing impedance of the transformer. DOlled lines indicate that transformer tanks are grounded.

B

a ~b A~C

NEUTRAL

~-::~~A~;l,,,,RE,-_+ --,­ _

WYE-WYE AUTOTRANSFORMERS FORSUPPLYING POWER FROMA THREE·PHASE, FOUR·WIRE SYSTEM' When the ratio oftransformation from the primary to secondary voltage is small, the most economical way of stepping down the voltage is by using autotransformers as shown. For this application, it is necessary that the neutral of the autotransformer bank be connected to the system neutral. Branch circuits shall not be supplied by autotransformers.

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

80

Page 83: EASA Pocket Book

I

TRANSFORMER CONNECTIONS TYPICAL DRY-TYPE TRANSFORMERS

PRIMARY: 480 VOLTS DELTA SECONDARY: 208 VOLTS WYE/120 VOLTS·

H3

X3

IPRIMARY VOLTS

CONNECT PRIMARY LINES TO

CONNECT~ SECONDARY LINES TO

480 Delta H'l , H2, H3 -SECONDARY VOLTS 208 Wye - xi.X2, X3 120,1 Phase - Xl, XOor

X2, XOor X3, XO

PRIMARY: 480 VOLTS DELTA SECONDARY: 240 VOLTS DELTAl120 VOLTS'

H3

X3

CONNECT CONNECT PRIMARY PRIMARY SECONDARY VOLTS LINES TO LINES TO

I

480 Delta Hl, H2, H3 -I

SECONDARY VOLTS 240 Delta - Xl, X2, X3 120,1 Phase - Xl,X40r

X2,X4

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

81

Page 84: EASA Pocket Book

TRANSFORMER CONNECTIONS ZIG-ZAG CONNECTION'

Normally a 480 volV240 volt transformer is used to make this connection for 277 volt lighting loads.

C

POINT A, BORCTO

IA

INPUT NEUTRAL480V, YIELDSTHREE­2T7V,PHASE, SINGLE·3 WIRE PHASE,4 WIREB B

A B C

TRANSFORMER NO.1

TRANSFORMER TRANSFORMER NO.2 NO.a

The secondary of one phase is connected in a series with the primary of another phase, thus changing the phase angle. • It Is recommended that all transformers be connected as shown on the

manufacturer's nameplate.

82

Page 85: EASA Pocket Book

I

TRANSFORMER CONNECTIONS TYPICAL SINGLE-PHASE OIL-FILLED TRANSFORMERS

Hl

PRIMARY

SUPPLY 120-VOLT LIGHTING LOAD· The transformer is connected between high voltage line and load with the 120/240­volt winding connected in parallel. This connection is used where the load is comparatively small and the length of the secondary circuit is short. II is often used for a single customer. The dotted line indicates that the tank is grounded.

SUPPLY 120/240-3 WIRE LIGHTING AND POWER LOAD* Here the 120/240-volt winding is connected in series and the mid-point brought out, making it possible to serve both 120· and zao-von loads simultaneously. This connection is used in most urban distribution circuits. The dotted line indicates that the tank is grounded.

'l< It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

83

Page 86: EASA Pocket Book

I

TRANSFORMER CONNECTIONS TYPICALSINGLE-PHASE, DRY-TYPE TRANSFORMERS

PRIMARY: 240/480 VOLTS SECONDARY: 120/240 VOLTS·

H1 H4 H3 H2

X4 X2X3 ~

CONNECTCONNECT PRIMARY SECONDARYPRIMARY

LINES TOVOLTS LINES TO INTERCONNECT

480 H1-H4 H2 to H3 --H1-H3 & -240

H2-H4

SECONDARY VOLTS

240 - X1-X4X2 to X3

-120/240 X2 to X3 X1-X3X2-X4

120 - X1 to X3 X1X3-X2X4 X2 to X4

• It is recommended that all transformers be connected as shown on the manufacturer's nameplate.

84

Page 87: EASA Pocket Book

SEMICONDUCTORS AND TRANSISTORS SYMBOLS AND CONNECTIONS

SILICON ~nod~1 MEDIUM­CURRENT RECTIFIER ~lhodJ

LOW CURRENT ~;~:~ SCR

1?anode~

TRIAC

POWER-TAB SCR

LIGHT ACTIVATED SCR

ZENER & SIGNAL DIODE

Ii:J ~::1anode

~ gate chamfer gate

cathode anode anode

~a~:ode~.

~ camoce

85

Page 88: EASA Pocket Book

SEMICONDUCTORS AND TRANSISTORS SYMBOLS AND CONNECTIONS-CONTINUED

DIAC -------0=0---­ W (no polarity)

MOV ~14111

INPN TRANSISTOR cB ~B~(i \Q;..L.~ E E C B E

lab &NPN collector

TRANSISTOR g:QC ch:m'er E

B E

TRANSISTOR PNP

,-6,(1 E

SILICON UNIJUNCTION TRANSISTOR

86

Page 89: EASA Pocket Book

RESISTOR COLOR CODES

RESISTOR COLOR CODE

COLOR 1ST &2ND SIGNIFICANT FIGURES

MULTIPLIER TOLERANCE

Black 0 1 Brown 1 10 ±1% Red 2 100 ±2% Orange 3 1000 ±3% Yellow 4 10000 ±4% Green 5 100000 Blue 6 1000000 Violet 7 10000000 Gray 8 100000000 White 9 Gold 0.1 ±5% Silver 0.01 ±10% No Color ±20%

I RESISTOR COLOR BAND SYSTEM

Multiplier Tolerance

2nd Significant Figure

tst Significant Figure

Various special characteristics may be denoted by a fifth color band in various positions along the resistor body.

Resistors with blackbodycolorare composition, non-insulated. Resistors with colored bodiesare composition insulated. Wire-wound resistors have a doublewidth color band for the

~stdigit.

87

Page 90: EASA Pocket Book

&l CAPACITOR COLOR CODES MICA CAPACITOR COLOR CODE

COLOR CHARAC­TERISTIC*

CAPACITANCE

CAPACITANCE TOLERANCE

DC WORKING VOLTAGE

OPERATING TEMPERATURE RANGE

1ST & 2ND SIGNIFICANT FIGURES MULTIPLIER

Black A (EIA) 0 1 ±20% (EtA) -55 0 to +70 0 C (MIL) Brown B 1 10 ±1% 100 (EIA) Red C 2 100 ±2% -55 0 to +85' C Orange D 3 1000 300 Yellow E 4 10000 (EIA) -55 0 to +125 0 C Green F 5 ±5% 500 Blue 6 -55 0 to +150 0 C (MIL) Purple 7 Gray 8 White 9 Gold 0.1 ±1/2% (EIA) 1000 (EIA) Silver 0.01 (EIA) ±10%

'Denotes specifications of design involving Q factors, temperature coefficients, and production test requirements.

Page 91: EASA Pocket Book

TEMPERATURE CLASSIFICATION OF INSULATION SYSTEMS

INSULATIONSYSTEMS* TEMPERATURE CLASSIFICATION Class A Class 105 1050 C 2210 F Class E** Class 120 1200 C 248 0 F Class B Class 130 1300 C 266 0 F

1550 C 311 0 FClass F Class 155 Class H Class 180 1800 C 356 0 F Class N Class 200 2000 C 392 0 F

, IEEE Std. 117.

.. Used in European equipment.

Insulation systems are arranged in order of their insulation level and classified by a letter symbol or by a numerical value. The numerical value relates to the temperature classification of the insulation system. The temperature classification indicates the maximum (hot-spot) temperature at which the insulation system can be operated for normal expected service life.

In general, all materials used in a given insulation system should be rated for temperatures equal to, or exceeding, the temperature classification of the system.

RESISTANCE TEMPERATURE DECTECTORS (RTDs)

METAL CHARACTERISTIC TCR(WWO C)*

COPPER 10.00@25' C .00427

PLATINUM 1000@O'C .00385

NICKEL 1200@0'C .00672

.. * TeR is the temperature coeffICient of resistance,

THERMOCOUPLE JUNCTION TYPES

JUNCTIONTYPE THERMOCOUPLEMATERIALS

E CHROMEL-CONSTANTAN

J IRON-CONSTANTAN

K CHROMEL-ALUMEL

T COPPER-CONSTANTAN

89

Page 92: EASA Pocket Book

90

DIMENSIONS, WEIGHT AND RESISTANCE OF SOLID ROUND COPPER WIRE-AWG

SIZE

AWG

5 55 6

6.5 7 7.5

8 8.5 9

9.5 10 10.5

11 11.5 12

12.5 13 13.5

14 14.5 15

15.5 16 16.5

17 17.5 18

185 19 19.5

20 20.5 21

21.5 22 22.5

23 23.5 24

DIAMETER AREA

(INCHES) NOMINAL BARE WIRE CIR. MILS

.1819 33090

.1717 29480

.1620 26240

.1529 23380

.1443 20820

.1362 18550

.1285 16510

.1213 14710

.1144 13090

.1080 11660

.1019 10380

.0962 9250

.0907 8230

.0856 7330

.0808 6530

.0763 5820 0720 5180 .0679 4610

.0641 4110

.0605 3660

.0571 3260

.0539 2910

.0508 2580

.0480 2300

.0453 2050

.0427 1820

.0403 1620

.0380 1440 0359 1290 .0339 1150

.0320 1020

.0302 912

.0285 812

.0269 724

.0253 640

.0239 571

.0226 511

.0213 454

.0201 404

BARE WIRE WEIGHT

LBSPER FTPER 1000 FT LB

100.2 9.984 89.24 11.21 79.44 12.59

70.77 14.13 63.03 15.87 56.15 17.81

49.98 20.01 44.54 22.45 39.61 25.24

3531 28.32 31.43 31.82 28.01 35.70

24.90 40.16 22.18 45.09 19.76 50.60

17.62 56.75 15.69 63.73 13.96 71.66

12.44 80.40 11.08 90.26

9.869 101.3

8.794 113.7 7.811 128.0 6.974 143.4

6.212 161.0 5.519 181.2 4.916 203.4

4.371 228.8

3.901 256.3 3.479 287.5

3.100 322.6 2.761 362.2

2.459 406.7

2190 456.5 1.938 516.1 1.729 578.4

1.546 646.8 1.373 728.2 1.223 817.7

DC RESISTANCE'

OHMS PER OHMS PER

1000 FT LB

.3135 .003130

.3518 003942

.3952 .004975

.4436 .006269

.4981 .007902

.5591 .009957

.6281 .01257

I.7049 .01583 .7925 .02000

.8892 .02518

.9988 .03178 1.121 .04001

1.261 .05063 1.415 .06382 1.589 08039

1.782 .1011 2.001 .1275 2.250 .1612

2.524 .2030 2.834 .2557 3.181 .3223

3.570 .4059 4.019 .5145 4.502 .6454

5054 .8136 5.688 1.031 6.386 1.299

7.182 1.643 8.047 2.063 9.025 2.594

10.13 3.268 11.37 4.119 12.77 5.193

14.33 6.544 16.20 8.363 18.16 10.50

20.31 13.13 2286 16.65 25.67 20.99

'Beslstance valuesbased on copperof 100% conductivity a120° C (68 0 F) Reference:NEMA MW JO()(),-2003 Tables 1-1,1-2 and 1-3.

Page 93: EASA Pocket Book

DIMENSIONS, WEIGHT AND RESISTANCE OF SOLID ROUND COPPER WIRE-AWG

SIZE DIAMETER AREA BARE WIRE WEIGHT DC RESISTANCE'

(INCHES) NOMINAL LBSPER FTPER OHMS PER OHMS PER

AWG BARE WIRE CIR. MILS 1000 FT LB 1000 FT LB

24.5 .0190 361 1.093 915.1 28.73 26.29 25 .0179 320 .9699 1031 32.37 33.37 25.5 .0169 286 .8645 1157 36.31 42.00

26 .0159 253 .7652 1307 41.02 53.61 26.5 .0150 225 6811 1468 46.10 67.138 27 .0142 202 6104 1638 51.44 84.27

27.5 .0134 180 .5435 1840 57.76 106.3

28 .0126 159 .4806 2081 6533 135.9 28.5 .0119 142 .4286 2333 73.24 170.9

29 .0113 128 .3865 2587 81.22 210.1

29.5 0106 112 .3401 2940 92.31 271.4

30 .0100 100 3027 3304 103.7 342.6

30.5 0095 903 .2732 3660 114.9 420.7

31 .0089 792 .2398 4171 130.9 546.1

32 .0080 64.0 .1937 5162 1621 836.5

33 .0071 50.4 .1526 6553 2057 1348

34 0063 39.7 .1201 8324 261.3 2175

35 .0056 31.4 .09493 10530 330.7 3484

'Resistancevaluesbasedon copperof 100% conductivity at 20° C (68 0 F). Reference: NEMA MW 1000,-2003 Tables 1-1, 1-2 and 1-3.

91

Page 94: EASA Pocket Book

DIMENSIONS, WEIGHT AND RESISTANCE OF SOLID ROUND COPPER WIRE-METRIC

Nominal Data

DIAMETER AREA WEIGHT DC RESISTANCE'

MM INCHES SQUARE MM CIR. MILS KGIKM OHMSIKM

7.500 .2953 44.179 87180 392.7 .3902 7.100 .2795 39.592 78130 352.0 .4354 6.700 .2638 35.257 69570 313.4 .4890

6.300 .2480 31.173 61510 277.1 .5530 6.000 .2362 28.274 55800 251.4 .6097 5.600 .2205 24.630 48600 219.0 .6999

5.300 .2087 22.062 43530 196.1 .7814 5.000 .1969 19.635 38750 174.6 .8780 4.750 .1870 17.721 34970 157.5 .9729

4.500 .1772 15.904 31380 141.4 1.084 4.250 .1673 14.186 27990 126.1 1.215 4.000 .1575 12.566 24800 111.7 1.372

3.750 .1476 11.045 21790 98.19 1.561 3.550 .1398 9.898 19530 87.99 1.742 3.350 .1319 8.814 17390 78.36 1.956

3.150 .1240 7.793 15370 69.28 2.212 3.000 .1181 7.069 13950 62.84 2.439 2.800 .1102 6.158 12150 54.74 2.800

2.650 .1043 5.515 10880 49.03 3.126 2.500 .0984 4.909 9690 43.64 3.512 2.360 .0929 4.374 8630 38.89 3.941

2.240 .0882 3.941 7780 35.03 4.375 2.120 .0835 3.530 6970 31.38 4.884 2.000 .0787 3.142 6200 27.93 5.488

1.900 .0748 2.835 5600 25.21 6.080 1.800 .0709 2.545 5020 22.62 6.775 1.700 .0669 2.270 4480 20.18 7.595

1.800 .0630 2.011 3970 17.87 8.574 1.500 .0591 1.767 3490 15.71 9.756 1.400 .0551 1.539 3040 13.69 11.20

1.320 .0520 1.368 2700 12.17 12.60 1.250 .0492 1.227 2420 10.91 14.05 1.180 .0465 1.094 2160 9.722 15.76

1.120 .0441 .985 1940 8.758 17.50 1.060 .0417 .882 1740 7.845 19.54 1.000 .0394 .785 1550 6.982 21.95

.950 .0374 .709 1400 6.301 24.32

.900 .0354 .636 1260 5.656 27.10

.850 .0335 .567 1120 5.045 30.38

.800 .0315 .503 992 4.469 34.30

.750 .0295 .442 872 3.927 39.02

.710 .0280 .396 781 3.520 43.54

.670 .0264 .353 696 3.134 48.90

.630 .0248 .312 615 2.771 55.30

*Resistance values based oncopper of100%conductivity at20° C (680 Fl.

92

Page 95: EASA Pocket Book

DIMENSIONS, WEIGHT AND RESISTANCE OF SOLID ROUND COPPER WIRE-METRIC

NominalData

DIAMETER AREA WEIGHT DC ,! RESISTANCE'I

MM INCHES SQUARE MM CIR. MILS KG/KM OHMS/KM .600 .0236 .283 558 2.514 60.97

.560 .0220 246 486 2.190

I

69.99 .530 .0209 .221 435 1.961 78.14 .500 .0197 .196 388 1.746 87.80

.475 0187 .177 350

I

1.575 97.29 .450 .0177 .159 314 1.414 108.4 .425 .01S7 .142 280 1.261 121.5

.400 .0157 .126 248 1.117 137.2

.375 .0148 .i1G 218 .9819 156.1 355 0140 .0990 195 .8799 174.2

.335 .0132 .0881 174 .7836 195.6

.315 .0124 .0779 154 .6928 221.2

.300 .0118 .0707 140 .6284 243.9

.280 .0'10 .0616 122 .5474 280.0

.265 .0104 .0552 109 .4903 312.6

.250 .0098 .0491 96.9 4364 351.2

.236 0093 .0437 86.3 .3889 394.1

.224 0088 .0394 77.8 3503 437.5

.212 .0083 .0353 69.7 .3138 488.4

.200 .0079 .0314 62.0

I

2793 548.8 .190 .0075 .0284 56.0 2521 608.0 .180 0071 .0254 50.2 .2262 677.5

170 .0067 .0227 44.8 .2018 759.5 .160 .0063 .0201 39.7 .1787 857.4 .150 .0059 .0177 349 .1571 9756

.140 .0055 .0154 30.4 .1369 1120

.132 .0052 .0137 27.0 .1217 1260

.125 .0049 .0123 24.2 .1091 1405

.118 .0046 .0109 216 .09722 1576

.112 .0044 .00985 19.4 .08758 1750

.106 .0042 .00882 17.4 .07845 1954

.100 .0039 .00785 15.5 .06982 2195

.095 .0037 00709 14.0 .06301 2432

.090 .0035 .00636 12.6 .05656 2710

.085 .0033 .00567 11.2 .05045 3038

.080 .0031 .00503 9.92 .04469 3430 075 .0030 .00442 8.72 .03927 3902

.071 .0028 .00396 7.81 .03520 4354

.067 .0026 .00353 6.96 .03134 4890 063 .0025 .00312 6.15 .02771 5530

.060 .0024 .00283 5.58 02514 6097

.056 .0022 .00246 4.86 .02190 6999

.053 .0021 .00221 4.35 01961 7814

.050 .0020 .00196 388 .01746 8780

"Resistance values based on copper of 100% conductivity at 20° C (68 0 F).

93

Page 96: EASA Pocket Book

(0 .... PROPERTIES OF METALS AND ALLOYS

THERMAL RESISTIVITY 10" TEMP. COEFF. OF DENSITY THERMAL EXPANSION MELTING OHM·CM RESISTANCE/' C CONDo 20' C NEAR 20' C POINT,

MATERIAL NEAR 20' C NEAR 20' C KG/(OM)' LBSIIN' W/CM' C (X 10.6/ , C) , C

Aluminum-pure 2.65 0.0043 2.70 0.0975 2.22 23.6 660 -conductor 2.80 - 2.70 0.0975 2.34 23.6 657

Beryllium 4.0 - 1.85 0.0668 1.46 11.6 1277

Bismuth 106.8 • 0.004 9.80 0.354 0.08 13.3 271 Brass, yellow (65 Cu. 35 Zn) 6.4 0.002 8.47 0.306 1.17 20.3 930 Bronze, commercial (90 cu, 10 Zn) 3.9 0.0019 8.77 0.317 1.88 18.4 1045

Cadmium-pure 6.83 • 0.0042 8.64 0.312 0.92 29.8 321 Chromium 13.0 0.003 7.17 0.259 0.67 6.2 1875 Cobalt 6.24 0.006 8.83 0.319 0.69 13.8 1495

Constantan (55 Cu, 45 Ni) 50.0 ±0.00002 8.89 0.321 0.21 14.9 1290 Copper-annealed (lACS) 1.724 0.0039 8.92 0.3223 3.91 16.8 1083

-hard drawn 1.776 0.0038 8.91 0.322 - - 1083

Gold 2.35 0.004 19.30 0.6973 2.96 14.2 1063 Inconel (76 Ni, 16 Cr, 8 Fe) 98.1 0.000001 8.50 0.307 0.15 11.5 1425 Iron-pure 9.71 0.0065 7.86 0.284 075 11.8 1536

Page 97: EASA Pocket Book

Lead 20.65 0.0034 11.35 0.410 0.35 29.3 327 Magnesium 4.45 0.0037 1.74 0.063 1.53 27.1 650 Mercury 96.0 0.0009 10.41 0.376 0.08 - -39

Molybdenum 5.7 0.005 10.20 0.3685 1.42 4.9 2610 Monel (67 Ni, 30 Cu) 48.2 0.0023 8.83 0.319 0.26 14.0 1325 Nichrome (80 Ni, 20 en 108.0 0.0001 8.39 0.303 0.134 13.0 1400

Nickel (99.4 Ni) 9.5 0.005 8.89 0.321 0.61 13.3 1450 Palladium 10.8 0.0037 12.04 0.435 0.70 11.8 1552 Phosphor-Bronze (95 Cu, 5 Sn) 11.0 - 8.77 0.317 0.71 17.8 1000

Platinum 10.64 0.00393 21.45 0.775 0.69 8.9 1769 Silicon 105 .. - 2.33 0.0841 1.25 2.5 1420 Siiver 1.59 0.0041 10.50 0.3793 4.18 197 961

Steel-carbon (4 - .5 C, Bal. Fe) 7-12 - 7.86 0.284 0.5 110 1480 Steel-silicon (3 Si, BaL Fe) 50 - 7.64 0.276 0.18 12.0 1475 Steel - stainless, 304 72 - 7.92 0.286 0.15 170 >1400

Steei - stainless, 347 73 - 7.89 0.285 0.16 16.3 >1400 Steel - stainless, 410 57 - 7.75 0.280 0.24 11.0 >1480 Tin 12.0 0.0046 7.28 0.263 0.63 23.0 232

Titanium 42.0 0.006 4.51 0.163 0.41 8.4 1670 Tungsten 5.65 0.0045 19.30 0.6973 1.67 4.6 3410 Uranium 30.0 - 18.91 0.683 0.27 7-14 1132

Zinc 5.92 0.0042 7.14 0.258 1.10 33.0 419 Zirconium 40.0 0.0044 6.48 0.234 0.21 0.58 1852

"At 0" C. "ohm'cm

<0 (}l

Page 98: EASA Pocket Book

DETERMINING THE POLARIZATION INDEX OF MACHINE WINDINGS

Knowing the polarization index of a motor or generator can be use­ful in appraising the fitness of the machine for service. The index is calculated from measurements of the winding insulation resistance.

Before measuring the insulation resistance, remove all external con­nections to the machine and completely discharge the windings to the grounded machine frame.

Proceed by applying either 500 or 1000 volts DC between the wind­ing and ground using a direct-indicating, power-driven megohmmeter. For machines rated 500 volts and over, the higher value is used. The voltage is applied for 10 minutes and kept constant for the duration of the test.

The polarization index is calculated as the ratio of the 1O-minute to the 1-minute value of the insulation resistance, measured consecu­tively.

Resistance after 10 minutes Polarization Index = Resistance after 1 minute

The recommended minimum value of polarization index for AC and DC motors and generators is 2.0. Machines having windings with a lower index are less likely to be suited for operation.

In modern insulation systems, a P-I value of 1.0 is not uncommon. If the one-minute insulation resistance is above 5000 megohms, the calculated P-I may not be meaningful. In such cases, the P-I may be disregarded as a measure of winding condition. (See IEEE43-2000, 12.2.2.2.)

The polarization index is useful in evaluating windings for: • Buildup of dirt or moisture. • Gradual deterioration of the insulation (by comparing results of

tests made earlier on the same machine). • Fitness for overpotential tests. • Suitability for operation.

The procedure for determining the polarization index is covered in detail by IEEE 43-2000.

CAUTION: Before proceeding with this test the winding must be discharged against the frame.

96

Page 99: EASA Pocket Book

COMMON FRACTIONS OF AN INCH DECIMAL AND METRIC EQUIVALENTS

FRACTION DECIMAL mm FRACTION DECIMAL mm

1/64 1/32

3/64

1/16 5/64

3/32

7/64 1/8

9/64

5/32 11/64

3/16

13/64 7/32

15/64

1/4 17/64

9/32

19/64 5/16

21/64

11/32 23/64

3/8

25/64 13/32

27/64

7/16 29/64

15/32

~31/64 1/2

0.01562 0.03125 0.04688

0.06250 0.07812 0.09375

0.10938 0.12500 0.14062

0.15625 0.17188 0.18750

0.20312 0.21875 0.23438

025000 0.26562 0.28125

0.29688 0.31250 0.32812

0.34375 0.35938 0.37500

0.39062 0.40625 0.42188

0.43750 0.45312 0.46875

0.48438 0.50000

0.397 0.794 1.191

1.588 1.984 2.381

2.778 3.175 3.572

3.969 4.366 4.763

5.159 5.556 5.953

6.350 6.747 7.144

7.541 7.938 8.334

8.731 9.128 9.525

9.922 10.319 10.716

11.113 11.509 11.906

12.303 12.700

33/64 17/32

35/64

9/16 37/64

19/32

39/64 5/8

41/64

21/32 43/64

11/16

45/64 23/32

47/64

3/4 49/64

25/32

51/64 13/16

53/64

27/32 55/64

7/8

57/64 29/32

59/64

15/16 61/64

31/32

63/64 1/1

0.51562 0.53125 0.54688

0.56250 0.57812 0.59375

0.60938 0.62500 0.64062

0.65625 0.67188 0.68750

0.70312 0.71875 0.73438

0.75000 0.76562 0.78125

0.79688 0.81250 0.82812

0.84375 0.85938 0.87500

0.89062 0.90625 0.92188

093750 0.95312 0.96875

0.98438 1.00000

13.097 13.494 13.891

14.288 14.684 15.081

15.478 15.875 16.272

16.669 17.066 17.463

17.859 18.256 18.653

19.05 19.447 19.844

20.241 20.638 21.034

21.431 21.828 22.225

22.622 23.019 23.416

23.813 24.209 24.606

25.003 25.400

,

97

Page 100: EASA Pocket Book

98

USEFUL FORMULAS

FORMULAS FOR ELECTRIC MOTORS

TO FIND DIRECT CURRENT SINGLE PHASE THREE PHASE

Horsepower E x I x EFF E x I x EFF x PF 1.732 x E x I x EFF x PF

746 746 746

Current 746 x hp 746 x hp 746 x hp

E x EFF E x EFF x PF 1.732 x E x EFF x PF

Efficiency 746 x hp 746 x hp 746 x hp -E-x-I­ EXTXPF 1.732 x E x I x PF

Power Factor -­

Input watts -E-x-I-

Input watts

1.732 x E x I

E = Volts I = Amperes EFF Efficiency (decimal) PF = Power factor (decimal) hp = Horsepower

FORMULAS FOR ELECTRICAL CIRCUITS

TO FIND DIRECT CURRENT SINGLE PHASE THREE PHASE

Amperes Watts

VOiiS Watts Watts

Volts x Power lactor 1.732 x Volts x Powerfactor

Volt-Amperes

- Volts x Amperes 1.732 x Volts x Amperes

Watts Volts x Amperes Volts x Amperes x Powerfactor

1.732 x Volts x Amperes x Powerfactor

OHMS LAW CAPACITANCE IN MICROFARADS

AT 60 HZ

Ohms = Volts/Amperes (R =Ell) 2650 x Amperes Capacitance = VoltsAmperes = VoltS/Ohms(I =E/R)

2.65 x kVAR Capacitance = Volts = Amperes x Ohms (E =IR) (Volts)'

Page 101: EASA Pocket Book

USEFUL FORMULAS

TEMPERATURE CORRECTION OF WINDING RESISTANCE

VALUE OF K Material K

Aluminum 225

Copper 234.5

Rc • Resistance at temperature Tc(Ohms)

(K + Tcl (K + TH)

RH =Resistance at temperature (K + TH) TH(Ohms)

(K + Tcl To = Temperature of cold winding(' C)

TH =Temperature of hot winding(' C)

MOTOR APPLICATION FORMULAS

OUTPUT Torque (Ib·ft) x rpm Torque (N'm) x rpm

Horsepower = Kilowatts5252 9550

Horsepower x 5252 Kilowatts x 9550 Torque (Ib·ft) = Torque (Nrn) =

rpm rpm

For approximation, use: Full-load torque = 1.5 ft·lb per hp per pole pair at 60 Hz Full-load torque = 3.2 N'm per kilowatt per pole pair at 50 hZ

TIME FOR MOTOR TO REACH OPERATING SPEED 2(lb' 2

Seconds = Wk ft ) x Speed change (rpm) 308 x Avg. accelerating torque (lb- ft)

21 lb- ft2 = .04214 kg. m

2) 2 Seconds = J(kg' m x Speed change (rpm) 1 kg· m = 23.73 lb- ft2

9.55 x Avg. accelerating torque (N· m)

2 Wk 2 } I rti f t Inertia of load x Load rpm J = ne ra 0 ro or + Motor rpm 2

. [(FLT + BOT)/21+ BOT + LRT Average accelerating torque = 3

Where: BOT Breakdown torque FLT Full-load torque LRT Locked-rotor torque

99

Page 102: EASA Pocket Book

USEFUL FORMULAS

MOTOR APPLICATION FORMULA5-CONTINUED SPEED-AC MACHINERY

120 x Frequency (Hz)Synchronous rpm Number of poles

Synchronous rpm - Full-load rpm Percent slip x 100

Synchronous rpm

SHEER STRESS

Sheer stress (psi)= hp x 321 ,000 Sheer stress (kg/mm2)= kW x 4.96 x 10' rpm x 0 3 rpm x 0 3

2 2 Load Wk 2 (at motor shaft) = Wk (load) x Loa rpm

Motor rpm 2d

Where: o Shaft diameter (in or mm) psi Pounds per square inch hp Motor output rpm Revolutions per minute kg/mm2 Kilograms per square millimeter kW Motor output

100

Page 103: EASA Pocket Book

USEFUL FORMULAS

CENTRIFUGAL APPLICATIONS AFFINITY LAWS

Flow, rpm,

Flow2 rpm2

Pres, (rpm,)2

Pres2 (rpm2)2

hp, (rprn.)?

hP2 (rpm2)3

PUMPS gpm x It x Specific gravity

hp 3960 x Efficiency of pump

gpm x psi x Specific gravity hp

1713 x Efficiency of pump

Where: cfm Cubic feet per minute It Head in feet* gpm Gallons per minute hp Horsepower ad Outside diameter piw Inches of water gauge

VOLUME OFLIQUID IN A TANK Gallons = 5.875 x D2 x H

1 gallon (US) of water weighs 8.35 Ib

Specific gravity of water = 1.0

Where: D Tank diameter (It) H = Height of liquid (It)

FANS AND BLOWERS

h cfm xpsf p - 33000 x Efficiency 01fan

hp clmxpiw 6343 x Efficiency 01fan

h _ clm xpsi p - 229 x Efficiency of Ian

Volume = clm2 = (Od 2 \J3 ctrn. ad,

Pres =sP2 =(Od 2 J2 SP, ad,

Pres Pressure psf Pounds per square foot psi Pounds per square inch rpm Revolutions per minute sp Static pressure

• Head in teet = 2.31 x pounds per square inch gravity.

101

Page 104: EASA Pocket Book

TEMPERATURE CONVERSION CHART

o C o F o C o F o C o F -30 - t- -22 62.6 147.2

-20.2 64.4 65 - I- 149 -18.4 66.2 150.8 -16.6 20 - r­ 68 152.6 -14.8 69.8 154.4

-25 - f- -13 71.6 156.2 -11.2 73.4 70 - I­ 158

-9.4 75.2 159.8 -7.6 25 - - 77 161.6 -5.8 78.8 163.4

-20 - - -4 80.6 165.2 -2.2 82.4 75 - I- 167 -0.4 84.2 168.8 1.4 30 - L­ 86 170.6

-15 -3.2

- 5 87.8 89.6

172.4 174.2

6.8 91.4 80 - I- 176 8.6 93.2 177.8

10.4 35 - r­ 95 179.6

-10 -12.2

f- 14 96.8 98.6

181.4 183.2

15.8 100.4 85 - +­ 185 17.6 102.2 186.8 19.4 40 - r--­ 104 188.6

-5 -21.2

- 23 105.8 107.6

190.4 192.2

24.8 109.4 90 - I- 194 26.6 111.2 195.8 28.4 45 - - 113 197.6

O­30.2

f­ 32 114.8 116.6

199.4 201.2

33.8 118.4 95 - t-­ 203 35.6 120.2 204.8 37.4 50 - - 122 206.6

5­39.2

r­ 41 123.8 125.6

208.4 210.2

42.8 127.4 100 - t-­ 212 44.6 129.2 213.8 46.4 55 - t-­ 131 215.6

10 -48.2

I- 50 132.8 134.6

217.4 219.2

51.8 136.4 105 - +­ 221 53.6 138.2 222.8 55.4 60 - r--­ 140 224.6

15 -57.2

'­ 59 141.8 143.6

226.4 228.2

608 145.4 110­I- 230

102

Page 105: EASA Pocket Book

TEMPERATURE CONVERSION CHART

o C °C °C° F ° F ° F 446231.8 230 465 869 455233.6 235 470 878 464235.4 240 475 887

237.2 473245 480 896 115 482239 250 485 905

491240.8 255 490 914 242.6 500260 495 923 244.4 509265 932500 246.2 518270 941505

120 527248 275 510 950 249.8 536280 515 959

545251.6 285 520 968 554253.4 290 525 977

255.2 563295 530 986 125 257 572300 535 995

581258.8 305 540 1004 590260.6 310 545 1013 599262.4 315 550 1022

264.2 320 608 555 1031 130 617266 325 560 1040

626267.8 330 1049565 335 635269.6 570 1058

644271.4 340 575 1067 653273.2 345 580 1076

275 662135 350 585 1085 671276.8 355 590 1094

278.6 680360 595 1103 689280.4 365 600 1112

282.2 370 698 1121 140

605 707284 375 1130

145 610

716 1139 150

293 380 615 725302 385 620 1148

155 734390 625 1157 160

311 743320 395 630 1166

165 752 1175 170

329 400 635 761405 1184

175 338 640

770 1193 180

347 410 645 779 650 1202415356 788 1211

190 420 655365185

797 1220 195

374 425 660 806 1229

200 430 665383

815 1238 205

435 670392 1247

210 824 675401 440 833445 680 1256

215 410

842 1265 220

419 450 685 851 1274

225 455 690428

1283

Foreach additional 1 0 C, add 1.8 0 F o F = (9/5 x 0 C) + 32 For each Additional 1 0 F, add .556 0 C c C= 5/9 x (0 F-32)

860437 460 695

103

Page 106: EASA Pocket Book

CONVERSION FACTORS

MULTIPLY BY TO OBTAIN ~Centimeters x .3937 Inches ~Feet x 12.0 Inches ~Feet x .3048 Meters ~Inches x 2.54 Centimeters ~Inches x 25.4 Millimeters

J:

C> ~Kilometers x .6214 Miles

.,c Meters x 3.281 = Feet ... Meters x 39.37 = Inches Meters x 1.094 = Yards Miles x 5280.0 = Feet Miles x 1.609 KilometersI

.. e <C

.. E ::l "0 >

~

Millimeters x .03937 = Inches Yards x .9144 = Meters

Circular mils x 7.854xl0·7 = Square inches Circular mils x .7854 Square mils~

Square centimeters x .155 = Square inches Square feet x 144.0 Square inches~

Square feet x .0929 = Square meters Square inches x 6.452 Square centimeters~

Square meters x 10.764 = Square feet Square meters x 1.196 Square yards~

~Square millimeters x .00155 Square inches ~Square mils x 1.273 Circular mils ~Square yards x .8361 Square meters

Cubic centimeters x .061 = Cubic inches Cubic feet x .0283 Cubic meters~

Cubic feet x 7.481 = Gallons Cubic inches x .5541 = Ounces (fiuid) Cubic meters x 35.31 = Cubic feet Cubic meters x 1.308 = Cubic yards Cubic meters x 264.2 Gallons~

Cubic yards x .7646 = Cubic meters Gallons x .1337 = Cubic feel Gallons x 3.785 Liters~

Liters x .2642 = Gallons Liters x 1.057 = Quarts (liquid) Ounces (fluid) x 1.805 Cubic inches~

~Quarts (liqUid) x .9463 Liters

104

Page 107: EASA Pocket Book

CONVERSION FACTORS

MULTIPLY BY TO OBTAIN

.E Cl .~

1::1 e '"<Il ~

.l:

Grams Kilograms Kilograms Newtons Ounces Pounds Pounds (force) Tons (short) Tons (short)

Atmosphere Atmosphere Atmosphere Pascal 1Inch of water 1inch of water

Gram-centimeters Kilogram-meters Newton-meters Newton-meters Ounce-inches Pound-Ieet Pound-Inches

Kilogram-cm2

Pound-inches2 Ounce-inches-sec2 Pound-feet2

Pound-inches-sec2

Btu Btu Btu Btu Btu Joule Kilowatt hour Btu perhour Horsepower Horsepower Horsepower Kilowatts

x x x x x x x x x

x x x x x x

x x x x x x x

x x x x x

x x x x x x x x x x x x

.0353 ;

2.205 ;

.0011 ;

.2248 ;

26.35 ;

4536 ;

4.448 ;

907.2 ;

2000.0 ;

1.013 x 105 ;

101325 ;

14.7 ;

.102 ;

2.458 x Hi' ; 3.613 x 10' ;

0139 ;

7.233 ;

.7376 = 8.851 ;

72.0 = 1.3558 = .113 =

0.341716 = 2.92641 ;

72.0079 ;

421.403 ;

1.15213 ;

778.2 = 252.0 =

3.929 x 104 ;

1055 = 293 x 10-' ;

9478xlO-4 ;

3.6xl06 ;

.293 ;

330000 ;

550.0 = 746.0 ;

1.341 ;

--Ounces Pounds Tons (short) Pounds (torce) Grams Grams Newtons Kilograms Pounds

Newtons persquare meter Pascals Pounds persquare inch Kilograms persquare meter Atmospheres Pounds persquare inch

-Ounce-inches Pound-feet Pound-feet Pound-inches Gram-centimeters Newton-meters Newton-melers

Pound-inches' Kilogram-centimeters' Gram-centimeters-sec' Kilogram-centimeters' Kilogram-centimeters-sec'

Foot-pounds Gram-calories Horsepower-hour Jouie Kilowatt-hour Btu Joule Watts Foot-pounds perminute Fool-pounds persecond Watts Horsepower

2! ::I III III l!! t:L

<Il ~ e­0 ~

.. i: CI> .E

~ "5a:

>-Cl iii c w

lii 3 0 e,

105

Page 108: EASA Pocket Book

106

CONVERSION FACTORS

MULTIPLY BY TO OBTAIN

'" C. c: '" '"c: '" ii:

Degrees Minutes Minutes Quadrants Quadrants Radians

Gauss Gauss Gauss

Ampere turnperem Ampere turnperem

Maxwell Maxwell

x x x x x x

x x x

x x

x x

.0175

.01667 2.9xl0-4

90.0 1.5708

57.3

6.452 x III' 10'4 10"

2.54 1.257

0.001 10"

= = =

= = =

= = =

= =

= =

Radians Degrees Radians Degrees Radians Degrees

Kiloline persquare inch Webers persquare meter Tesla

Ampere turns perinch Oersted

Kiloline Webers

(,)c:;0 (I):';:; c:tJ,,>:, "'""::;U:

.c: ~g .- '"u..~

Ui 0,><",:I::iii:;::

Pounds are U.S. avoirdupois. Gallons and quarts are U.S.

Page 109: EASA Pocket Book

GLOSSARY

ALTERNATOR

AMBIENT TEMPERATURE

BASE LINE

BREAKDOWN TORQUE

CODE LETTER

CONSTANT HORSEPOWER MOTOR

CONSTANT TORQUE MOTOR

DELTA CONNECTION

A synchronous machine used to convert me­chanical power into alternating currentelectric power.

The temperature of the surrounding cooling medium. Commonly known as room tempera­ture when the air is the cooling medium in contact with the equipment.

A vibration reading taken when a machine is in good operating condition that is used as a reference for monitoring and analysis.

The maximum torque that an AC motor will develop with rated voltage applied at rated frequency without an abrupt drop in speed. Al­so termed pull-out torque or maximum torque.

A letter which appears on the nameplates of AC motors to show their locked-rotor kilovolt­amperes per horsepower at rated voltage and frequency.

A term used to describe a multispeed motor in which the rated horsepower is the same for all operating speeds. When applied to a solid state drive unit, it refers to the ability to deliver constant horsepower over a predetermined speed range.

A mUltispeed motor for which the rated horse­power varies in direct ratio to the synchronous speeds. The output torque is essentiaily the same at all speeds.

A three-phase winding connection in which the phases are connected in series to form a closed circuit. •

107

Page 110: EASA Pocket Book

GLOSSARY - CONTINUED

DESIGN

DUTY

EFFICIENCY

FOOT·POUND

FREQUENCY

FULL.LOAD CURRENT

FULL·LOAD SPEED

-FULL-LOAD TORQUE

108

NEMA design letters A, Band C define certain starting and running characteristics of three­phase squirrel cage induction motors. These characteristics include locked-rotor torque, locked-rotor current, pull-up torque, breakdown torque, slip at rated load, and the ability to withstand full-voltage starting.

A continuous or short-time rating of a machine. Continuous-duty machines reach an equilib­rium temperature within the temperature limits of the insulation system. Machines which do not, or cannot, reach an equilibrium tempera­ture have a short-time or intermittent-duty rat­ing. Short-time ratings are usually one hour or less for motors.

The ratio between useful work performed and the energy expended in producing it. It is the ratio of output power divided by the input power.

The amount of work, in the English system, re­quired to raise a one pound weight a distance of one foot.

The number of cycles in a time period (usually one second). Alternating current frequency is expressed in cycles per second, termed Hertz (Hz).

The current required for any electrical machine to produce its rated output or perform its rated function.

The speed at which any rotating machine pro­duces its rated output.

The torque required to produce rated power at full-load speed.

Page 111: EASA Pocket Book

GLOSSARY - CONTINUED

HARMONIC

HERTZ (HZ)

HORSEPOWER

IEC

IEEE

INSULATION

INSULATION CLASS

KILOWATT

LOCKED-ROTOR CURRENT

LOCKED-ROTOR TORQUE

MEGOHMMETER

A multiple of the fundamental electrical fre­quency. Harmonics are present whenever the electrical power waveforms (voltage and cur­rent) are not pure sine waves.

The preferred terminology for cycles per sec­ond (frequency).

A unit for measuring the power of motors or the rate of doing work. One horsepower equals 33,000 foot-pounds of work per minute (550 ft-lhs per second) or 746 watts.

International Electrotechnical Commission.

Institute of Electrical and Electronics Engineers.

Non-conducting materials separating the cur­rent-carrying parts of an electric machine from each other or from adjacent conducting mate­rial at a differenct potential.

A letter or number that designates the temper­ature rating of an insulation material or system with respect to thermal endurance.

A unit of electrical power. Also, the output rat­ing of motors manufactured and used off the North American continent.

Steady-state current taken from the line with the rotor of a motor at standstiil and at rated voltage and frequency.

The minimum torque that a motor will develop at standstill for all angular positions of the rotor, with rated voltage applied at rated frequency.

An instrument for measuring insulation re- _ sistance.

109

Page 112: EASA Pocket Book

GLOSSARY - CONTINUED

MOTOR

NEC

NEMA

NEWTON-METER

PART-WINDING STARTING

POLES

POUND-FOOT

POWER FACTOR

RATED TEMPERATURE RISE

• 110

A rotating machine that converts electrical power (either alternating current or direct cur­rent) into mechanical power.

National Electrical Code.

National Electrical Manufacturers Association.

Unit of torque, in the metric system, that is a force of one newton, applied at a radius of one meter and in a direction perpendicular to the radius arm.

A part-winding start three-phase motor is one arranged for starling by first energizing part of its primary winding and, subsequently, ener­gizing the remainder of the primary winding. The leads are normally numbered 1,2,3 (start­ing) and 7,8,9 (remaining).

The magnetic poles set up inside an electric machine by the placement and connection of the windings.

Unit of torque, in the English system, that is a force of one pound, applied at a radius of one foot, and in a direction perpendicular to the radius arm.

The ratio of watts to volt-amperes of an AC elec­tric circuit.

The permissible rise in temperature above am­bient for an electric machine operating under load.

Page 113: EASA Pocket Book

GLOSSARY - CONTINUED

RESISTANCE TEMPERATURE DETECTOR (RTD)

ROTOR

SERVICE FACTOR

SLIP

STARTING TORQUE

STATOR

SYNCHRONOUS SPEED

A device used for temperature sensing con­sisting of a wire coil or deposited tilm of pure metal for which the change in resistance is a known function of temperature. The most com­mon type is nickel, with other types being cop­per, platinum, and nickel-iron.

The rotating element of any motor or generator.

A multiplier which, when appiied to rated power, indicates a permissible power loading that may be carried under the conditions specified for the service factor.

The difference between synchronous and op­erating speeds, compared to synchronous speed, expressed as a percentage. Also the difference between synchronous and operat­ing speeds, expressed in rpm.

The torque produced by a motor at rest when power is applied. For an AC machine, this is the locked-rotor torque.

The stationary part of a rotating electric ma­chine. Commonly used to describe the station­ary part of an AC machine that contains the primary windings.

The speed of the rotating magnetic field cre­ated by the primary winding of a rotating elec­tric machine. When the speed of the rotating element matches the speed of the rotating magnetic field, it is said to be rotating at syn­chronous speed.

Frequency x 120 Synchronous speed = Number of poles

• 111

Page 114: EASA Pocket Book

GLOSSARY - CONTINUED

THERMISTOR

TORQUE

TRENDING

VARIABLE­TORQUE MOTOR

WYE CONNECTION

WYE-DELTA STARTING

• 112

A resistive device used for temperature sens­ing that is composed of metal oxides formed into a bead and encapsulated in epoxy orglass. A typical thermistor has a positive temperature coefficient; that is, resistance increases dra­matically and non-linearly with temperature. Though less common, there are negative tem­perature coefficient thermistors.

The rotating force produced by a motor. The units of torque may be expressed as pound­foot, pound-inch (English system), or newton­meter (metric system).

Analysis of the change in measured data over at least three data measurement intervals.

A multispeed motor in which the rated horse­power varies as the square of the synchronous speeds.

A three-phase winding connection formed by joining one end of each phase to make a "Y" point. The other ends of each phase are con­nected to the line. Also termed a star connec­tion.

Wye-delta is a connection which is used to reduce the inrush current and torque of a three-phase motor. A wye (star) start, delta run motor is one arranged for starting by connect­ing to the line with the winding initially connected wye (star). The winding is then reconnected to run in delta after a predeter­mined time. The lead numbersforasingle run voltage are normally 1,2,3,4,5 and 6.

Page 115: EASA Pocket Book

-INDEX ~ Allowa?l.e starts, Design A & B motors 23 Arnpacities 70 Capacitor color codes 88 Capacitor kVAR rating for power factor improvement 65 Code letters, NEMA 68 Connections

DC generators, NEMA 11 DC motors, NEMA 10 part winding start 1 single-phase, NEMA single-speed 8 three-phase, IEC single-speed, 6 and 12 leads 5 three-phase, IEC two-speed, single-winding 7 three-phase, NEMA single-speed, 6 leads 2 three-phase, NEMA single-speed, 9 leads 3 three-phase, NEMA single-speed, 12 leads 4 three-phase, NEMA two-speed, single-winding 6

Conversion factors 104 Derating factors, conductors in a conduit 69 Energy efficiencient motors 18 Formulas, useful 98 Fractions of an inch 97 Frame assignments

NEMA open motors 24 NEMA TEFC motors 26

Frame dimensions IEC foot-mounted AC and DC machines (inches) 40 IEC foot-mounted AC and DC machines (mrn) 58 NEMA C-face motors (inches) 32 NEMA C-face motors (mm) 50 NEMA D-flange motors (inches) 34 NEMA D-flange motors (mm) 52 NEMA DC motors (inches) 44 NEMA DC motors (mm) __ 62 NEMA foot-mounted AC machines (inches) 28 NEMA foot-mounted AC machines (rnm) 46 NEMA JM and JP motors (inches) 36 NEMA JM and JP motors (mm) 56

FUll-load currents DC motors __ 13 single-phase motors 15 three-phase squirrel cage and wound-rotor motors 14

•113

Page 116: EASA Pocket Book

INDEX - CONTINUED

three-phase synchronous motors 15 transformers, single-phase 76 transformers, three-phase 75

Locked-rotor currents, NEMA design S, C and D motors 16 Metals and alloys, properties of 94 Polarities, DC machines 12 Polarization index...... .. 96 Power factor improvement 64 Protection devices-maximum rating, motor

branch circuits 74 Resistance temperature detectors (RTDs) 89 Resistor color codes 87 "-Semiconductors, symbols and connections 85 Shaft dimensions

IEC motors (inches) 42 IEC motors (mm) 60 NEMA DC motors (inches) 43 NEMA DC motors (mm) 61

Speed-torque characteristics 17 Starters

enclosures 67 NEMA sizes, single-phase 69 NEMA sizes, three-phase 66

Starting methods, three-phase motors 22 Temperature classification, insulation systems 89 Temperature conversion 102 Terms, glossary of 107 Thermocouple junction types 89 Transformer connections

single-phase 83 three-phase 77 Zig-zag 82

Transistors, symbols and connections 85 Voltages

derating factor, unbalanced voltage 21 effect of voltage variation 20 power supply and motor voltages 20

Wire data 90 y •

• 114