earthquake analysis [Compatibility Mode]

Embed Size (px)

Citation preview

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    1/27

    DYNAMIC OF STRUCTURES

    CHAPTER 6

    RESPONSE OF MDOF SYSTEMS

    SUBJ ECTED TO GROUND MOTION

    Department of Civil Engineering, University of North Sumatera

    Ir. DANIEL RUMBI TERUNA, MT;IP-U

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    2/27

    RESPONSE HISTORY ANALYSIS

    gu gu

    ju

    t

    ju

    j

    N

    Rigid-bodymotion

    ju

    t

    ju

    j

    N

    gu

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    3/27

    RESPONSE HISTORY ANALYSIS

    jm

    ( ) ( ) ( ) )2(0=++ tkutuctum t &&&

    The total displacement of the mass is

    the equation of motion for free vibration MDOF system can be expressed as

    ( ) ( ) ( ) )1(vectorinfluence; =+= rturtutu gjt

    j

    Equation of motion

    Subsituting equation (1) in equation (2) lead to

    )3(gurmkuucum &&&&& =++

    ( ) )4(1

    =

    =N

    r

    rrqtu The displacement u can be expressed as superposition of the modalcontribution

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    4/27

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    5/27

    RESPONSE HISTORY ANALYSIS

    Dividing by ,noting that lenM nnn

    n

    M

    C 2=)8(2

    2

    gnnnnnnn uqqq &&&&& =++ where

    ===

    =

    =

    N

    j

    jjn

    N

    j

    jjn

    n

    T

    n

    T

    n

    n

    nn

    m

    m

    m

    rm

    M

    L

    1

    2

    1

    Modal participation factor

    )9(2 2 gnnnnnn uDDD &&&&& =++ Equation (8) can be rewritten in other form

    where

    ( ) ( ) )10(tDtq nnn =

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    6/27

    RESPONSE HISTORY ANALYSIS

    The solution can be obtained by comparing equation (9) tequation of motion for the mode SDOF system subjected to groundacceleration . Thus

    ( )tDn

    ( )tug&&

    ( ) ( ) ( ) ( ) )11(sin1

    0 dteutD nt

    t

    gnn =

    &&

    Or step by step integration

    Modal responses

    The contribution of the mode to the displacement is

    ( ) ( ) ( ) )13(tDtqtu nnnnnn ==The total displacement can be obtained by combination of theresponse contribution of all modes

    thn

    ( )tu

    thn ( )tu

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    7/27

    RESPONSE HISTORY ANALYSIS

    ( ) ( ) ( ) )14(11

    tDtutu nnn

    N

    n

    n

    N

    n==

    ==

    For multistory building with rigid floor diaphragms, lateral displacementfloor can be calculated as

    ( ) ( ) )15(tDtu njnnjn =The interstory drift is given by the diffrences of displacement of the floorabove and below:

    ( ) ( ) ( ) ( ) )16()( ,1,1 tDtutut nnjjnnnjjnjn == The equivalent static lateral forces at floor for mode are

    ( ) ( ) )17(2 tDmtf njnnnjjn =

    thj

    thn

    thj

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    8/27

    RESPONSE HISTORY ANALYSIS

    The floor acceleration can be computed from

    ( ) ( ) ( ) )18(1

    tDtutu njnn

    N

    n

    g

    t

    j += =

    &&&&

    Influence Vector r

    m1

    m2

    m3

    u1

    u2

    u3

    gu

    11 =r

    12 =r

    03 =r

    =

    0

    11

    r

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    9/27

    EXAMPLE

    2w

    h=3,8m

    h

    h

    1w

    3w

    L=8 m

    mtww /5,221==

    Column 30x45

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    10/27

    EXAMPLE

    Determine the lump mass

    m1=m2 =(8x2500/980)= 20,408 kg.sec2/cm

    m3=(8x2000/980)=16,327 kg.sec2/cm

    Determine the storey stiffness

    k= 2x12 EI/h3= 19928,20 kg/cm

    Compute the eigenvector

    Compute natural frequencies

    =

    =

    8020.09013.01618.2

    3424.13142.07782.1

    0.10.10.1

    333231

    232221

    131211

    jn

    sec/

    1297,57

    5728,40

    7184,14

    3

    2

    1

    rad

    =

    =

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    11/27

    EXAMPLE

    Compute the earthquake excitation factor

    [ ]{ }rmL Tnn =

    [ ]{ }

    { }

    cmkg

    rmL T

    /sec.9919,91

    1

    1

    1

    408,20

    8,000

    00,10

    000,1

    1618,27782,10,1

    2

    11

    =

    =

    =

    [ ]{ } cmkgrmL T /sec1052,12 222

    == [ ]{ } cmkgrmL T /sec1061,6 2

    33==

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    12/27

    EXAMPLE

    Compute the generalized mass

    [ ]{ }nT

    nn mM =[ ]{ }

    { }

    cmkg

    mMT

    /sec.2375,161

    1618,2

    7782,10,1

    408,20

    8,000

    00,10000,1

    1618,27782,10,1

    2

    111

    =

    =

    =

    [ ]{ }

    cmkg

    mM T

    /sec.6853,352

    222

    =

    = [ ]{ }

    cmkg

    mM T

    /sec.6852,672

    333

    =

    =

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    13/27

    EXAMPLE

    Compute the mode paricipation factor

    n

    nn

    M

    L=

    5706,01

    1

    1 == M

    L

    3392,02

    2

    2 ==M

    L

    0902,0

    3

    3

    3 ==M

    L

    Total = 1,000

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    14/27

    EXAMPLE

    Solve the diffrential equation by use Duhamel integral or step by stepintegration

    gnnnnnn uDDD &&&&& =++

    22

    ( ) ( ) ( ) ( ) dteutD nt

    t

    gnn =

    sin1

    0

    &&

    ( ) ( ) ( )tDtutu nnnN

    n

    n

    N

    n==

    == 11

    [ ] { } [ ] { } [ ] { }3

    33

    23

    13

    32

    32

    22

    12

    21

    31

    21

    11

    1

    3

    2

    1

    DDD

    u

    u

    u

    +

    +

    ==

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    15/27

    NUMERICAL EVALUATION OF DYNAMIC RESPONSE

    [ ]{ } [ ]{ } [ ]{ } ( ) )1(tPuKuCuM =++ &&&

    The diffrential of motion for MDOF system subjected to dynamic forces

    can be expressed as

    When the system subjected to ground acceleration ,equation (1) lead

    [ ]{ } [ ]{ } [ ]{ } )2(effPuKuCuM =++ &&&

    ( )tug&&

    [ ] { }geff urMP &&=where

    Coupled diffrential equation solution (Newmark-Beta Methode)

    The diffrential of motion for MDOF system subjected to ground

    motion in incremental form at time ican be written as

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    16/27

    NUMERICAL EVALUATION OF DYNAMIC RESPONSE

    [ ]{ } [ ]{ } [ ]{ } )3(iiii PuKuCuM =++ &&&

    where

    ( ) ( )

    )4(

    2

    11121 iiiiii

    uu

    t

    u

    t

    uuu &&&&&&&&&

    ==+

    ( ) ( )( ) )5(1

    1 iiiiii utut

    ut

    uuu &&&&&&

    +

    ==

    +

    At the beginning time step , the incremental displacement is computed from

    [ ] )6(,1,1 igigiii

    uuMPPP &&&& == ++

    )7(

    K

    Pu ii

    =

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    17/27

    NUMERICAL EVALUATION OF DYNAMIC RESPONSE

    where )8( iiii ubuaPP &&&++=

    ( ) ( ))9(

    12

    +

    += M

    tC

    tKK

    and

    Coeficients a and b in the equation (8) can be written as

    ( ))10(

    1

    +

    = CM

    ta

    ( ) )11(1221

    += CtMb

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    18/27

    EXAMPLE

    .sec/90,33

    .sec/83,11

    2

    1

    rad

    rad

    =

    =

    cmkgk

    cmkgm

    /32,5487

    /sec31,24

    2

    2

    1

    =

    =h

    h

    L

    cmkgk

    cmkgm

    /20,7918

    /sec79,11

    2

    2

    2

    =

    =

    t

    0,2 sec

    1

    50cm/sec

    2

    02.0=t

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    19/27

    EXAMPLE

    Compute stiffness and mass matrix

    Compute damping matrixWe select the damping ratio for first mode =0,05 and damping isassumed mass proportional damping

    Compute

    [ ] [ ]

    =

    =

    79,110

    031,24,

    2,79182,7918

    2,79182,13405MK

    183.183.1105.0220 === xxa ii[ ] [ ]

    =

    == 45,130

    076,28

    79,110

    031,24

    183.1MaC o

    bandaK ,,

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    20/27

    EXAMPLE

    ( ) ( )

    +

    += M

    tC

    tKK

    2

    1

    ( ) ( )

    +

    +

    =

    79,110

    031,241

    45,130

    076,28

    2,79182,7918

    2,79182,13405

    2

    tt

    K

    For constant average acceleration4

    1

    2

    1 == and

    =

    7,1272132,7918

    2,79182,259381K

    ( )

    =

    +

    =

    90,23850

    052,4919

    45,130

    076,28

    79,110

    031,241

    ta

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    21/27

    EXAMPLE

    ( )

    =

    +

    =

    85,230

    052,48

    45,130

    076,281

    279,110

    031,24

    2

    1

    ta

    Determined effective load

    ( )ondtsec 2sec/cmu g&&0,00

    46,35

    88,17121,35

    142,665

    150,00

    0

    0,02

    0,040,06

    0,08

    0,10

    i0

    1

    23

    4

    5

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    22/27

    EXAMPLE

    Cycle 1

    [ ] igigiii uuMPPP ,1,1 &&&& == ++

    ( )

    =

    =

    ==

    47,54677,1126035,46

    79,1131,24

    0,1,010 gg uuMPPP &&&&

    0=i

    Initial condition 0,0,0 000 === uuu &&&

    From equa.(8)

    =++=47,546

    77,1126

    0000ubuaPP &&&

    From equa.(7)0

    1

    0 PKu =

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    23/27

    EXAMPLE

    =

    02

    1

    u

    u

    =

    0046,0

    0045,0

    47,546

    77,1126

    7,1272132,7918

    2,79182,2593811

    ( ) ( )

    =

    +

    =

    46,0

    45,0

    2102

    1

    02

    1

    02

    1

    02

    1

    u

    utu

    u

    u

    u

    tu

    u

    &&

    &&

    &

    &

    &

    &

    ( ) ( )

    =

    =

    46

    45

    2

    111

    02

    1

    02

    1

    02

    1

    2

    02

    1

    u

    u

    u

    u

    tu

    u

    tu

    u

    &&

    &&

    &

    &

    &&

    &&

    =

    +

    =

    0046.0

    0045.0

    02

    1

    02

    1

    12

    1

    u

    u

    u

    u

    u

    u

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    24/27

    EXAMPLE

    =

    +

    =

    0046.0

    0045.0

    02

    1

    02

    1

    12

    1

    u

    u

    u

    u

    u

    u

    =

    +

    =

    46.0

    45.0

    02

    1

    02

    1

    12

    1

    u

    u

    u

    u

    u

    u

    &

    &

    &

    &

    &

    &

    =

    +

    =

    46

    45

    02

    1

    02

    1

    12

    1

    u

    u

    u

    u

    u

    u

    &&

    &&

    &&

    &&

    &&

    &&

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    25/27

    EXAMPLE

    Cycle 2

    [ ]

    ( )

    =

    =

    ==

    06,493

    64,101635,4617,88

    79,11

    31,24

    1,2,121 gg uuMPPP &&&&

    1=i

    =

    +

    +

    =

    ++=

    25,267582,5413

    46

    45

    88,230

    052,48

    46,0

    45,0

    9,23850

    05,4919

    06,493

    64,1016

    1111ubuaPP &&&

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    26/27

    EXAMPLE

    =

    12

    1

    u

    u

    =

    02254,0

    02156,0

    25,2675

    82,5413

    7,1272132,7918

    2,79182,2593811

    ( ) ( )

    =

    +

    =

    245,2

    147,2

    2112

    1

    12

    1

    12

    1

    12

    1

    u

    u

    tu

    u

    u

    u

    tu

    u

    &&

    &&

    &

    &

    &

    &

    ( ) ( )

    =

    =

    40,133

    60,125

    2

    111

    12

    1

    12

    1

    12

    1

    2

    12

    1

    u

    u

    u

    u

    tu

    u

    tu

    u

    &&

    &&

    &

    &

    &&

    &&

    =

    +

    =

    02714.0

    02606.0

    12

    1

    12

    1

    22

    1

    u

    u

    u

    u

    u

    u

  • 8/7/2019 earthquake analysis [Compatibility Mode]

    27/27

    EXAMPLE

    =

    +

    =

    7048.2

    597.2

    12

    1

    12

    1

    22

    1

    u

    u

    u

    u

    u

    u

    &

    &

    &

    &

    &

    &

    =

    +

    =

    4.179

    60.170

    12

    1

    12

    1

    22

    1

    uu

    uu

    uu

    &&

    &&

    &&

    &&

    &&

    &&

    Cycle 3, 2=i

    Follow the same procedures