30
Earths and super-Earths Science Enabled by Direct Imaging Technology Renyu Hu, Ph.D. Jet Propulsion Laboratory California Institute of Technology Workshop on Technology for Direct Detec4on and Characteriza4on of Exoplanets April 9, 2018 Pasadena CA

Earths and super-Earths · Earths and super-Earths Science Enabled by Direct Imaging Technology Renyu Hu, Ph.D. Jet Propulsion Laboratory California Institute of Technology Workshop

  • Upload
    others

  • View
    41

  • Download
    0

Embed Size (px)

Citation preview

Earths and super-Earths Science Enabled by Direct Imaging Technology Renyu Hu, Ph.D. Jet Propulsion Laboratory California Institute of Technology WorkshoponTechnologyforDirectDetec4onandCharacteriza4onofExoplanetsApril 9, 2018 Pasadena CA

CommonalityofSmallPlanetsExoplanet Demography

2

Earth

Neptune

Jupiter

Transit RadialVelocity

Imaging Microlensing

IntransitDetecting ExoPlanet Atmospheres

3 Fraine et al. 2014

HAT-P-11b, a Neptune-sized planet

DetectableviatransitH2 Atmospheres

4

HAT-P-11b, a Neptune-sized planet

100 120 140 160 180 200 220 240 260 280 300 320Equ. Temp [K]

0

2

4

6

8

10

12

14

Obs

Inde

x of

HST

Obs

Inde

x of

JW

ST /

2.7

HST Observable

JWST Observable

PH-2 bLHS-1140 b

K2-18 b

K2-3 dK2-9 b

K-16 bK-167 e

TRA-1 h (2)

TRA-1 e (3)

TRA-1 f (4)

TRA-1 g (6)

TRA-1 d (12)

Complica4onwithstellarvariabilityNon-H2 Atmospheres?

5 Rackham et al. 2018

TransitFeature-  Upto10%forH2

atmospheres-  <1%fornon-H2

atmospheres

EmissionFeature-  1-2%

StarshadeRendezvousMissionsimulatedimageofanearbystarDirect Detection of a Solar System

6 Seager et al. 2015

EXO-SFinalReport2015

Detecting Earths

7

8

Howdoweknowwhetheranexoplanethasanatmosphere?whetheranexoplanet’satmospherehasevolved?whetheranexoplanethasgeological/biologicalacDviDes?

9

Spectralfeaturesofrockyplanetarysurfaces

wavelength wavelength

Refle

c4vity

Refle

c4vity

Detect Rocky Exoplanet Surfaces

10

Directdetec4onofrockyexoplanets

Detect Rocky Exoplanet Surfaces

Huetal.2012

Metal-richPrimarycrustwithmantlerippedoff

UltramaficPrimarycrustwithmantleoverturnor

secondarycrustfromhotlavasFeldspathic

PrimarycrustwithoutmantleoverturnBasal4c

SecondarycrustGranitoid

Ter4arycrustClay

AqueouslyalteredcrustIce-richsilicate

Ice-richsurfaceFe-oxidized

Oxida4veweathering

11

Fromphasecurvesofarockyplanet

Delineate Land and Sea

Cowanetal.200912

WhatwelearnedfromDSCOVRobserva4onsofEarth

Rotation Period and Hydrological Cycle

Jiangetal.2018

Minimumsamplingrateis10hours

13

Howdoweknowwhetheranexoplanethasanatmosphere?whetheranexoplanet’satmospherehasevolved?whetheranexoplanethasgeological/biologicalacDviDes?

14

Water,Oxygen,andCarbonDioxide

Detecting an Earth-like Atmosphere

15Turnbulletal.2006

O2

ImportanceofClouds

Detecting an Earth-like Atmosphere

16

H2O

500 600 700 800 900 1000Wavelength [nm]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35Al

bedo

No CloudCumulus CloudCirrus CloudMean

Diverseatmosphericcomposi4onofrockyplanets

Detecting Earths and Super-Earths

17Gaillard&Scaillet2014

H2O

0.1 0.2 0.5 1 2 5 1000.10.20.30.40.50.60.70.80.9

1

XC/XO

X H

Water-richAtmosphere

Oxygen-richAtmosphere

Chemically as Gas Giant Atmospheres

Hydrocarbon-rich Atmosphere

H2, CO,CH4, CO2,H2O

CO,CO2

Depend on Temperature

DiversityofAtmospheres

Continuum from Super-Earths to Sub-Neptunes

18 Hu & Seager 2014

H2 – Rich

H2 – Poor

Carbon – Poor

Carbon – Rich

Condensible-RichAtmospheres

A Special Case for Water Worlds

19 Ding & Pierrehumbert 2016

InreflectedlightDistinguish Water Worlds vs. Giant Planets

20Hu 2014; Filippatos & Hu in prep.

InterplaybetweencloudsandC,N,Oabundances

HazeProduc4oninPhotochemicalProcesses

NeptunesandH2O-richSuper-Earths

SpectralDegeneraciesandInforma4onContent

500 550 600 650 700 750 800 850 900 950 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength [nm]

Geom

etric

Albe

do

H2−Dominated Atmosphere, Cloud Deck at 0.4 BarsH2−Dominated Atmosphere, Cloud Deck at 2 BarsH2O−Dominated Atmosphere, Cloud Deck < 10−3 Bars

CH4

CH4

CH4

CH4

CH4

CH4

CH4

CH4CH4

CH4 H2O

H2O

H2O

NH3

Howdoweknowwhetheranexoplanethasanatmosphere?whetheranexoplanet’satmospherehasevolved?whetheranexoplanethasgeological/biologicalacDviDes?

21

The image part with relationship ID rId2 was not found in

JWST/WFIRST/Otherspacetelescopes

Planetary Spectrum

Atmospheric Composition

Surface Source flux

Radiative Transfer

Atmosphere Chemistry

TowardsCharacterizingRockyExoplanets’Atmospheres

22

VolcanicemissioncontrolsO2buildupinCO2atmospheresCharacterize Rocky Exoplanets’ Atmospheres

10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

10−1

100

101

102

103

104

105

Mixing Ratio

O2

OO3

Pres

sure

[Pa]

Hu et al. 2012

Solid:Earth-likevol.emissionDashed:Lowvol.emissionDoged:Novol.emission

23

Escapeofhydrogenisbalancedbyanetoxidizingfluxfromtheatmospheretotheocean

O2andCH4togetherasabiosignatureCharacterize Rocky Exoplanets’ Atmospheres

Domagal-Goldman et al. 2014 24

MeasuringvolcanicoutgassingCharacterize Rocky Exoplanets’ Atmospheres

25

0.1 0.2 0.3 0.5 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

Wavelength [microns]

Refle

ctivit

y

N2 AtmospheredP = 0.1 µm

S8 Aerosol ReflectionS8 Absorption

Earth X 3000Earth X 1000Earth X 100

Earth X 10Earth X 1

0.1 0.2 0.5 1 2 5 10 20 50 1000

0.2

0.4

0.6

0.8

1

Wavelength [microns]

Tran

smiss

ion

N2 AtmospheredP = 0.1 µm

S8 Aerosols

Earth X 1

Earth X 10

Earth X 100

Earth X 3000Earth X 1000 H2SO4

AerosolsCO2

CO2

SO2H2SH2OSO2

5 8 10 20 30 50 80 100180

200

220

240

260

280

300

Wavelength [microns]

Brigh

tnes

s Tem

pera

ture

[K] H2SH2OH2O CO2

SO2

SO2

SO2

CH4

N2 AtmospheredP = 0.1 µm

Hu et al. 2013

Transit-  Ground-basedtransitsurveys,TESS-  JamesWebbSpaceTelescope

(JWST,launch2018)

Directimaging-  StarshadeRendez-vouswithWFIRST-  Flagshipconceptsfor2020

AstrophysicsDecadalSurvey(HabEx+LUVOIR)

§  Direct imaging will enable characterization of Earths and super-Earths

§  We may learn about: surface type, atmospheric H2O, O2, CO2, rotation period, variability of clouds

§  It may be hard to directly measure: size of planet, mass of atmosphere, liquid water ocean

§  Intrinsic widths of spectral features will determine the required resolution, and the need to measure variability will determine the required collection area

Conclusion

27

Wecouldnotguesshowdifferentfromusthey(extraterrestrials)mightbe.CarlSagan,Contact,1985

Sensi4vitytoatmosphericsurfacepressureCharacterize Rocky Exoplanets’ Atmospheres

James & Hu, in prep.

Oxygenbuilduppeaksat~1bar

28

10-1 100 101

Surface Pressure [Bar]

10-10

10-8

10-6

10-4

10-2

100

Colu

mn

Mixi

ng R

atio

H2 O2 O3 CO CH4

Tre’ShundaJamesInternatJPL

HowdoesO2buildupdependonsurfacepressureandirradia4on?

SynergybetweentransitanddirectimagingAtmospheres of Wide-Separation Exoplanets

29

Transitspectrumofa229-day-periodexoplanetKepler16-b(HSTGO14927,PIRenyuHu)

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.