228
Proceedings - Presentations - Working Groups - Summary - Conclusions Future Operational Earth Observation Missions – National User-Workshop – Walberberg Conference Centre Dominikanerkloster St. Albert November 7 – 9, 2005 Deutscher Wetterdienst

Earth Observation Presentations Working Groups Missions ... · Printed and published by Deutsches Zentrum für Luft- und Raumfahrt e.V. Raumfahrtmanagement Königswinterer Straße

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Proceedings

- Presentations

- Working Groups

- Summary

- Conclusions

Future Operational

Earth Observation

Missions

– National User-Workshop –

Walberberg Conference Centre Dominikanerkloster St. Albert

November 7 – 9, 2005

Deutscher Wetterdienst

  

Future Operational Earth Observation

Missions

- National User-Workshop -    

Jointly organised by: German Space Agency (DLR)

German Meteorological Service (DWD)    

  

___________________________________________________________________________  Scientific Leader      Prof. Hartmut Graßl           Max-Planck-Institut für Meteorologie           Bundesstraße 55           D-20146 Hamburg   Organisation & Coordination  Dr. Christian Brüns; Daniela Vogt           Deutsches Zentrum für Luft- und Raumfahrt e.V.           Königswinterer Straße 522 – 524           D-53227 Bonn ___________________________________________________________________________           This report reflects the contributions of the workshop participants. 

They are responsible for the scientific content of the contributions. The copy-right of the presentations remains at the author.  In case of further questions, please contact the author directly. 

      Impressum  Printed and published by    Deutsches Zentrum für Luft- und Raumfahrt e.V.           Raumfahrtmanagement           Königswinterer Straße 522 – 524           D-53227 Bonn  Editor          Dr. Christian Brüns            Bonn-Oberkassel, December 2005        The cover page shows the hurricane Katrina imaged with the MODIS instrument. It is based on an image derived from the CIMSS Website (http://cimss.ssec.wisc.edu/tropic/tropic.html). 

Table of Contents                           Page: 

Objectives and Results I

Introduction                    I.1 

  Report with Conclusions and Recommendations, Prof. H. Graßl      I.3 

Welcoming Speeches (in German) II

  Begrüßung durch den Vorstand des DLR, Dr. L. Baumgarten       II.1 

  Begrüßung durch das Bundesverkehrsministerium, K. Trauernicht      II.3 

  Begrüßung durch den Präsidenten des DWD, W. Kusch        II.5 

International Activities – GEO/GEOSS & the WMO Space Programme III

  The Global Earth Observation System of Systems (GEOSS), U. Gärtner    III.1 

  Planning of Future Meteorological Satellite Systems outside Europe, Dr. Jian Liu  III.13 

The Future European Earth Observation Missions GMES, MTG, and Post-EPS IV

  GMES Space Segment & relevant Earth Explorer Missions, Prof. A. Ginati    IV.1 

  MTG User Requirements, Dr. R. Stuhlmann            IV.21 

  Results of the MTG Pre-Phase A Studies, P. Bensi          IV.37 

  EUMETSAT Activities in Preparation for a Post-EPS System, E. Koenemann    IV.47 

National Technology Studies Related to a Future Post-EPS System V

  The Imaging Radiometer MetImage, Dr. B. Voß          V.1 

  Concept for a Low-Cost EPS-Gapfiller, Dr. H. Lübberstedt        V.13 

  Concept for a Post-EPS Initial Satellite (PEPSIS), Dr. R. Münzenmayer     V.23 

Results of the Working Groups VI

  Working Group on Severe Weather Forecasting, Dr. G. Steinhorst      VI.1 

  Working Group on Numerical Weather Prediction, Dr. N. Bormann      VI.7 

  Working Group on Ocean, Prof. D. Stammer            VI.13 

  Working Group on Atmospheric Chemistry, Prof. H. Fischer        VI.19 

  Working Group on Hydrology, Prof. W. Mauser          VI.29 

  Working Group on Climate, Prof. H. Graßl            VI.35 

Annex A

  Workshop Agenda                  A.1 

  List of Participants                  A.7 

Chapter I 

Objectives & Results

 

Introduction   DLR and DWD  jointly organised a national user-workshop to provide a sound and coordinated basis for the decision process related to the future European earth observation satellite systems in  the post-2015 era. This workshop  took place at  the conference centre of  the monastery of Walberberg from 7th to 9th November 2005.  The  first  satellite  of  the  new  geostationary meteorological  satellite  system, Meteosat  Second Generation (MSG-1), was successfully launched in 2002. The launch of the second MSG satellite is scheduled for end 2005. Together with MSG-3 and MSG-4, these four satellites will provide operational services at least up to 2015. The first satellite of the EUMETSAT Polar System (EPS) is scheduled  for  launch  in  June  2006.  The  three  MetOP  satellites  are  expected  to  provide operational  services  up  to  2019.  The  optional  EUMETSAT  programme  Jason-2  –  an  altimeter mission  –  is  developed  in  close  cooperation  with  CNES,  NOAA,  and  NASA.  The  satellite  is planned to be launched in 2008.  A  third  generation  of  geostationary  satellites  is  needed  after  2015  to  assure  operational continuity.  Consequently,  first  studies  have  been  initiated  by  EUMETSAT  and  ESA.  The  user requirements  for  the  Meteosat  Third  Generation  (MTG)  have  recently  been  compiled  by EUMETSAT while industrial pre-phase A studies have been assigned to Alcatel and EADS Astrium by ESA. The outcome of the user consultation process and first results of the pre-phase A studies were presented on  this user-workshop. A mayor goal of  this workshop was  to consider  these results expressing the German priorities for a future, operational, geostationary satellite system.  The strategy for an EPS follow-on system  (Post-EPS)  is currently under discussion at EUMETSAT and its Member States to allow for an operational Post-EPS system in orbit from 2019 onwards. Preparatory activities are being pursued at EUMETSAT and ESA.  In addition, national activities covering technical and programmatic studies complementing those of EUMETSAT and ESA were presented on this workshop for consideration.  The  European  initiative  Global Monitoring  for  Environment  and  Security  (GMES)  has  made progress with  respect  to  the GMES  Service  Elements  (GSE). A  proposal  for  a  space  segment covering five satellite families will be considered on the ESA ministerial conference in December 2005. Of  special  interest  for  this workshop were  the  so-called  “Sentinels”  for  ocean watch (Sentinel 3) and atmospheric chemistry  (Sentinels 4 & 5), which have not yet been defined  in great detail.   This  national  user-workshop  aims  at  bringing  together  operational  users,  scientists,  space industry and “policy-makers”. The workshop comprised introductory presentations covering the above mentioned future operational earth observation missions followed by six working groups on  Severe Weather  Forecasting  / Nowcasting, Numerical Weather  Prediction, Ocean, Climate Monitoring, Atmospheric Chemistry, and Hydrology.   The workshop proceedings compile the  introductory presentations, the results of the  individual working groups and  the overall conclusions  /  recommendations of  the workshop, which were summarised by Prof. Graßl, the scientific leader of this national user-workshop.  We would like to thank all those who have contributed to this workshop. We assume the results provide a good basis for coming decisions on future operational European satellite systems and we  are  looking  forward  to  the  next  promising  workshop  on  operational  earth  observation missions that will be organised in due course.   Dr. Christian Brüns Wolfgang Benesch         German Space Agency, DLR       German Meteorological Service, DWD 

I.1

  

I.2

Report with Conclusions and Recommendations Prof. H. Graßl, Max-Planck-Institut für Meteorologie

 Introduction  Every  citizen  now  knows  that we  are  living  on  a  small  blue  planet  as  satellite  images  have demonstrated the vulnerability of the Earth system. The development of this system is governed by  several  substance  cycles  (water,  carbon,  nitrogen,  sulphur) within which  trace  substances often play a major role. For instance, so called freezing nuclei, sub-micron particles with a mass fraction of less than one billionth, have an influence in rainy weather and they can even modify the  track  of  low  pressure  systems. We  need  to  know  how  the  activities  of mankind might change this, i.e. we need a global Earth observation system.  The cheapest way to achieve this for the atmosphere and the surface of the Earth is observation by satellites because the atmosphere is semi-transparent both for solar and terrestrial radiation.  Considering the present costs for Germany with respect to operational meteorological satellites, they range well below a permille of the federal budget or about 10-4 of GDP. The reduction of damage  costs  due  to  high  impact weather  certainly  reaches  several  billions  of  euros. Hence, investing  in  a  further  improved  satellite  observation  system  is  an  advantage  for  all member countries of EUMETSAT.  Building  up  operational  satellite  services  for  other  fields  such  as  oceanography,  coastal  zone management,  agriculture,  and  forestry  will  with  high  probability  improve  the  efficiency  of economies of all member countries of ESA and EU.  Europe,  here  the  European  organisation  for  the  exploitation  of  meteorological  satellites (EUMETSAT)  and  ESA,  has  reached  a  similar  level  to  the  United  States  of  America  in  Earth observation  from space and  is  in  the  lead  in a  few areas, e.g. Synthetic Aperture Radar  (SAR) applications  and  imaging  information  from  geostationary  satellites  (Meteosat  Second Generation, MSG). Also  the  use  of  operational meteorological  satellite  observations  is  highly developed at the European Centre for Medium-range Weather Forecasting (ECMWF).  The  prospects  for  operational  Earth  observation  satellites  have  improved  recently  as  Global Monitoring  for  Environment  and  Security  (GMES),  a  European  initiative,  has  stimulated  the Global  Earth  Observation  System  of  Systems  (GEOSS),  an  intergovernmental  programme  to monitor the environment in all its facets, which will need several new operational satellite series beyond the one for meteorology.  At this workshop the realm of the discussions  is broader than mere academic reasoning about the best operational satellite system for all environmental observations. At the starting point of a new  European  environmental  satellite  series,  GMES-X,  an  expert  group  like  the  one  of  this workshop can exert a rather strong influence on future political decision making.   Importance of Operational Earth Observation from Space  In  many  disciplines  and  applications  the  operational  meteorological  satellite  sensors  play  a fundamental  role  in the daily evaluations of Earth observation data  from space. Without them daily weather  forecasting would  be  less  reliable,  especially  for  3  to  6  day  periods.  Seasonal predictions  of  climate  anomalies  would  show  less  skill.  Nowcasting  and  very  short-term forecasting would be  severely hampered,  ship  routing over nearly a week would probably be absent,  air  traffic  could  not  be  warned  against  the  dangers  caused  by  explosive  volcanic eruptions,  trend analyses of  sea  ice cover and of  indirect aerosol effects on cloud parameters would not exist. 

I.3

 Apart  from  the operational meteorological  satellites  there  is, however,  still no  such  series  for other disciplines  such as  for example oceanography, although  its usefulness has already been demonstrated about a decade ago.  The national user workshop “Operational Satellite Systems for Earth Observation” had the task to  look well beyond  the confirmed European satellite series  (MSG and European Polar System (EPS)) into the post-2015 era. On the basis of first studies for Meteosat Third Generation (MTG) satellites and EPS-follow-on, all of  the  six working groups were  tasked –  taking  into account newest  scientific  knowledge  –  to  propose,  from  a  German  perspective,  needed  operational environmental satellite sensors serving large groups of users and scientific disciplines.  The  first  studies  for  a GMES  satellite  series  should  also be used  as  input  since  the  European Space Agency  (ESA) and  the European Commission  (EC) would  like  to  transfer  capabilities of successful sensors onboard European environmental satellites, such as ERS-1, ERS-2, and Envisat, into  an  operational  phase.  The  groups  should  also  consider  infra-structural  issues.  Thus  the workshop  had  a  considerable workload,  but  it  seemed well-suited  for  this  task  as  nearly  all organisations mentioned – the scientific community, the German Meteorological Service (DWD), and the German Space Agency (DLR) – were represented by their experts.   Goals of the Workshop  Before the workshop started the organizers had issued a two-paged document in order to guide the group and plenary discussions. Hence,  the working group  leaders and attendants were  in advance informed of the following goals of the workshop: Remarks on new technological approaches and their transfer into an operational environment  

• agreement on national user requirements for future operational satellite systems for Earth observation to be launched after 2015 going beyond operational meteorological satellites, but including them with priority 

• assessment of MTG pre-phase A studies and first activities for the EPS follow-on series as well as first GMES satellite building blocks for “Ocean-watch” and “Atmospheric Chemistry” 

• assessment of existing European environmental satellite sensors in order to point to improvements needed for future operational satellite series 

• inclusion of ground segment as well as data processing and archiving   Results of the Working Groups  The  results  and  recommendations  of  the  six  working  groups  Severe  Weather  Forecasting, Numerical Weather  Prediction,  Ocean,  Atmospheric  Chemistry,  Hydrology,  and  Climate  are presented in Chapter VI.    Overall Conclusions  

• long homogeneous global and regional time series of radiances and derived geophysical parameters are the key for a successful environmental monitoring as basis for intelligent decision-making. 

• adoption of the satellite climate monitoring principles proposed by the Global Climate Observing System (GCOS) 

• onboard calibration for all spectral ranges (UV, visible, SWIR, TIR, and microwaves) • intercalibration of satellite series should become a routine task for space agencies 

I.4

• recalibration of archived radiances after intercalibration attempts is a standard service • more emphasis for reprocessing in intervals agreed on • European contribution to a Global Precipitation Mission (EGPM) should become an 

operational sensor package now • better access to better re-analysed data  

Main Recommendations  European Polar System follow-on (EPS follow-on)  

• Instead of a bridging satellite (PEPSIS), a fourth Meteorological Operational Satellite (METOP4) should provide continuity until an EPS follow-on series is ready for launch. 

• The proposed bridging satellite (PEPSIS), if necessary at all, should not fall short of the capacities of the METEOP series, i.e. microwave sounding capacity has to be included besides the sounder IASI and the imager (AVHRR-type) 

 Satellite Series for Global Monitoring for Environment and Security (GMES-N)  

• Europe has to establish leadership in construction, operations, and exploitation of operational meteorological satellites through ESA, EUMETSAT, and ECMWF for all future GMES-N satellites. 

• Besides global climate change, major global change issues such as air and water pollution, soil degradation, loss of biodiversity need operational monitoring for better decision-making, thus needing an operational satellite series envisaged in the GMES-N satellites from Europe, jointly to be implemented by ESA, EUMETSAT, and the European Union. 

• International co-ordination of national services should be established such as to meteorological services are a prerequisite for the efficient use of GMES-N monitoring data. 

• EUMETSAT has to be tasked to care for the operational service for GMES-N satellites whenever atmospheric, sea surface, and meteorological land surface parameters are the main observables. 

• The EU, ESA, and EUMETSAT should soon agree on implementation rules for all GMES-N satellites. 

 Comments on all Operational Satellite Series  

• Intercalibration of satellites in a series as well as absolute calibration of a single satellite needs much more attention of space agencies in order to reach (climate) monitoring quality accurate enough for trend analyses. This task comprises: o re-analyses whenever major algorithm improvement has occurred o data archiving and dissemination centres including the experimental satellite data of 

the forerunner sensors, e.g. ERS1/2 and Envisat, for the forth-coming GMES-N sensors in order to have trend analyses capacity from 1991 onwards 

• Continuing free and open access to all data up to level 2, as with present operational meteorological satellites, is needed to guarantee full use for the benefit of many countries. This would turn European satellite series into one of the most efficient investments for the security of the citizens and for the full use and security of the infrastructure. 

  

I.5

I.6

Chapter II

Welcoming Speeches

(in German)  

Begrüßung durch den Vorstand des DLR Herr Dr. Ludwig Baumgarten

 Sehr geehrte Damen und Herren,  für  das  Deutsche  Zentrum  für  Luft-  und  Raumfahrt  begrüße  ich  Sie  auf  der  nationalen Arbeitstagung über operationelle Satellitensysteme der Erdüberwachung.   Wir freuen uns über das ungeteilte und große Interesse für diese Veranstaltung bei  

- Behörden,  - Wissenschaft,  - Industrie  - und nicht zuletzt bei den internationalen Organisationen  

o EUMETSAT,  o ESA,  o dem Europäischen Zentrum für mittelfristige Wettervorhersage (EZMW)  o und der World Meterological Organization (WMO).  

 Gleich zu Anfang möchte  ich mich  für die Unterstützung des Bundesministeriums  für Verkehr, Bau- und Wohnungswesen bedanken,  in deren Auftrag das DLR Raumfahrtmanagement diese Veranstaltung  gemeinsam  mit  dem  Deutschen  Wetterdienst  organisiert  hat.  Auch  dem Deutschen  Wetterdienst  möchte  ich  an  dieser  Stelle  für  die  gute  Zusammenarbeit  bei  der Vorbereitung danken.   Vor genau 5  Jahren sind wir schon einmal hier  im Kloster Walberberg zusammen gekommen, um  über  die  Nachfolger  der  derzeitigen meteorologische  Satellitensysteme Meteosat  Zweite Generation und das EUMETSAT Polarsystem (also die MetOP Satelliten) zu diskutieren. Zu  jener Zeit waren diese Nachfolgesysteme noch  in weiter Ferne. Es verlangte damals schon einiges an Mut und  Phantasie, bereits  Jahre  vor dem  Start des  ersten  Satelliten der  zweiten Generation Meteosat und des ersten MetOP Satelliten über deren Nachfolgeprogramme zu diskutieren und hierzu Nutzeranforderungen aus deutscher Sicht zu definieren. Dennoch war die Tagung hier in Walberberg überaus erfolgreich: Die Ergebnisse  

- sind international auf höchstes Interesse gestoßen,  - haben zahlreiche weiterführende Diskussionen angeregt  - und  den  internationalen  Definitionsprozess  der  zukünftigen meteorologischen 

Satellitensysteme Europas in Schwung gebracht.   Meine Damen und Herren,  seit dem ersten Walberberg-Workshop hat sich viel getan.   Der erste Satellit der zweiten Generation Meteosat wurde  im August 2002 gestartet und unter dem Namen Meteosat 8 erfolgreich in Betrieb genommen. Er bietet den operationellen Nutzern und der Wissenschaft seitdem eine enorm verbesserte Datengrundlage. Der zweite Satellit wird voraussichtlich noch  in diesem Jahr vom europäischen Weltraumbahnhof Kourou gestartet. Mit dem  dritten  und  vierten  Satelliten  wird  der  operationelle  Betrieb  der  zweiten  Generation Meteosat  bis  2015  gesichert  sein.  Anschließend  soll  eine  dritte  Satellitengeneration  den erneuten  technischen  Fortschritt  umsetzen  und  wiederum  für  einen  Qualitätssprung  der raumgestützten  meteorologischen  Informationen  sorgen.  Die  ersten  technologischen Voruntersuchungen  für  diese  3.  Generation    von  Meteosat  sind  im  Auftrag  der  ESA durchgeführt worden und werden Ihnen im Laufe dieser Veranstaltung vorgestellt.  Auch der erste Satellit des EUMETSAT Polarsystems – MetOP-A –  steht kurz vor dem Start. Er wird  einen  weiteren  wichtigen  europäischen  Beitrag  im  globalen  Netz  der  Wetter-  und 

II.1

Umweltsatelliten  leisten.  Insgesamt umfasst das EUMETSAT Polarsystem drei MetOP Satelliten, die bis ca. 2019 gemeinsam mit den US-amerikanischen NOAA Satelliten ein „Initial Joint Polar System“ bilden. Die Amerikaner haben  ihr Nachfolgesystem bereits definiert. Der europäische Beitrag  im Rahmen einer Nachfolge-Generation zum EUMETSAT Polarsystem  ist noch nicht klar zu erkennen. Auch hierzu erwarten wir von dieser Veranstaltung wichtige Impulse.   Das Deutsche  Zentrum  für  Luft-  und  Raumfahrt  engagiert  sich  seit  Jahren mit  zunehmender Intensität  in  der  Erderkundung.  Das  DLR  Raumfahrtmanagement  hat  beispielsweise  erste technische Untersuchungen zur Konzeption eines Kleinsatelliten  in Auftrag gegeben, um einen sicheren Übergang zu einem europäischen, meteorologischen Nachfolgesystem im polaren Orbit zu  gewährleisten.  Die  Ergebnisse  dieser  Untersuchungen  werden  in  dieser  Veranstaltung erstmals einem breiteren Fachpublikum vorgestellt.   Im  nationalen  Raumfahrtprogramm  wird  durch  das  DLR  auch  die  Entwicklung  innovativer Technologien  gefördert.  Im  Zusammenhang  mit  dieser  Veranstaltung  ist  insbesondere  das innovative MetImage Konzept  für ein abbildendes Radiometer zu nennen, das  Ihnen während dieser Arbeitstagung vorgestellt werden wird.  Die Raumfahrt  verhilft  zu  einem  enormen  Fortschritt bei dem Verständnis und Verstehen der Vorgänge  auf  unserem  Planeten. Gerade  in  diesen  Zeiten  eines  globalen  Klimawandels  sind umfassende Beobachtungen des Zustands unseres Planeten von fundamentaler Bedeutung. Die diesjährige  Hurrikan-Saison  in  Amerika  und  die  Taifune  im  pazifischen  Raum  mit  ihren furchtbaren  Auswirkungen  auf  dem  Festland  zeigen  nachdrücklich  die  Bedeutung  von Satellitensystemen  im  Routinebetrieb. Nicht  nur  in  diesem  Zusammenhang wird  eine  bessere Vernetzung  und  Koordination  der  weltweiten  Beobachtungssysteme  immer  wichtiger.  Die Meteorologie ist seit langem global gut organisiert und in dieser Hinsicht ein Vorreiter für andere Bereiche – insbesondere für GEOSS und GMES.  Auf international breiter Basis entsteht derzeit nach dem Vorbild der Meteorologie ein Globales Erdbeobachtungssystem von Systemen – kurz GEOSS, das den globalen Datenaustausch und die Koordinierung der internationalen Erdbeobachtungsprogramme verbessern soll.   Die  europäische  Initiative  zur  globalen Umwelt-  und  Sicherheitsüberwachung  –  kurz GMES  – wird einen zentralen Beitrag Europas zu GEOSS liefern. Der Fokus der Initiative liegt aber darauf, eine  eigenständige  Beobachtungskapazität  zur  Entscheidungsunterstützung  europäischer Umwelt-  und  Sicherheitspolitiken  zu  etablieren.  Die  Initiative  ist  mit  der  Entwicklung  eines breiten  Portfolios  von  marinen  Diensten,  Atmosphären-  und  Landanwendungen  und Unterstützung  zum  Krisenmanagement  erfolgreich  angelaufen. Die  bei  der  ESA  anstehenden Entscheidungen  zum  Weltraumsegment  für  GMES  im  kommenden  Monat  stellen  einen wichtigen  Meilenstein  dar,  um  die  notwendigen  langfristigen  Beobachtungssysteme sicherzustellen.    Meine Damen und Herren,  Diese Tagung ist keine reine Informationsveranstaltung. Ihr wesentliches Ziel ist es, einen Beitrag zur  Definition  der  nationalen  Anforderungen  an  die  künftigen  operationellen Erdbeobachtungsmissionen zu leisten. Entscheidend ist, dass Sie als Satellitennutzer aktiv in allen Definitionsphasen  mitarbeiten,  um  sicherzustellen,  dass  am  Ende  auch  Ihre  Bedürfnisse befriedigt werden.   Ich wünsche  Ihnen  für die Tagung viel Erfolg und hoffe, dass das Forum, wie bereits auf dem ersten Walberberg Workshop, für fruchtbare Diskussionen genutzt wird, um die Weichen für die kommenden Missionen der Erdbeobachtung zu stellen. Möge es gelingen. 

II.2

Begrüßung durch den Leiter des Referats LS 14 Bundesministerium für Verkehr, Bau und Stadtentwicklung

Herr Karl Trauernicht

 Sehr geehrte Damen und Herren,  mit diesem Workshop haben wir uns das Ziel gesetzt, in der Vorbereitung weiterer Programme der Erdfernerkundung einen deutlichen Fortschritt zu erzielen. Um hier voranzukommen, sind wir, wie ich meine, gut aufgestellt: -  Es liegen Erfahrungen aus einer Reihe von Anwendungen der Erdfernerkundung vor, -  Mit EUMETSAT haben wir einen Betreiber, der das Know How des operationellen Dienstes 

beherrscht und auch für neue Anwendungen gut gerüstet ist, -  die nationalen Wetterdienste haben sich auf konkrete Kooperationen verständigt, um  in der 

Nutzung von Satellitendaten für meteorologischen Anwendungen effizient vorzugehen, -  im Rahmen von GMES sind weitere Vorhaben der Erdbeobachtung definiert, die bei der ESA 

inzwischen konkret geplant werden, -  mit dem Aufbau eines globalen Erdbeobachtungssystems entsteht das „Gebäude“, welches 

in einer Gesamtschau die verschiedenen Dienste zusammenfasst und für die Politikberatung und die Forschung bereithält, 

-  wir  verfügen  auch  in  Deutschland  über  leistungsfähige  Industrieunternehmen,  die  ihre Produkte  in  den  Wettbewerb  einbringen  und  dem  Standort  Deutschland  einen angemessenen Platz in der Raumfahrt geben, 

-  nicht zuletzt haben wir im DLR einen Partner, der uns in Planung und Umsetzung kompetent berät. 

 Dem DLR und dem DWD möchte ich für die gute Vorbereitung dieses Workshops danken. Mein besonderer  Dank  gilt  Herrn  Prof. Grassl  für  seine  Bereitschaft,  die wissenschaftliche  Leitung dieser Veranstaltung zu übernehmen. Sie haben  in den zurückliegenden  Jahren  immer wieder auf die Bedeutung der satellitengestützten Datenerhebung hingewiesen und es sind nicht nur die Wetterdienste, die Ihnen für Ihr Engagement dankbar sind.  Die Erdfernerkundung braucht auch in Zukunft die Unterstützung von Politik und Wissenschaft. Sorge  bereitet mir,  dass  die  Erdfernerkundung mit  anderen  Feldern  der  Raumfahrt  in  einem harten Wettbewerb  um  knappe  Ressourcen  steht.  Von  allen  Raumfahrtaktivitäten  leistet  die Erdfernerkundung einen unmittelbaren und großen Beitrag für die Daseinsvorsorge auf diesem Planeten.  Parlament  und  Bundesregierung  stehen  daher  in  der  besonderen  Verantwortung, dafür zu sorgen, dass die Erdfernerkundung auch in Zukunft ihren Stellenwert bewahren kann. So habe  ich die Hoffnung, dass sich Deutschland trotz schwieriger Haushaltslage auf der ESA-Ministerratskonferenz  im  Dezember  in  Berlin  dazu  durchringen  wird,  das Erdbeobachtungsprogramm in akzeptabler Höhe zu zeichnen.  Gleichzeitig  sind  wir  aber  auch  aufgerufen,  bei  Planung  und  Umsetzung  zukünftiger Programme dem Kostenmanagement besondere Aufmerksamkeit zu schenken.  Die für diesen Workshop vorgesehenen thematischen Schwerpunkte vermitteln einen Eindruck von  der  Breite  der Anwendungen  der  Erdfernerkundung.  Ich  bin  davon  überzeugt,  dass mit dem  weiteren  Voranschreiten  der  Arbeiten  für  den  Aufbau  eines  globalen Erdbeobachtungssystems Stellenwert und Dynamik der Erdbeobachtung noch weiter zunehmen werden.  Uns allen wünsche  ich, dass wir am Mittwoch beim Rückblick auf den Workshop allen Anlass haben, ein positives Resultat dieser Veranstaltung zu ziehen.  

II.3

II.4

Begrüßung durch den amtierenden Präsidenten des DWD Herr Wolfgang Kusch

 Sehr geehrter Herr Dr. Baumgarten, sehr geehrter Herr Trauernicht, verehrter Herr Prof. Graßl, meine Damen und Herren,  ich sehe dieses Treffen als Folgeveranstaltung einer ähnlichen Konferenz im November 2000 an gleichem Ort.  Folgende Gründe sprechen für diese Veranstaltung:

1.   Bei EUMETSAT stehen im kommendem Jahr Entscheidungen zu den Machbarkeitsstudien (Phase-A-Studien) für eine 3. Meteosat -Generation an; 

2.   Bei EUMETSAT  laufen die ersten Planungen zu einem Nachfolgesystem zum EUMETSAT Polar System (EPS) an – derzeit werden die Nutzeranforderungen zusammengetragen; 

3.   Auch  bei  ESA  stehen  Entscheidungen  zu  zukünftigen  Aktivitäten  im  Bereich  der Erdbeobachtung an. Es  ist uns wichtig, dass die ESA weiterhin eine bedeutende Rolle auf dem Gebiet  der  Entwicklung  und  Erprobung  neuer  Weltraumtechnologien  und  Missionen  zur Erdbeobachtung spielen kann.  

4.   Bei  EU  und  ESA  werden  Entscheidungen  zu  GMES  (Global  Monitoring  for  the Environment  and  Security)  erwartet,  ebenso  eine  Konsolidierung  der  Beiträge  Europas  zum globalen System der Systeme für die Erdbeobachtung. 

Als Ziel der Veranstaltung sehe ich: 

• dass  die  Anforderungen  der  Nutzer  in  Deutschland  an  zukünftige  operationelle Satellitensysteme abgestimmt und konsolidiert werden;

• die  Erarbeitung  von  nationalen  Positionen,  die  dann  nach Möglichkeit  einhellig  von  allen mitgetragen und vertreten werden;

• dass  eine  fachliche  Basis  geschaffen  wird  mit  Empfehlungen  für  nationale Entscheidungsträger und Delegierte in internationalen Gremien.

Zur Bedeutung der Satelliten für den DWD:  Der  Deutsche  Wetterdienst  nutzt  seit  1966  Satellitendaten.  Sie  sind  ein  wesentlicher  und unverzichtbarer  Bestandteil  des  meteorologischen  Beobachtungssystems,  Satellitenfernerkundung und andere Meßsysteme ergänzen sich gegenseitig.  • Satellitendaten    liefern  die  Eingangsdaten  unter  anderem  für  die  numerische 

Wettervorhersage, genauer für die Datenassimilation, zur möglichst korrekten Erfassung der Ausgangssituation der Simulationsrechnungen.  

• Im praktischen Wettervorhersagedienst dienen sie zur Erfassung und Verfolgung gefährlicher Wetterereignisse,  für möglichst präzise Vorhersagen des genauen Orts, Zeitpunkts und der Intensität gefährlicher Wetterereignisse  im Bereich von wenigen Stunden (sog. Nowcasting) sowie zur Überwachung der Richtigkeit der numerischen Wettervorhersagen. 

• Der DWD nutzt auch Satelliteninformationen zur Überwachung der Zusammensetzung der Atmosphäre.  Das  Meteorologische  Observatorium  Hohenpeißenberg  des  DWD  ist  am EUMETSAT Ozon-SAF mit  beteiligt  und  leistet wesentliche  Beiträge  zur  Verifizierung  und Validierung von den Spurengasmessungen der Satelliten.

• Der  DWD  nutzt  Satellitendaten  im  Bereich  des  Überwachung  des  Klimas.  Mit  der Leitfunktion  der  EUMETSAT  „Satellite  Application  Facility  on  Climate  Monitoring“,  kurz 

II.5

„Klima-SAF“, hat der DWD  eine besondere Verantwortung und  Spitzenstellung  im  relativ neuen Bereich der Satellitenklimatologie. Das SAF-Programm wird zukünftig wesentlich den operationellen Betrieb der Wetterdienste mitgestalten und ist von besonderer Bedeutung für die Zukunft.

 Sehr verehrte Damen und Herren,  und wie sieht die Zukunft aus?  Jede  neue  Satellitengeneration wird  das  Nutzungsspektrum,  nicht  nur  für  die Meteorologie, enorm erweitern: 

• Mit den multispektralen Daten und einer zeitlichen Wiederholrate von 15 Minuten liefert die Zweite Meteosat-Generation  eine Vielzahl breiterer Nutzungsmöglichkeiten  als bisher. Das Nutzungspotential  dieser  neuen  Meteosat-Generation  ist  derzeit  jedoch  noch  nicht  voll ausgeschöpft und es laufen noch entsprechende Forschungs- und Entwicklungsaktivitäten. 

• Der Start von MSG-2, also dem 2. Satelliten der neuen Meteosat-Generation  ist derzeit für den 20. Dezember 2005 geplant. Noch 2 weitere MSG-Satelliten werden folgen. 

• Der erste polarumlaufende Satellit von EUMETSAT mit dem Namen METOP ist für Ende Juni 2006 vorgesehen. Insgesamt ist der Start von 3 METOP-Satelliten beschlossen. 

• Auch wenn die Zweite Meteosat Generation erst seit 2004 voll operationell ist und der erste der polarumlaufenden Satelliten von EUMETSAT noch nicht einmal im Orbit ist, so muss jetzt schon mit  den Vorbereitungen  der Nachfolgegenerationen  begonnen werden.  Es werden z.T. technologische Neuentwicklungen nötig, die Beschlussprozeduren sind sehr  langwierig, wegen der erforderlichen Einstimmigkeit bei EUMETSAT oft zu langwierig, und wir sind mit den Planungen jetzt schon unter Zeitdruck.  

• Die Dritte Meteosat- Generation und das EPS-Nachfolgesystem  (= das Nachfolgesystem  für die METOP-Satelliten) soll etwa im Zeitraum von 2015 bis 2030 im Einsatz sein. 

 Meine Damen und Herren,  • dieser Workshop  ist eine nationale Veranstaltung. Wichtig  ist aber bei den Planungen auch 

das  internationale Umfeld  im Bewusstsein zu haben und die Planungen außereuropäischer Satellitenbetreiben mit  zu berücksichtigen,  soweit dies möglich  ist. Wir  freuen uns daher, dass eine Vertreterin vom WMO-Sekretariat an dieser Veranstaltung teil nimmt. 

• Wichtig  ist  auch,  dass  bei  dieser  Veranstaltung  realistische  Empfehlungen  und  Visionen entwickelt werden, d.h. dass  zukünftige operationelle  Satelliten-  Erdbeobachtungssysteme diskutiert werden, die einerseits weitgehend den Nutzerbedarf abdecken, andererseits aber auch  noch  finanzierbar  sind.  Gerade  in  der  derzeitigen  Lage  der  öffentlichen  Haushalte kommt dem Aspekt der Finanzierbarkeit eine besondere Bedeutung zu.  

 Meine Damen und Herren,  • in dem vorgenannten Sinne wünsche ich der Veranstaltung viel Erfolg. • Das  Treffen  ist  eine  gemeinsame  Veranstaltung  von  DLR  und  DWD.  Die  Hauptlast  trägt 

jedoch das DLR, sowohl vom der Organisation als auch den Kosten her.  Ich möchte daher dem DLR meinen besonderen Dank hierfür aussprechen. 

• Mein Dank gilt aber auch den Leitern den der Arbeitsgruppen und all denen, die aktiv an der Vorbereitung der Veranstaltung beteiligt waren. 

• Doch  nun  Schluss  mit  den  Begrüßungsworten.  Die  fachliche  Leitung  der  gesamten Veranstaltung  liegt bei Prof. Graßl und wir  freuen uns  jetzt auf  seinen   Übersichtsvortrag „Satelliten und das System Erde“. 

II.6

Chapter III

International Activities

GEO/GEOSS & the WMO Space Programme

 

Global Earth Observation

System of Systems (GEOSS)

U. Gärtner

III.1

III.2

GEOSS

Global Earth Observation System of Systemseine Initiative der

GEOGroup on Earth Observation

H. Staudenrausch, W. Kleine-Beek, U. Gärtner

Gliederung

Mandat und HistorieZielsetzungAktueller StandInternationale AktivitätenEuropäischer BeitragNationale GEOSS-Aktivitäten und ProblemstellungINSPIRE- RichtlinieIMAGI und GDI-DE

III.3

Mandat und Historie

G8 Gipfel (Evian, Juni 2003): Aktionsplan zu Wissenschaft & Technologie– Eine der Top-Prioritäten ist „ Stärkung der internationalen

Zusammenarbeit bei der globalen Erdbeobachtung“Erster Erdbeobachtungsgipfel (Washington, Juli 2003) als direkte Folge von Evian: 33 Staaten, 25 int. Organisationen– Beschluss einer Deklaration mit Bekräftigung der G8 Ziele– GEO, die internationale Ad Hoc Group on Earth Observations, wird

eingesetzt, um einen Zehnjahresplan zur Umsetzung abzustimmenZweiter Erdbeobachtungsgipfel (Tokio, Juli 2004); 46 Staaten, 28 int. Organisationen– Beschluss eines Rahmendokuments

Dritter Erdbeobachtungsgipfel (Brüssel, Februar 2005): 55 Staaten, 35 int. Organisationen– Beschluss des GEOSS Zehnjahres-Implementierungsplans

Zielsetzung

Washington-Deklaration (= Ziele der GEO): Schaffung eines umfassenden, koordinierten und nachhaltigen Erdbeobachtungssystems durch:– Schließung bestehender Datenlücken– Integration und offener, kostengünstiger Austausch von

Erdbeobachtungen von Satelliten, Flugzeugen und In-Situ Systemen (gemäß internationaler Vereinbarungen und nationaler Gesetze)

– Verbesserung Situation der Entwicklungsländer– 10-Jahresplan zur Implementierung auf Basis existierender Systeme

Tokio-Rahmendokument: Aufbau von GEOSS (Globales System der Erdbeobachtungssysteme)– Schaffung einer zwischenstaatlichen Managementstruktur, die den

Aufbau von GEOSS steuert– Identifizierung von 9 „socio-economic benefit areas“ als thematische

GEOSS Gliederungselement

III.4

GEOSS Zehnjahres-ImplementierungsplanBeschreibung des Nutzens von GEOSS in 9 sozioökonomischen FeldernBeschreibung des aktuellen Status inklusive der Defizite und AnforderungenFormulierung einer Architektur für ein System der Systeme Formulierung kurz-, mittel und langfristiger Ziele/MaßnahmenGEO Managementstruktur: Jährlichen Vollversammlungen, Exekutivkomitee, beigeordneten Gremien (z.B. wiss.-tech. Beratung, etc.)Einrichtung eines GEO Sekretariats bei der WMO, Finanzierung durch freiwillige Beiträge der Mitglieder

Aktueller Stand GEOKonstituierende GEO Vollversammlung am 3./4. Mai in Genf– Wahl des Exekutivkomitees (EC) mit12 Mitgliedern: EU-KOM, USA,

China, Südafrika (Co-Vorsitzende), Deutschland, Italien, Brasilien, Honduras, Marokko, Japan, Thailand, Russland

GEO Sekretariat hat Räumlichkeiten bei der WMO bezogen– Vorläufiges Team von 6 Personen– EC hat J. Achache (F) zum Direktor bestimmt. Amtsantritt 1. September. – Danach Personalausschreibung; bis Ende 2005 volle Arbeitsfähigkeit– Entwicklung des Arbeitsplans 2006 hat begonnen

Erste nennenswerte Aktivitäten der GEO zur Implementierung von GEOSS spätestens ab Beginn 2006Beteiligung Deutschlands an Exekutivkomitee und im GEO Sekretariat wichtig, um Einfluss auf GEOSS sicher zu stellen

III.5

GEO Gesamtstruktur (aktueller Entwurf)

Coordination

GEO Plenary

Capacity Building & Outreach

Architecture & Data

Science & Technology

Executive Committee

Director

Management andCoordination Team

Work Plan Team

ExpertCommunities

Advice & Recommendations

Coordination &Facilitation

Leadership Oversight

ImplementationGuidance

Guidance and Participation

GEO SecretariatCommittees

User Interface

DialogueInputs

Vorsitz Deutschland

GMES -Aktivitäten als gemeinschaftliche europäische Beiträge zu GEOSS

nationale Beiträge (finanziell und /oder materiell) vonden EU-Staaten erwünscht, z.T. angekündigt

Europäischer Beitrag zu GEOSS

EU-Kom ist Mitglied der GEO, unterstützt finanziell

III.6

Nationale Aktivitäten zu GEOSSGEO Gremienarbeit– Nationale Meinungsbildung zu aktuellen Themen, Ressortabstimmung,

EU Koordinierung– GEO Gremiensitzungen: Vorbereitung, Teilnahme, Vertretung D-Position,

Berichterstattung– Information aller nationalen Stakeholder– Werbung für deutsche Beteiligung in weiteren Gremien

Entwicklung eines nationalen GEOSS Implementierungsplans (DGIP)– Abbildung des internationalen Plans auf nationale Gegebenheiten– Nationale Anforderungen, Beiträge und Strukturen– Zur Erarbeitung des DGIP führt BMVBW ein Projekt durch

Stabiler nationaler Koordinierungsmechanismus hierfür notwendigEnge Verzahnung mit nationalen Aktivitäten zu GMES und INSPIRE sowie zu IMAGI und GDI-DE notwendig

Zusammenhang zwischen GEO/GEOSS, GMES,INSPIRE, IMAGI/GDI-DE

Koordinierung in bestehenden Gremien – Gegenwärtige Situation – Organisatorisches Ziel

Projekt DGIP – Aufgaben– Projektorganisation– Mitwirkung und Beteiligung zuständiger Einrichtungen

III.7

Funktionaler Zusammenhang zwischen GEOSS - GDI-DE/NGDB – GMES/INSPIRE

GDI-DE/NGDB

Systeme vonBund und Ländern,z.B.:

GEOSS

GMES/INSPIRE

Systeme int. Organisationenund außereuropäischer Staaten,z.B.:

SchnittstellenDatenpolitiken, etc.

Nutzungin D

Systeme der EU (Kommissionplus Mitgliedstaaten)

etc.

Zusammenführung

ZADI

DFD

WSV

DWD

BSH

LVAs

UDKs

Erdbeobachtungs- undVermessungssysteme

WWW

GOOS

US-IEOS

GTOS

GCOS

GAW

WDC

etc.

etc.

D-GEO

NationaleGMES

Koordinat.

Nationale Aktivitäten und Koordinierung in zuständigen Gremien: Gegenwärtige organisatorische Situation

IMAGI/LG GDI-DE

Bund, LänderKommunen

GEO

GMESGremien

Internationale Organisationen,ca. 60 Staaten

EU-KOM, ESA,Mitgliedstaaten

„EU-GEO“

Ständiger Koordina-tionsmechanismus

INSPIREGremien

?

Ad hocAbstimmung

Delegation Information

Zeichenerklärung

III.8

Nationale Aktivitäten und Koordinierung Organisatorisches Ziel

IMAGIKoordination

GDI-DE

Deutschland

GEO

GMES/INSPIREGremien

WeltEuropa

GEO-Ange-legenheiten

EU Schnitt-stelle

Nutzerkoordination GEOKomitee

GEOKomitee

Beratung

Nutzerin D

Nutzerin D

GlobaleWiss.& Tech.

GlobaleWiss.& Tech.

GlobaleNutzer

GlobaleNutzer

WissenschaftTechnik in D

WissenschaftTechnik in D

Übergreifende nationaleKoordinationsstruktur

Nationale Aktivitäten und Koordinierung

Mögliche Schritte

LG GDI-DE

D-GEO

GMESKoordination

INSPIREKoordination

IMAGI

LG GDI-DE

D-GEO

GMESKoordination

INSPIREKoordination

IMAGI

Vereinbarungen zwischenbestehenden Gremien/Initiativen

Heute Kurzfristig Mittelfristig

GegenseitigeInformation

Redundanzfreies Organisationsmodellzur übergreifenden Koordination

III.9

Vorschläge für Integration D-GEO – IMAGI

Ausbau bestehender Zusammenarbeit– Regelmäßige Berichterstattung zu GEO im IMAGI durch BMVBW

Zugang zu allen GEO Dokumenten – Beteiligung IMAGI an nationaler Abstimmung der D-Positionen für

GEO Meetings Erweiterung des Mandats von IMAGI um Zuständigkeit auch für Schnittstellen der GDI-DE zu internationalen AktivitätenMitwirkung von IMAGI- Ressorts bei Projektsteuerung DGIPMitarbeit der Geschäftsstelle IMAGI/GDI-DE (und anderer) in DGIP Projekt an verantwortlicher StelleGemeinsames Ziel eines übergreifenden Organisationsmodells

Projekt DGIP: Ziel und Aufgabenstellung

Schaffung einer Wissensbasis für weitere D-GEO Aktivitäten– Was braucht Deutschland von GEOSS? Nationale Anforderungen– Was kann Deutschland in GEOSS einbringen? Nationale Beiträge

Schaffung einer Koordinationsstruktur für weitere D-GEO Aktivitäten– Wie organisieren wir uns für GEOSS in Deutschland, um diese Fragen

effektiv und fortlaufend bearbeiten zu können Nationale StrukturenGEOSS Bereiche

versus ArbeitspaketeKata-

strophenGesund-

heit Energie Klima Wasser WetterKüsten und

MeereLand-

wirtschaft Bio-

diversitätNutzung BedarfNationale Beiträge und Komponenten Datenpolitik DatenstandardsBildung von KapazitätenStrukturen der Zusammenarbeit

III.10

BeschlüsseAufträge

Wissenschaftlich-technischer

BeiratVertreter aus Verwaltung,Wissenschaft, Wirtschaft

Projekt DGIP: Projektorganisation (Entwurf)

ProjektgruppeBeteiligung/Mitwirkung zuständiger Einrichtungen,

z.B. für APs Datenstandards/-politik, Kapazitätenbildung...

Marine und Küstensysteme

Projektlenkungsgruppe berufen in Abstimmung mit IMAGI

Wettervorhersage

Land- und Forstwirtschaft

Wasserwirtschaft

Fragen des Klimawandels

Energiemanagement

Öffentliche Gesundheit

Katastrophenmanagement

Artenvielfalt

BerichteVorlagen

Beratung, Reviews

Anfragen

GEOSS Focal Points

Anfragen Informationen

Projekt DGIP: Beteiligung von IMAGI Ressorts

Projektsteuerung– Projektlenkungsgruppe in Abstimmung mit IMAGI– Berichterstattung im IMAGI

Projektmanagement– Beteiligung an bzw. Übernahme von Arbeitspaketen durch

zuständige bzw. geeignete EinrichtungenProjektdurchführung– Nominierung von Ansprechpersonen („GEOSS Focal Points“) in

öffentlichen Einrichtungen und deren Nutzung für ProjektaufgabenProjektbegutachtung– Mitwirkung in geplantem Wissenschaftlich-Technischen Beirat

III.11

III.12

Panning of Future Meteorological Satellite Systems outside Europe

Dr. Jian Liu

WMO

III.13

III.14

Planning of Future Meteorological Satellite Systems outside Europe

Dr Jian LiuWMO Space Programme

World Meteorological Organization

• WMO Space Programme

• The present space-based GOS (2005)

• Approved plans

III.15

WMO Space Programme

• The WMO Space Programme agreed upon by the Fourteenth WMO Meteorological Congress in May, 2003 and entered into force on 1 January 2004, provides monitoring of the space-based component of the GOS and, specifically, of the progressive extension from the traditional operational “core” to a wider system inclusive of contributions from R&D satellites as well asthe transition of appropriate R&D missions and instruments into operational services.

• Decided to initiate a new major WMO Space Programme as a cross-cutting programme to increase the effectiveness and contributions from satellite systems

• CBS lead Technical Commission

WMO Space Programme Long-term Strategy

To make an increasing contribution to the development of the WWW GOS, as well as to the other WMO-supported Programmes and associated observing systems (such as AREP’sGAW, GCOS, WCRP, HWR’s WHYCOS and JCOMM’s implementation of GOOS) through the provision of continuously improved data, products and services, from both operational and R&D satellites, and to facilitate and promote their wider availability and meaningful utilization around the globe

III.16

International coordination

CGMS (Coordination Group for Meteorological Satellites)CEOS (Committee on Earth Observation Satellites)IGOS (Integrated Global Observing Strategy) PartnershipCOPUOS (UNISPACE III)GEO and its GEOSS (WWW’s space-based GOS, a core GEOSS component for its space component)

WMO observational requirements

CBS-13, the WMO can assess how well satellite capabilities

meet their user requirements

OPAG-IOS/ET-ODRRGOS-7 (Expert Team on Observational Data Requirements and Redesign of the Global

Observing System) , collection of the requirements for observations to meet the needs of all WMO Programmes and also cataloguing the current and planned provision of observations from environmental satellites and in situ systems.

RRR( Rolling Requirements Review )

III.17

The space based component of the Global Observing System

The Global Observing System(GOS) is coordinated by the WMO in support of all its programmes:

WWW (World Weather Watch)WCP (World Climate Programme), including:

_ World Climate data and Monitoring Programme_ World Climate Applications and Services Programme_ World Climate impact Asssessment and Response strategies

Programme_ World Climate research Programme_ Global climate Observing System

AREP (Atmospheric research and Environment Programme), including:_ Global Atmosphere Watch_ World Weather research Programme_ Tropical Meteorology research Programme_ Physics and Chemistry of Clouds and Weather Modification research Programme

AMP (Applications of Meteorology Programme), including:_ Agricultural Meteorology Programme_ Aeronautical meteorology Programme_ Marine Meteorologu and Associated Oceanographic Activities Programme_ Public Weather Services Programme

The Global Observing System(GOS) is coordinated by the WMO in support of all its programmes (2)

III.18

HWRP (Hydrology and Watcer Resources Programme), including

_ Operational Hydrology Programme Basic System_ Operational hydrology Programme Applications and

Environment_ Programme on Water related issues

Education and training ProgrammeTechnical Cooperation ProgrammeRegional programmeWSP (WMO Space Programme)WDPMP (natural Disaster Prevention and Mitigation Programme)

The Global Observing System(GOS) is coordinated by the WMO in support of all its programmes (3)

Towards an integrated WMO GOS (continued)

Three Earth-system domains and two cross-cutting sets of requirements for atmosphere, ocean, land, climate and natural disaster reduction

Three Earth-system domains

Atmosphere meeting the needs of

• operational WWW, aviation meteorology (CAeM) and agricultural meteorology (CAgM)

• weather research WWRP (CAS)• atmospheric chemistry, GAW – CAS

III.19

Towards an integrated WMO GOS (continued)

Three Earth-system domains (continued)

Ocean meeting the needs of

• Global Ocean Observing System (GOOS) • JCOMM

Towards an integrated WMO GOS (continued)

Three Earth-system domains (continued)

Land surface and fresh water meeting the needs of

• World Hydrological Cycle Observing System (WHyCOS)• Hydrology and Water Resource Programme (HWR) as

articulated through CHy• WMO-co-sponsored Global terrestrial Observing System

(GTOS)• CAgM

III.20

Towards an integrated WMO GOS (continued)

Two cross-cutting sets of requirements

Climate, incremental to, and integrating across, the domain-based observing systems meeting the needs of

• climate research, (WCRP)• climate policy, articulated through SBSTA, COP, based on information from IPCC etc.• climate monitoring and services, articulated through CCl, CAgM, CHy

Natural disaster reduction, incremental to, and integrating across, the domain-based observing systems to support WMO Natural Disaster Prevention and Mitigation Programme

Towards an integrated WMO GOS

Space-based sub-system of an integrated WMO global observing system

• operational meteorological polar orbiting satellites• operational meteorological geostationary satellites• environmental Research and Development satellite

constellations

III.21

WMO space-based sub-system of the WWW’s Global Observing System (2005)

Unparalleledinternationalcooperation has been achieved in satellite activities*

Space-based sub-system of GOS (2005)Geostationary

EUMETSAT• Meteosat-8 at 3.4°W• Meteosat-7 at 0°• Meteosat-6 at 10°E• Meteosat-5 at 63°E

Japan• GMS-5/MTSAT at 140°E

People's Republic of China • FY-2B/C at 105°ERussian Federation

• GOMS-N1 at 76°E

United States of America• GOES-12 at 75°W• GOES-11 at 103°W• GOES-10 at 135°W• GOES-9 at 155°E• GOES-8 at 165°E

PolarPeople's Republic of China• FY-1C, 1D seriesRussian Federation

• METEOR seriesUnited States of America

• NOAA series

R&DCNESESAJAXANASAROSKOSMOS

III.22

Geostationary meteorological satellites

The mission of geostationary satellites is, as a core:

To provide cloud imagery at 30 min intervals for the purpose of nowcasting,

To derive wind vectors by tracking cloud or water vapour features, for the purpose of NWP.

Current Geostationary Satellites Coordinated within CGMS(as of September 2005)

Geographic area Satellite Position Status (Sept 2005) Main instruments Meteosat-8 3.6°W Operational SEVIRI, GERB

Meteosat-7 0° Redundant (for transition) MVIRI 30°W - 30°E

Europe, Africa, Eastern Atlantic Meteosat-6 9.3°E Backup + Rapid scan MVIRI Meteosat-5 63°E Operational MVIRI Kalpana 74°E Operational VHRR 30°E - 90°E

Western Asia, Indian Ocean FY-2A 86.5°E Partial backup S-VISSR INSAT-3A 93.5°E Operational VHRR, CCD FY-2C 105°E Operational S-VISSR 90°E - 150°E

East-Asia, Australia, West- Pacific FY-2B 123.5°E Partial backup S-VISSR MTSAT-1R 140°E Operational JAMI 150°E - 150°W

Oceania, Central Pacific GOES-9 155°E Operational (with limitation)

IMAGER, SOUNDER

GOES-10 135°W Operational IMAGER, SOUNDER150°W - 90°W

East-Pacific, North-West America GOES-11 105°W Standby IMAGER, SOUNDER

90°W - 30°W South America, NE America, West Atlantic

GOES-12 75°W Operational IMAGER, SOUNDER

III.23

Sun synchronous meteorological satellites

The mission of sunsynchronous satellites is, as a minimum:

To provide temperature and humidity global sounding for the purpose of NWP;

To provide imagery mission to high latitudes inaccessible to geostationary satellites.

Current Polar-Orbiting Satellites Coordinated within CGMS(as of September, 2005)

Time Satellite LST Instruments

NOAA-18 01.54 d AVHRR/3, HIRS/3, AMSU-A, M, SBUV/2,SEM/2, Argos,SARSAT00-03

NOAA-16 02.54 d AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos,SARSAT

03-06 NOAA-15 06.00 d AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SEM/2, Argos,SARSAT

DMSP F13 06.25 d SSM/I, SSM/T + others not availableDMSP F16 08.00 d SSMIS06-09FY-1D 08.20 a MVISR, SEM

Meteor-3M 09.15 d MR-2000M1, Klimat, MIVZA, MTVZA, MSU-E, SAGE-III,SFM-2, KGI-4C, MSGI-5EI

DMSP F15 09.15 d SSM/I, SSM/T, SSM/T-2 + others not available09-12

NOAA-17 10.24 d AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos,SARSAT

NOAA-18 13.54 a AVHRR/3, HIRS/3, AMSU-A, MHS, SBUV/2,SEM/2, Argos,SARSAT12-15

NOAA-16 14.54 a AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos,SARSAT

15-18 NOAA-15 18.00 a AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SEM/2, Argos,SARSAT

DMSP F13 18.25 a SSM/I, SSM/T + others not availableDMSP F16 20.00 d SSMIS18-21FY-1D 20.20 a MVISR, SEM

Meteor-3M 21.15 a MR-2000M1, Klimat, MIVZA, MTVZA, MSU-E, SAGE-III,SFM-2, KGI-4C, MSGI-5EI

DMSP F15 21.15 a SSM/I, SSM/T, SSM/T-2 + others not available21-24

NOAA-17 22.24 a AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos,SARSAT

III.24

R&D programmes of GOS interest

ESA programmes have three activity lines:

Earth Watch programmes, inclusive of their predecessor realisations;the ERS-1 / ERS-2 / Envisat programmes ;

the Earth Explorer programme.

R&D programmes of GOS interest

NASA programmes

the Nimbus programme, SeaSat, ERBS, UARS; the Landsat programme; the EOS programme;the Earth System Science Pathfinder programme; a selection of other missions relevant for GOS.

III.25

R&D programmes of GOS interest

The JAXA programmesSatellite Launch End of

service Height LST Status (mid-2005) Instruments

MOS-1 19 Feb 1987 29 Nov 1995 908 km 10:15 Inactive MESSR, VTIR, MSR

MOS-1B 7 Feb 1990 25 Apr 1996 908 km 10:33 Inactive MESSR, VTIR, MSR

JERS 11 Feb 1992 11 Oct 1998 568 km 10:45 Inactive SAR, OPS

ADEOS-1 17 Aug 1996 30 Jun 1997 797 km 10:30 Inactive

OCTS, AVNIR, NSCAT, TOMS, POLDER, IMG, ILAS, RIS

ADEOS-2 14 Dec 2002 25 Oct 2003 812 km 10:30 Inactive AMSR, GLI, SeaWinds,

ILAS-II, POLDER, DCS

ALOS Dec 2005 expected 2010 692 km 10:30 Close to be

launchedPRISM, AVNIR-2, PALSAR

GOSAT Aug 2008 expected 2013 666 km 13:00 Planned TANSO-FTS, TANSO-

CAI

R&D programmes of GOS interest

The CNES programmes

CNES main Earth Observation programmes under two headings :

land observation ocean and atmosphere missions

III.26

R&D programmes of GOS interestChronology of CNES land observation missions

(in bold the satellites active in Sept 2005)

Satellite Launch End of service Height LST/incl. Status (Sept

2005) Instruments

SPOT-1 22 Feb 1986 …… 2003 822 km 10:30 Inactive HRV

SPOT-2 22 Jan 1990

expected 2005 822 km 10:30 Partly

operational HRV, DORIS

SPOT-3 26 Sep 1993 14 Nov 1996 822 km 10:30 Inactive HRV, POAM-2, DORIS

SPOT-4 24 Mar 1998

expected 2006 822 km 10:30 Operational

HRVIR, Vegetation, POAM-3, SILEX, PASTEC, DORIS

SPOT-5 4 May 2002

expected 2008 822 km 10:30 Operational HRG, HRS, Vegetation,

DORIS

Pléiades-1 end-2008 expected 2013 694 km 10:15 Under

development HR

Pléiades-2 early 2010

expected 2015 694 km 10:15 Planned HR

R&D programmes of GOS interestChronology of CNES ocean and atmosphere missions

(in bold the satellites active in Sept 2005)

Satellite Launch End of service Height LST/incl. Status (Sept

2005) Instruments

TOPEX-Poseidon

10 Aug 1992

expected 2006

1336km 66° Operational NRA, SSALT, TMR,

DORIS

JASON 7 Dec 2001

expected 2006

1336km 66° Operational Poseidon-2, JMR,

DORIS OSTM(JASON-2) 2008 expected

20131334km 66° Planned Poseidon-3, AMR,

DORIS

PARASOL 18 Dec 2004

expected 2006

705km 13:30 Operational POLDER+

Megha-Tropique end-2009 expected

2014867km 20° Planned MADRAS, SAPHIR,

ScaRaB

III.27

R&D programmes of GOS interest

The ISRO programmesISRO is running the IRS (Indian Remote-sensing Satellite)programme since 1988.

Satellite Launch End of service Height LST

Status

(Sept 2005) Instruments

IRS-P4 (OceanSat-1) 26 May 1999

expected 2005

720km 12:00 Operational OCM. MSMR

IRS-P5 (CartoSat-1) 5 May 2005

expected 2010

618km 10:30 Operational PAN-A, PAN-F

IRS-P6 (ResourceSat-1)

17 Oct 2003

expected 2009

817km 10:30 Operational LISS-3, LISS-4,

AWiFS

R&D programmes of GOS interest

TheThe RosKosmosRosKosmos programmesprogrammesSeveral R&D satellite series and single missions have been

implemented and are planned by the Russian Space Agency, generally as Russia/Ukraine cooperation. For the purpose of GOS,

the series Resurs (including the new Monitor-M), Okean (including SICH).

III.28

Future Geostationary Satellites Coordinated within CGMS

(as of September,2005)

Satellite Launch End of service Operator Status (Sept 2005) Instruments

MTSAT-2 March 2006

expected 2016 Japan Ready for launch

IMAGER, DCS

GOES-13 Nov 2005

expected 2011 USA / NOAA

Ready for launch

IMAGER, SOUNDER, DCIS, SEM, SXI, GEOSAR

GOES-14 Apr 2007 expected 2014 USA / NOAA

Being built IMAGER, SOUNDER, DCIS, SEM, SXI, GEOSAR

GOES-15 Oct 2008 expected 2015 USA / NOAA

Planned IMAGER, SOUNDER, DCIS, SEM, SXI, GEOSAR

GOES-R Apr 2012 expected 2019 USA / NOAA

Being defined

ABI, HES + TBD

Location Geostationary orbit; 35,800km above the equator at 135 or 145 degrees east (in-orbit back-up) and 140 degrees east (operational)

Attitude control Three-axis stabilization Designed lifetime

5 years for the meteorological function, 10 years for the aviation function

Channel and wavelength

VIS 0.55 to 0.90 micrometer IR1 10.3 to 11.3 micrometer IR2 11.5 to 12.5 micrometer IR3 6.5 to 7.0 micrometer IR4 3.5 to 4.0 micrometer

Spatial resolution

1 km for VIS and 4 km for IR at sub-satellite point

Brightness level 10 bits (1024 gradations)

Major Characteristics of MTSAT-2

MTSAT-2 will be launched by H-IIA rocket from TNSC within this fiscal year, by March 2006

III.29

Plans for GOES next generation starting with GOES-R (GOES-16)

ABI (Advanced Baseline Imager), with about 16 VIS/IR channels, resolution 2 km for 12 channels, 0.5 km for one VIS channel, 1.0 km for other three SW channels, cycle 15 min for full disk, 5 min for 3000 x 5000 km2 (“CONUS”, Continental United States), 30 s for 1000 x 1000 km2;HES (Hyperspectral Environmental Suite), full disk sounding, limited-area nowcasting and coastal water observation (ocean colour). Spectral range for sounding from 4.44 m (option 3.68 m) to 15.38

m (with gaps) with resolving power changing with band from 1000 to 3000, plus one VIS channel; for coastal waters about 14 VIS/NIR channel of 20 nm width and possibly 3 SWIR channels of 30 or 50 nm width and the split IR window at 11 and 12 m. Geometric resolution: 2 to 10 km for sounding (0.5-1.0 km for the VIS channel), 0.15 to 2 km for coastal waters. Cycle: maximum 1 h for full disk, down to minutes depending on operating mode. GLM (Geostationary Lighting Mapper), CCD camera operating at 777.4 nm (O2), resolution 8 km, MW/Sub-mm imaging/sounder for precipitation.

Future USAUSA Geostationary MeteorologicalSatellite Systems

III.30

Future Geostationary Satellites Coordinated within CGMS

(as of September,2005)

Satellite Launch End of service Operator Status(Sept 2005) Instruments

Meteosat-9 Dec 2005 expected 2012 EUMETSAT Close to be launched

SEVIRI, GERB, DCS, GEOSAR

Meteosat-10 2009 expected 2016 EUMETSAT Being built SEVIRI, GERB, DCS, GEOSAR

Meteosat-11 2011 expected 2018 EUMETSAT Planned SEVIRI, GERB, DCS, GEOSAR

MTG 2015 expected 2020 EUMETSAT Being defined Being defined

Elektro-L-1 2007 expected 2016 Russian Being built MSU-GS, DCS, HMS, GEOSAR

Elektro-L-2 2009 expected 2018 Russian Planned MSU-GS, DCS, HMS, GEOSAR

INSAT-3D 2007 expected 2014 INDINA Being built IMAGER, SOUNDER,DCS

Kalpana 12 set 2002

expected 2007 INDINA Operational VHRR, DCS

Payload of Elektro-LMSUMSU--GSGS, a 10, a 10--channel VIS/IR imaging radiometer with 4.0 km channel VIS/IR imaging radiometer with 4.0 km resolution in seven IR channels and 1.0 km in three VIS channelsresolution in seven IR channels and 1.0 km in three VIS channels, 15, 15--30 min image cycle. 30 min image cycle.

Payload of INSAT and Kalpana satellitesIMAGER, a 6-channels VIS/IR radiometer with 4.0 km resolution in 3 IR channels, 1.0 km in the VIS channel, 8 km in the water-vapour channels. Image cycle 30 min. SOUNDER, a 19-channel IR radiometer (including a VIS channels), 10 km resolution, Cycle 3 hours for 6000 km x 6000 km viewing area.

III.31

Future Geostationary Satellites Coordinated within CGMS

(as of September, 2005)Satellite Launch End of service Operator Status

(Sept 2005) Instruments

FY-2D 2006 expected 2011 CHINA Being built S-VISSR (improved), DCS, SEM

FY-2E 2009 expected 2014 CHINA Planned S-VISSR (improved), DCS, SEM

FY-2F 2011 expected 2015 CHINA Planned S-VISSR (improved), DCS, SEM

FY-4A 2012 expected 2017 CHINA Being defined

Imager, sounder, lightning

FY-4B 2015 expected 2020 CHINA Being defined

MW radiometer

COMS-1 2008 expected 2015 KOERA Being defined

Meteorological imager, Ocean sensor

COMS-2 2014 expected 2021 KOERA Being defined

Meteorological imager, Ocean sensor

Future Satellite Program of China---- Geostationary Meteorological Satellite

FY-4 series meteorological satellite is the next generation Geostationary Meteorological satellite. Now the FY-4 satellite is just in its system design phase and planned to be launched after 2012.

There will be five or six instruments on FY-4 satellite.

For example, a multi-channels instrument named Imager Radiometer will be installed on the platform, some main technical index of this instrument are shown in table 6. All channels quantification precision would be 10 bits.

III.32

Technical index for Imager Radiometer on FY-4

Wave BandBandwidth

� um�Resolution(Km) Noise Performance Mostly purpose

0.55-0.75 1 or 0.5 200 ( =100%)Vegetation, fog,cloud

Visible andNear Infrared

0.75-0.90 1 or 0.5 S/N

5 ( =1%) Vegetation1.36-1.39 2 or 1 200 ( =100%) Cirrus1.58-1.64 2 or 1 Cloud, snow

ShortwaveInfrared

2.1-2.35 2 or 1

S/N 5 ( =1%)

Cirrus, aerosol

3.5-4.0 4 or 2 NE T 0.3K(300K)Fire, water vapor,fog

5.8-6.7 4 or 2 NE T 0.3K(260K) water vaporMediumInfrared

6.9-7.3 4 or 2 NE T 0.3K(260K) water vapor8.0-9.0 4 or 2 NE T=0.2K(300K) water vapor, cloud

10.3-11.1 4 or 2 NE T=0.2K(300K) Surface temperature11.5-12.5 4 or 2 NE T=0.2K(300K) Surface temperature

Long Infrared

13.2-13.8 4 or 2 NE T=0.5K(300K) Cloud, water vapor

Technical index for Imager Radiometer on FY-4

Wave BandBandwidth

� um�Resolution(Km) Noise Performance Mostly purpose

0.55-0.75 1 or 0.5 200 ( =100%)Vegetation, fog,cloud

Visible andNear Infrared

0.75-0.90 1 or 0.5 S/N

5 ( =1%) Vegetation1.36-1.39 2 or 1 200 ( =100%) Cirrus1.58-1.64 2 or 1 Cloud, snow

ShortwaveInfrared

2.1-2.35 2 or 1

S/N 5 ( =1%)

Cirrus, aerosol

3.5-4.0 4 or 2 NE T 0.3K(300K)Fire, water vapor,fog

5.8-6.7 4 or 2 NE T 0.3K(260K) water vaporMediumInfrared

6.9-7.3 4 or 2 NE T 0.3K(260K) water vapor8.0-9.0 4 or 2 NE T=0.2K(300K) water vapor, cloud

10.3-11.1 4 or 2 NE T=0.2K(300K) Surface temperature11.5-12.5 4 or 2 NE T=0.2K(300K) Surface temperature

Long Infrared

13.2-13.8 4 or 2 NE T=0.5K(300K) Cloud, water vapor

III.33

The COMS programme

payload for Earth Observation includes:

A Meteorological Imager with 10 channels in the range 0.6-13.7 m, resolution 1 km in 3 VNIR channels, 4 km in 7 IR channels, 25 min for full disk imaging (proportionally less for limited areas).

An Ocean Sensor with 8 narrow-band channels in the range400-865 nm for ocean colour monitoring; resolution 500 m over a limited coverage (2500 km x 2500 km).

Main features of imagers on-board GEO satellites expected for 2007

Meteosat-9 SEVIRI (*)

GOES-10/11 IMAGER

GOES-12 IMAGER

MTSAT-1 JAMI

Elektro-L-1 MSU-GS

FY-2C S-VISSR

INSAT-3D IMAGER

Kalpana-2 VHRR

12.4-14.4 m 13.0-13.7 m 11.0-13.0 m 11.5-12.5 m 11.5-12.5 m 11.2-12.5 m 11.5-12.5 m 11.5-12.5 m9.80-11.8 m 10.2-11.2 m 10.2-11.2 m 10.3-11.3 m 10.2-11.2 m 10.3-11.3 m 10.2-11.2 m 10.5-12.5 m9.38-9.94 m 9.20-10.2 m 8.30-9.10 m 8.20-9.20 m 6.85-7.85 m 7.50-8.50 m 5.35-7.15 m 6.50-7.00 m 5.80-7.30 m 6.50-7.00 m 5.70-7.00 m 6.30-7.60 m 6.50-7.00 m 5.70-7.10 m3.40-4.20 m 3.80-4.00 m 3.80-4.00 m 3.50-4.00 m 3.50-4.00 m 3.50-4.00 m 3.80-4.00 m1.50-1.78 m 1.55-1.70 m0.74-0.88 m 0.80-0.90 m 0.56-0.71 m 0.55-0.75 m 0.55-0.75 m 0.55-0.90 m 0.65-0.80 m 0.55-0.99 m 0.52-0.72 m 0.55-0.75 m0.60-0.90 m 0.50-0.65 m

15 min 30 min 30 min 60 min 30 min 30 min 30 min 3 hours VIS/IR 3.0 km HRVIS 1.0 km

IR 4.0 km VIS 1.0 km

IR 4.0 km VIS 1.0 km

IR 4.0 km VIS 1.0 km

IR 4.0 km VIS/NIR 1.0km

IR 5.0 km VIS 1.25 km

IR 4km,WV 8kmVIS/NIR 1.0km

IR 8.0 km VIS 2.0 km

III.34

Future Polar-Orbiting Satellites Coordinated within CGMS(as of December 2004)

Orbit type (equatorial

crossing times) Future additional

Satellites Operator Planned launch date

Other information

METOP-1 EUMETSAT 12/2005 (840 km) (09:30 D) AHRPT

METOP-2 EUMETSAT 12/2009 (840 km) (09:30 D) AHRPT

METOP-3 EUMETSAT 06/2014 (840 km) (09:30 D) AHRPT

FY-3A China 01/2006 (09:30) Series of seven satellites

FY-3B China 12/2006 (09:30)

METEOR-3M N2 Russia 12/2005 (1024km) (09:15, 10:30 or 16:30 A)

DMSP F-16 USA/NOAA 10/2003 (833km) (21:32 A)DMSP F-18 USA/NOAA 10/2007 (850km) (A)NPP USA/NOAA 10/2006 (833km) (21:30 D)NPOESS-1 USA/NOAA 11/2009 (833km) (21:30 D)NPOESS-4 USA/NOAA 11/2015 (833km) (10:30 D)Monitor-E Russia 04/2005 (540km) (05:40)GOCE ESA 02/2006 (250km) (Dawn-dusk)SMOS ESA 02/2007 (756km) (06:00 A)

Sun-synchr. "Morning" (06:00 - 12:00)(18:00 - 24:00)

ADM-Aeolus ESA 10/2007 (408km) (18:00 A)NOAA-N USA/NOAA 02/2005 (870km) (14:00 A)NOAA-N' USA/NOAA 11/2008 (870km) (14:00 A)NPOESS-2 USA/NOAA 06/2011 (833km) (13:30 A)NPOESS-5 USA/NOAA 01/2018 (833km) (13:30 A)GCOM-C Japan 01/2010 (800km) (13:30 A)

Sun-synchr. "Afternoon" (12:00 - 16:00)(00:00 - 04.00)

GCOM-W Japan 01/2009 (800km) (13:30 A)DMSP F-17 USA/NOAA 04/2005 (850km) (A)DMSP F-19 USA/NOAA 04/2009 (850km) (A)DMSP F-20 USA/NOAA 10/2011 (850km) (A)NPOESS-3 USA/NOAA 06/2013 (833km) (17:30 A)

Sun-synchr. "Early morning"(04:00 - 06:00)(16:00 - 18:00)

NPOESS-6 USA/NOAA 05/2019 (833km) (17:30 A)CRYOSAT ESA 03/2005 (717km)Resurs-01 N5 Russia 01/2005 (680km)Resurs DK Russia 06/2005 (480km)Sich-1M Russia/Ukraine 12/2004 (650km)

Non Sun-synchr.

GPM Constellation USA/NASA 11/2010 (600km)

Future USA Polar Orbiting Meteorological Satellite Systems

Satellite Launch End of service Height

LSTor

inclin.

Status(Sept2005)

Instruments

NOAA-19(NOAA-N’) 2007 expected

2011 840 km 14.00 Being built

AVHRR/3, HIRS/3, AMSU-A, MHS, SBUV/2,SEM/2, Argos, SARSAT

DMSP-F17 2005 expected 2009

833 km 05.30 Close to launch

SSMIS

DMSP-F18 2006 expected 2010

833 km 08.00 Being built

SSMIS

DMSP-F19 2008 expected 2012

833 km 05.30 Planned SSMIS

DMSP-F20 2010 expected 2014

833 km 05.30 Planned SSMIS

DMSP-F17 2005 expected 2009

833 km 05.30 Close to launch

SSMIS

III.35

The planning launch dates for the NPOESS series of spacecraft

(instrument distribution not consolidated)Satellite Launch End of

service Height LST Status (Sept 2005) Instruments

NPP Oct 2006 expected 2011 824 km 10.30 Being built VIIRS, CrIS, ATMS,

OMPS

NPOESS-1 Nov 2009 expected 2016 833 km 9.30 Planned VIIRS, CMIS, APS,

SARSAT

NPOESS-2 Jun 2011 expected 2018 833 km 13.30 Planned

VIIRS, CrIS, ATMS, CMIS, OMPS, GPSOS, SESS, ERBS, A-DCS, SARSAT

NPOESS-3 Jun 2013 expected 2020 833 km 5.30 Planned

VIIRS, CrIS, ATMS, CMIS, TSIS, ALT, A-DCS, SARSAT

NPOESS-4 Nov 2015 expected 2022 833 km 9.30 Planned VIIRS, CMIS, APS,

SARSAT

NPOESS-5 Jan 2018 expected 2025 833 km 13.30 Planned

VIIRS, CrIS, ATMS, CMIS, OMPS, GPSOS, SESS, ERBS, A-DCS, SARSAT

NPOESS-6 2019 expected 2026 833 km 5.30 Planned

VIIRS, CrIS, ATMS, CMIS, TSIS, ALT, A-DCS, SARSAT

The Europe EPS/Metop Programme

Satellite Launch End of service Height LST Status (Sept

2005) Instruments

Metop-1 Apr2006

expected 2010 834 km 09.30 Close to

launch

AVHRR/3, HIRS/4, AMSU-A, MHS, IASI, GOME-2, GRAS, ASCAT, SEM/2, A-DCS, SARSAT

Metop-2 Oct2010

expected 2015 834 km 09.30 Being built

AVHRR/3, HIRS/4, AMSU-A, MHS, IASI, GOME-2, GRAS, ASCAT, SEM/2, A-DCS, SARSAT

Metop-3 Apr2015

expected 2020 834 km 09.30 Being built

AVHRR/3, AMSU-A, MHS, IASI, GOME-2, GRAS, ASCAT, A-DCS

III.36

The Meteor programme Russian

Satellite Launch End of service Height LST or

inclin. Status

(Sept 2005) Instruments

Meteor-M-1 2006 expected2009

830 km 9.15 Being built MSU-MR, MTVZA, KMSS, Severjanin, GGAK-M

Meteor-M-2 2008 expected2012

830 km 9.15 Planned MSU-MR, IRFS-2, MTVZA, KMSS, Radiomet, Severjanin, GGAK-M, DCS

Future Satellite Program of China----Polar Orbiting Meteorological Satellite

FY-3 series, the second generation of Chinese polar orbiting meteorological satellite is now in the manufacture and subsystem test phase. It is expected that the first satellite of the series will be launched in 2007. The main mission objectives of FY-3 are:

To provide global sounding of 3-dimensional atmospheric thermal and moisture structures and the cloud and precipitation parameters to support global numerical weather prediction.To provide global images to monitor large scale meteorological and/or hydrological disasters and biosphere environment anomaly.To provide important geophysical parameters to support study on global change and climate monitoring.To perform data collection.

III.37

The Chinese FY-3 programmes

Satellite Launch End of service H eight LST

Status

(Sept 2005) Instruments

FY-3A 2007 expected 2010 836 km 10.00 Being built

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3B 2010 expected 2013 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3C 2012 expected 2015 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3D 2014 expected 2017 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3E 2016 expected 2019 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3F 2018 expected 2021 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

FY-3G 2020 expected 2023 836 km 10.00 Planned

VIRR, M ERSI, M W RI, IRAS, M W TS, M W HS, TOU/SBUS, SEM

Coverage from sun synchronous satellites as expected in 2007

Time Satellite LST Instruments 00-03 NOAA-18 02.00 d AVHRR/3, HIRS/3, AMSU-A, MHS, SBUV/2,SEM/2, Argos, SARSAT 03-06 DMSP F17 05.30 d SSMIS

DMSP F16 08.00 d SSMIS 06-09 FY-1D 08.20 d MVISR, SEM Meteor-M-1 09.15 d MSU-MR, MTVZA, KMSS, Severjanin, GGAK-M Metop-1 09.30 d AVHRR/3, HIRS/4, AMSU-A, MHS, IASI, GOME-2, GRAS, ASCAT, SEM/2, Argos, SARSAT FY-3A 10.00 d VIRR, MERSI, MWRI, IRAS, MWTS, MWHS, TOU/SBUS, SEM NOAA-17 10.20 d AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos, SARSAT

09-12

NPP 10.30 d VIIRS, CrIS, ATMS, OMPS 12-15 NOAA-18 14.00 a AVHRR/3, HIRS/3, AMSU-A, MHS, SBUV/2,SEM/2, Argos, SARSAT 15-18 DMSP F17 17.30 a SSMIS

DMSP F16 20.00 a SSMIS 18-21 FY-1D 20.20 a MVISR, SEM Meteor-M-1 21.15 d MSU-MR, MTVZA, KMSS, Severjanin, GGAK-M Metop-1 21.30 a AVHRR/3, HIRS/4, AMSU-A, MHS, IASI, GOME-2, GRAS, ASCAT, SEM/2, Argos, SARSAT FY-3A 22.00 a VIRR, MERSI, MWRI, IRAS, MWTS, MWHS, TOU/SBUS, SEM NOAA-17 22.20 a AVHRR/3, HIRS/3, AMSU-A, AMSU-B, SBUV/2,SEM/2, Argos, SARSAT

21-24

NPP 22.30 a VIIRS, CrIS, ATMS, OMPS

III.38

WMO Space Programme Web Site

http://www.wmo.int/index-en.html

Goals, objectives and publicationsSatellite operator status reportsGlobal Observing System (GOS) status reportsOther satellite related organizationsOnline database informationAPT/WEFAX to LRPT/LRIT transitionOnline satellite imagery sitesWorking documents for Upcoming MeetingsEducation and Training Materials

III.39

III.40

Chapter IV

The Future European

Earth Observation Missions

GMES, MTG & Post-EPS

GMES Space Segment and Relevant Earth Explorer Missions

Prof. A. Ginati

ESA-ESTEC

IV.1

IV.2

© ESA 2003

A. Ginati, ESA

Das GMES-Weltraumsegment&

relevante Earth Explorer Missionen

DLR & DWD Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Walberberg

Table of Content

ESAESA’’ss LiLivingving PlanetPlanet PrograProgrammemme

GMESGMES

Earth Watch/EUMETSATEarth Watch/EUMETSAT

Earth Observation Envelope ProgrammeEarth Observation Envelope Programme

IV.3

• ESA dual-mission approach:– Earth Explorer missions, research oriented, also demonstration

of techniques• Core and Opportunity Missions• Cooperation with JAXA, NASA etc

– Implemented in Earth Observation Envelope Programme:• End-to-end implementation of Earth Explorer missions and

preparation Earth Watch missions• 5 year slices, current EOEP-2, EOEP-3 proposed

– Earth Watch missions, operational service oriented, implemented with partners

• EUMETSAT, GEO and LEO operational meteorological missions• GMES Missions for the Global Monitoring for Environment and

Security with the EC, EUMETSAT, MS others– Implemented in Dedicated EUMETSAT/GMES programmes:

• Coordinate/parallel with programmes of partners (EUMETSAT, EC,MS) which cover also operational phase

Living Planet Programme

GMES

Established in 1998, gained political momentum 2001( GMES Service Element has been approved, MC Nov. 2001)

• Initially, GMES investments focused on service developments• 100 Meuro by ESA, 100 Meuro by EC, plus MS projects (funded by CNES,

DLR etc.)• Large number GMES user organisations across Europe

Space segment preparation by ESA in 2004 • GMES system architecture, Phase A of GMES space missions

EU declared GMES the next flagship for Europe in space, after Galileo

European independence in critical data sources for environmental monitoring & security European contribution to the Global EO System of Systems (GEOSS)

IV.4

GMES Service Element – initial services

Coastal Real-time Ocean Ice Monitoring Northern View

Risk fire & flood Forest Monitoring Soil & Water Land Motion Risks

Urban Services Humanitarian Aid AtmosphereFood Security

The overall GMES Space Component

IV.5

Gap analysis leads to 7 types of instruments

10-30 m SAR for interferometry, ocean, ice, land applications0.5-10 m SAR for detailed land mapping10-30 m multispectral instruments for land mapping0.5-10 m optical instrument for detailed land mapping100-1000 m wide-swath thermal infrared instruments for sea surface and land temperature measurements100-1000 m wide-swath multi-spectral instruments for ocean colour and global land monitoringradar altimeters for ocean current measurements at high inclination orbitradar altimeters for ocean current measurements at low inclination orbitradar scatterometers for sea surface wind speed and directionatmospheric chemistry instruments for trace gas composition, pollution and climate change monitoring (leo and geo)100-500 m infrared instruments for fire monitoring

GMES – Space component

1. SAR imagingAll weather, day/night applications, interferometry

2. Superspectral imaging, vegetation. forestry, security

3. Ocean monitoring Wide-swath ocean color and surface temperature sensors, altimeter

4. GEO- atmosphericcomposition monitoring, trans-boundary pollution

5. LEO- atmospheric composition monitoring

IR-element, 3-band sensor for hot spot detection

IV.6

GMES : Sentinels and IR-element

TMAInstrumentStar

TrackerX-BandAntenna

GPSAntenna

S-BandAntenna

Sentinel –1 C-band SAR, wide swath, medium resolution

Sentinel –2 Multi-spectral imaging, 8 bands 443 - 1 375 nm, 10-30 m res.

Sentinel –3 Multi-spectral imaging VNIR-SWIR-TIR, 250–1000 m res, Altimeter,

Sentinel –4Atmospheric composition monitoring from GEO

Sentinel –5Atmospheric composition monitoring from LEO

IR-element3-band sensor for enhanced fire monitoring and detection

User Requirements are derived from GMES Services. Three services have reached a level of maturity such that firm information requirements can be established. Others will follow.

– Monitoring the European Marine Environment

– Monitoring the Arctic Environment and Sea-Ice Zones

– Monitoring and Assessing Land Surface-Motion Risks across Europe

Sentinel-1 requirements

IV.7

• Alternative satellite configurations under consideration• C band SAR Main modes are:

– Stripmap 5 m swath 80 km– Scan SAR Interferometric wide swath 20X 5 m swath

240 km– Scan SAR Extra wideswath 80X25 m swath 400 km– Wave mode

• S/C: ~2500 kg and 5 KW • Instrument duty cycle 15-20 min per orbit• Downlink data rate ~ 550 Mb/s.

The definition study is being performed by EADS Astrium UK and subcontractors

Sentinel-1 Concept

• User requirements: from ESA GMES Service Elements, Forest, Soil/Aqua-SAGE, GUS (Urban Services), Risk-EOS, DUP Kyoto Inventory, Globwetland, and EC Geoland Project

• Translated into mission/system requirements:– Coverage: global land (EU+worldwide), except polar caps– Spatial sampling distance (SSD): 10 m (goal) - 30 m (threshold)– Revisit time: 7 days to guarantee “seasonal” cloud-free product– Spectral bands: 3 sets of bands defined to allow room for trade-off at mission level

• Minimum set of bands: 6 broad bands (Landsat-5 TM)• Nominal set of bands: 8 bands (LDCM), including 6 broad bands similar to

Landsat-5 TM (band position and width optimised to minimise sensitivity to atmospheric water vapour) & two narrow bands at 443 nm (aerosol correction) and 1375 nm (cirrus cloud contamination detection and correction)

• Extended set of bands: 18 narrow bands encompassing LDCM spectral bands, with better sensitivity to bio-geophysical parameters & additional bands in the red edge (vegetation health) and SWIR (plant water content, vegetation structure, live/dead vegetation/soil discrimination)

• Optional panchromatic channel at 5 m SSD (goal)

Sentinel-2 requirements

IV.8

Optical multi-spectral wide swath, medium resolution for mainly land applications. - to provide continuity to services developed with SPOT-5 and Landsat data.- Complementary to OLI / LDCM possibly on NPOESS C1/C4- Building on studies on super- hyper- spectral missions

Proposed sensor concept included:10 bands in the VNIR and 2 bands in the SWIR

Wide swath 320 km (700 km, SSO), 20 m spatial resolutionThe estimates for resources were 135 kg, 120 W and 800 Mbps

TMAInstrumentStar

TrackerX-BandAntenna

GPSAntenna

S-BandAntenna

Sentinel-2: Concepts

The Definition Study aims for tuning of requirements and for the identification of efficient system concepts. Work performed by EADS Astrium and subcontractors. Contract started in early September.

• User requirements from ESA GMES Service Elements: ROSES (ocean), Coastwatch(coastal zones) and GMFS (Food Security), Risk-EOS, and EC Geoland and MerseaProjects, and are consistent with Eumetsat (strawman missions Ocean Imaging / Ocean Topography)

• Translated into mission/system requirements:– Coverage: global open ocean and land areas (except polar caps), coastal

waters of Europe, the Mediterranean Sea, and the North Atlantic– Spatial sampling distance at SSP: 1 km (open ocean) - 250 m (coastal

zones/land)– Revisit time: 1-3 days– Spectral bands: 21 spectral channels in VNIR/SWIR/TIR providing

continuity to MERIS, Vegetation and AATSR– Radar altimeter with 3 cm RMS range noise level

• With the support of encompassing studies involving numerous related operational, research and technical organisations

Sentinel-3: Requirements

IV.9

Altimeter, high resolution ALT Doppler, no interferometry ACT800 Km, SSO, 06:00 – 18:00600 kg, 700 W, 20 Gb

ocean /land colour, sea /land surface temp., or separated optical sensors800 Km, SSO, 00:00– 12:00830 kg, 950W, 150 Gb

Implementation of optical and altimeter elements on separate satellites

The Definition Study aims for tuning of requirements and for the identification of efficient system concepts. Work performed by AAS and subcontractors. Contract started in early September.

Sentinel-3: Concepts

Optical sensor: OC, SST by Visible Infrared Imager (VIRI),

Preliminary considerations: Sentinels 4 and 5

Area Mission Characteristics SentinelsOzone and

UV radiation

Complement MetOp and NPOESS with limb-sounders operating in the MIR or mw range, possibly UV-VIS(ACECHEM concept shown)

S-5

Air Quality Frequent temporal coverage, 2 h (0.5 h goal), candidate for GEO, 50 km ( 5 km goal) UV-VIS: 290 – 310; 310 – 400; 400 – 600; 750 –780; SWIR: 2310 – 2390; MIR: 2100 – 2200 cm-1,desired, TIR: 800 – 1200 cm-1, desired

S-4(exampleMTG)

Climate CH4, CO and aerosol measurements, preferably with sensitivity to planetary boundary layer (Sciamachy, IASI, Mopitt heritage)

S-5

The user requirements call for two elements: Sentinel-4 in GEO and Sentinel-5 in LEOBeing studied in coordination with EUMETSAT MTG and Post-EPSSentinels 4 & 5 : CAPACITY study to define user requirements

Pre-phase A industrial studies 4th Q. 2005

IV.10

• Sentinel–3– Related to Post-EPS Ocean Imaging and Ocean Topography

Strawman Missions• Sentinel-4

– Related to MTG UVS (and IRS) mission• Sentinel-5

– Related to Post-EPS Atmospheric Chemistry Mission StrawmanMission

– Current Sentinel-5 concept assumes tandem flight with MetOp for coincidence of limb sounding m-wave and / or IR observations with MetOp’s GOME-2 and IASI

– also UV-VNIR-SWIR nadir looking “SCIAMACHY-follow-on”• Sentinel-4, 5 concept under refinement: GEO or multi-LEO• ESA – EUMETSAT staff coordinating definition of EUMETSAT and

GMES missions supported respectively by EUMETSAT Application Expert Groups and GMES User Groups

Relations EUMETSAT and GMES missions

GMES Space Component - Implementation Approach

GMES Space Component

C-Min

Segment 1 - - - Phase 2 Decision Point (flexible)Phase 1Phase 2

Segment 2 Segment 2 Decision Point

Funding ESAEC + ESADecision Point

Timing of Phase 1 and 2 flexible, depending on Ph.2 decision pointEC invited to co-fund Phase 2

2011

2012

2013

2007

2008

2009

2010

2005

2006

IV.11

Earth Watch Missions

Missions for long-term operational Earth monitoring

Cooperation with Eumetsat: Meteosat and Metop (MTG/Post EPS)

Mission concept studies: TerraSAR-L, Fuegosat

MeteosatSince ’78, ESA has developed 8 Meteosatsatellites

MetopEurope’s first polar orbiting satellite for op. meteorologyLaunch: 2005

TerraSAR-LAssessment ofL-bandcapabilities

FuegosatFire detectionandfire monitoring

MSG-1

29.8.2002

• Meteosat Third Generation (MTG), new generation of EUMETSAT geostationary operational meteorological system

• Five observation missions– High resolution fast imagery mission – Full-disk high spectral resolution

imagery mission– Infrared sounding mission– Lightning imaging mission– UV-Visible sounding mission

(in co-ordination with GMESSentinel-4, atm. composition mission)

EUMETSAT missions: MTG

Combined Imager

LightningImager

UHF patch

L-band antenna

North or

South

Earth

Xs

Zs

Ys

Xs

Zs

Ys

IR-Sounder

X-BandAntenna

S-BandAntenna

XNadirLaunch Direction

DeepSpace

Y

Z

Main Body

IV.12

• Post-EPS, to continue the EUMETSAT Polar System for operational meteorology from low Earth orbit after the MetOpA, B, C satellites

• Six strawman missions– Sounding– Cloud, including precipitation, and land imaging– Ocean imaging– Ocean topography– Wind profiling– Atmospheric chemistry

EUMETSAT missions: Post-EPS

Pre-development- Cross-track microwave radiometer- Combined sounder/imager conical scanner- Visible-IR imager

EUMETSAT missions: Post-EPSReceiver Enclosure

ScanMechanism

Electronics Unit

Momentum CompensationMechanism

Reflector/Shroud

Receiver EnclosureReceiver Enclosure

ScanMechanism

ScanMechanism

Electronics UnitElectronics Unit

Momentum CompensationMechanism

Momentum CompensationMechanism

Reflector/ShroudReflector/Shroud

Derotator

TMATelescope

3 FEEUnits

Active CoolingSystem (2 Units)

Dual ViewScanner

TIR Black Bodies

2 InstrumentControl Units

- “Techniques and mission concepts for future EUMETSAT missions” 1st Q. 2006

- pre-phase A industrial studies 2nd Q. 2006

Sentinels 4 & 5- CAPACITY study to define user requirements- Pre-phase A industrial studies 4th Q. 2005

Post-EPS Preparatory Element (PEPE)preliminary assessment of the possibility of building and launching a satellite capable of continuing the MetOpsounding missions with minimum development time and cost.

IV.13

ERS 1 ERS 2

OceansSea Ice

CryosphereLand SurfaceClimatology

+ Global Ozone

+ Terrestrial biosphere

+ Ocean Colour+ Atmospheric Constituents

1991 1995

ENVISAT

2002

Earth Explorers evolution

2005

2006

2007

2009

2012

2008

1st Earth Explorer Missions1st Earth Explorer Opportunity MissionIce elevation, ice thickness( ICESAT, Abyss)Launcher failure Oct.8th 2005; CryoSat-2 being considered

1st Earth Explorer Core MissionGravity field and geoid( CHAMP, GRACE)Launch 2006

2nd Earth Explorer Opportunity Mission Soil moisture and ocean Salinity (Hydros, Aquarius)Launch 2007

2nd Earth Explorer Core MissionWind speed vectorsLaunch 2008

CryoSATGOCE

SMOS ADM-Aeolus

IV.14

( ACE+, EGPM)

Earth Explorer Opportunity Mission:

2nd cycle Earth Explorer Missions

Earth Explorer Core Mission:

(SPECTRA, WALES)

SWARM: Earth magnetic field &

earth core dynamics measurements

EarthCARE: Clouds, Aerosols & radiation measurements

CryoSat Mission Objectives• Research goals:

– Study of mass imbalances of Antarctic and Greenland ice sheets

– Investigate the influence of the Cryosphere on global sea level rise

– Use of sea ice thickness information for advances in Arctic and global climate studies

• Measures variations in the thickness of the polar ice sheets and thickness of floating sea ice

see <http:/www.estec.esa.nl/explorer/>

Payload: SIRAL altimeter, conventional pulse limited operation, synthetic aperture along track, interferometer across track

IV.15

CLSFrance

Determine Earth’s gravity field and its geoid (equipotential surface for a hypothetical ocean at rest):

high accuracy (1 mgal and 1 cm) fine spatial resolution (~ 100 km)

Studies in:Solid Earth Physics - anomalous density structure of lithosphere and upper mantleOceanography - dynamic ocean topography and absolute ocean circulationIce Sheet Dynamics - ice sheet mass balanceGeodesy - unified height systemsSea Level change

GOCE Mission Objectives

see <http:/www.estec.esa.nl/explorer/>

Payload: GNSS receiver and Electrostatic Gravity Gradiometer (EGG)

Technology: accelerometers, ultra-stable structures, ion propulsion, micro-thrusters

geoid

applications

GOCE Mission Objectives

see <http:/www.estec.esa.nl/explorer/>

IV.16

SMOS Mission Objectives

To demonstrate the use of L-band 2-D interferometry to observe:

salinity over oceans, soil moisture over landice characteristics

To advance the development of climatological, hydrological and meteorological models.

see <http:/www.estec.esa.nl/explorer/>

Payload:

L-band radiometer, synthetic aperture, exploiting interferometry, multi-polarisation, varying incidence angle

ADM-Aeolus Mission Objectives

Measures atmospheric winds in clear air to:

• Improve parameterisations of atmospheric processes in models

• Advance climate and atmospheric flow modelling

• Provide better initial conditions for weather forecasting

see <http:/www.estec.esa.nl/explorer/>

Payload: Doppler wind lidar

Wind speed profiles, 0-20 km, 1 – 2 m/s accuracy, 0.5 – 2 km resolution

1000 kg satellite, 400 km sun-synchronous, dawn-dusk orbit, launch 2008

IV.17

SWARM (EEOM) Explorer 5

- Core flow, core dynamics, core-mantle coupling,- 3-D imag. mantle conductivity, lithosphere magnetisation- Position and development radiation belts- Magnetospheric / ionospheric currents systems- Monitor solar wind energy input- Ionosphere / Plasmosphere electron density- Study modulation cosmic ray flux and effect on tropospheric conductivity and associated weather and climate processes

-3 microsat constellation: 1 in 530km alt. I=86 deg, 2 in 450 km alt. I= 85.4 deg.

- Payload:-Absolute Scalar magnetometer, Vector Field magnet., Electric field instrument, Accelerometer,

-Supported by: star tracker, GNSS rx, laser retro-reflectorPL resources: 50 kg, 50 WSC budgets: 250 - 350 kg, 160 W

EarthCARE (EECM) Explorer 6-Satellite, 1400 kg, 1100 W in SSO

400 – 450 km altitude, carrying:

Backscatter lidar (ATLID)Cloud Profiling Radar (CPR) , JAXA7-channel multi spectral imager (MSI)Broadband radiometer (BBR)

• divergence of radiative energy

• aerosol-cloud-radiation interaction

• vertical distribution of water and ice and their transport by clouds

• the vertical cloud field overlap and cloud-precipitation interactions

IV.18

3RD Call for Ideas EECM

The 3rd call for ideas for the (300M€) Earth Explorer Core Missions (EECM) overall schedule and priorities:

(http://www.esa.int/livingplanet/explorer/)

Scientific priorities applicable to the 3rd call:- Global water/carbon cycle - Atmospheric chemistry and climate -Human factor

-Release of the call – March 15, 2005

-Announcement of results (<= 6) of evaluation – May , 2006- User consultation in 2008, results of (<=3) Phase A

3RD Call for Ideas EECM

- 31 letters of intent received

- 24 mission proposals received

- 2 from GEO, 22 from LEO

- 4 multi-satellite, 20 single satellite

- 5 use lidars, for vegetation canopy, water vapour and CO2

- 2 exploit microwave and optical signals in occultation geometries

- 7 use radars, P-band (2), X+Ku (1), Ka (1), Ku+Ka (1), L (1)

(http://www.esa.int/livingplanet/explorer/)

IV.19

3rd Call

2005 201020092008200720062004 20122011

EXPLORER 2

EXPLORER 1

EXPLORER 3

EXPLORER 4

EXPLORER 5

EXPLORER 6

CryoSat

GOCE

SMOS

ADM - Aeolus

Swarm

EXPLORERS > 6

EarthCARE

Earth Explorer Missions-Schedule

CryoSat 2

IV.20

MTG User Requirements

Dr. R. Stuhlmann EUMETSAT

IV.21

IV.22

Page 1DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

2 1

Meteosat Third Generation (MTG):

Vorgeschlagene Beobachtungsmissionen

zur Erfüllung von Nutzeranforderungen

R. Stuhlmann1, A. Rodriguez1, P. Benzi2, D. Aminou2, and J.-L. Bezy2

Operationelle Satellitensysteme der Erdüberwachung

DWD/DLR Nationaler Nutzerworkshop

7 - 9 November, Walberberg

Page 2DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

— EinleitungMTG User Consultation Process

— MTG Kandidat Imagery MissionenHRFI MissionFDHSI MissionFC Missionskonzept

— MTG Kandidat Lightning Mission

— MTG Kandidat InfraRed Sounding Mission

— UV Sounding Mission

— Zusammenfassung

Inhalt

IV.23

Page 3DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Schritt 1: Erfassung von Nutzer/Service Anforderungen für den Zeitrahmen2015 - 2025 und deren Ordnung nach Prioritäten

Schritt 2: Ableitung der zugehörigen ‘Beobachtungsanforderungen’:Beobachtungsrate;horizontale/vertikale Auflösung;Genauigkeit,Überdeckung,

bezüglich dreier Anforderungsniveaus:“threshold”: unterhalb ist die Beobachtung wertlos;“goal”´: oberhalb liefert die Beobachtung keine zusätzliche Information;“breakthrough”: Sprung im Informationsgewinn für den untersuchten Service

dokumentiert für MTG in 3 Positionspapieren, indossiert vom EUMETSAT Council‘Observation Reqiuirements for Nowcasting and Very Short Range Forecasting2015-2025’‘Requirements of Observations for Regional NWP 2015-2025’‘Requirements for Observations for Global NWP 2015-2025’

MTG User Consultation Process/AEGs

Page 4DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Schritt 3: Analyse der Nutzer/Service- und zugehöriger Beobachtungs-anforderungen bezüglich möglicher Satelliten Konzepte in 2015 - 2025

- ausschließen was physikalisch nicht möglich ist- charakteresieren des erreichbaren Niveaus (e.g. threshold, breakthrough, goal)- ordnen bezüglich GEO (dt < 1h) oder LEO (dt > 1 h) Orbit Kandidat

Schritt 4: Ergebnisse präsentiert am 1st Post-MSG User Consultation Workshop

Schritt 5: EUMETSAT Council indossiert WS Empfehlungen und beauftragt: Konsolidierung der Nutzer/Service Anforderungen bezüglich:

‘Anwendungen Luftchemie/Luftqualität’‘Klimaüberwachung’

Bewertung spezieller Beobachtungkonzepte vom geostationären Orbit:‘Multi-spectral Imagery’‘Hyperspectral InfraRed Sounding’‘Lightning Imagery’‘Passive mm and sub-mm Observations’‘UV-VIS Sounding’

MTG User Consultation Process/RSEs

IV.24

Page 5DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Schritt 6: Konsolidierung der Nutzer/Service Anforderung und Bewertungpotentieller Beobachtungskonzepte liefert fünf Missionen alsKandidaten für MTG pre-phase A Studien auf Systemebene:

• Drei ‘Imagery’ Missionen - Unterstützung operationeller Meteorologie/(Klima), mit Betonung auf ‘Nowcasting/Very Short Term Forecasting (NWC):

‘Regionale’ Imagery Mission mit hoher räumlicher/zeitlicherAuflösung (HRFI)(Nachfolger der MSG HR-VIS Kanal Mission X ~ 500m, BRC ~ 5 min)

‘Globale’ Imagery Mission mit hoher spectraler Auflösung (FDHSI)(Nachfolger der MSG SEVIRI mission X ~ 3000m, BRC ~ 15 min)

‘Lightning’ Imagery (LI) mission

• InfraRed Sounding (IRS) Mission - Hauptziel operationelle Meteorologie/(Klima), und Potential zur Unterstützung von AtmosphärenChemie Anwendungen

• UV/Visible Sounding (UVS) Mission - speziell für AtmosphärenChemie

MTG Kandidat Beobachtungsmissionen

Page 6DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Grundsätzliche/übergreifende Nutzeranforderungen:

- Erweiterung der Anwendungen des MSG HR-VIS Kanales; Hauptziel - Erfassung von Konvektion und zugehörige schnellezeitliche Entwicklung der Komponenten des hydrologischen Zyklus,um durch Beobachtungen über ausgewählten Gebieten zurMinderung schwerer Sturmschäden beizutragen.

Notwendigkeit einer ‘qualitativen’ Datenanalyse zur Bereitstellung‘relativer Änderungen / schneller Entwicklungen’ als Produkte zurUntersützung von NWC

Kandidat HRFI Mission

IV.25

Page 7DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

- Kontinuität und Erweiterung der MSG SEVIRI Mission;Hauptziel - NWC Katastrophenmanagement bezüglich Bedrohung von Leben, Besitz,Transport und Versorgungseinrichtungen, verursachtdurch konvektive/nicht-konvektive Ereignisse, kritische Wetter-situationen (z.B. Nebel, Sand und Staubstürme), Feuer und Eruption von Vulkanasche; und zusätzliches Ziel ist die Unterstützung numerischer Wettervohersage(regional/global) und Klimaüberwachung

Notwendigkeit einer ‘quantitativen’ Datenanalyse zur Bereitstellungvon ‘Produkten hoher Präzision’ zur Unterstützung von NWC, NWP,und Klimaüberwachung

Grundsätzliche/übergreifende Nutzeranforderungen:

Kandidat FDHSI Mission

Page 8DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Candidate Flexible Combined (FC) Imagery Mission

Coverage Repeat cycle Full Disk Coverage 18ox18o 10 minLocal Area Cov. 18ox6o 10/3 min

The flexible combined Imagery Mission shall

• fully cover FDHSI user/service needs• support HRFI user/service needs as possible

Improvements compared to MSG:• improved Spatial Resolution 0.5 km - 2 km)• faster basic repeat cycle (brc = 10 min)• better spectral coverage (15 core channels)• improved spectral and radiometric accuracy

IV.26

Page 9DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

VIS - 0.41 km

Aerosols

VIS - 0.60.5 km

Surface Albedo

VIS - 0.81 km

Vegetation

NIR - 1.31 km

Cirrus Clouds

NIR - 1.61 km

Snow/Ice/Phase

NIR - 2.10.5 km

Particle Size

IR - 6.72 km

UT Water Vapour

IR - 7.31 km

MT Water Vapour(Upper Level SO2)

IR - 8.52 km

Cloud PhaseVolcanic AshFire Radiative Power

IR - 9.72 km

Total Ozone

IR - 12.02 km

Low Level Moisture

IR - 13.02 km

Cloud Top Height

IR - 13.92 km

Cloud top Height

IR - 3.81 km

Cloud μFire detectionFire Radiative Power

IR - 10.81 km

Surface Temperature

Candidate MTG FC Imagery Mission Core Channels

New

New

New

New

Page 10DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

730 hPa layer 1km / 3min

584 km

484

km

484

km

730 hPa layer 2km / 10min

584 km

Water Vapour mixing ratio [kg/kg]

IV.27

Page 11DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Channels Central Spatialresolution

Maximum Reference SNR@

2x2km2Option 1 wavelength Signal Signal

nm kmFC-OPT 1-1 755 2 380 100 100FC-OPT 1-2 761 2 380 100 100FC-OPT 1-3 764 2 380 100 100FC-OPT 1-4 775 2 5 380 100 100

Channels Central Spatialresolution

Minimum Maximum Reference NEdT@2x2km2

Option 2 wavelength Signal Signal Signalm km

FC-OPT 2-1 13.03 2 165 300 270 0.3FC-OPT 2-2 13.33 2 165 300 250 0.3FC-OPT 2-3 13.66 2 165 300 250 0.3FC-OPT 2-4 14.07 2 165 300 250 0.3

Channels Central Spatialresolution

Minimum Maximum Reference SNR@1x1km2

Option 3 wavelength Signal Signal Signalm km

FC-OPT 3-1 0.444 1 1% 120% 1% 30FC-OPT 3-2 0.55 1 1% 120% 1% 30

Channels Central MaximumSignal

Minimum Maximum Reference NEdT@2x2km2

Fire wavelength Signal Signal SignalApplications m KFC-IR 3.8 3.75 450 275 450 350 0.6FC-IR 8.5 8.55 400 250 400 330 0.6

Wm-2sr-1 m-1

K

K

Candidate FC Imagery Mission Optional Channels

for cloud top height determination by

differentialabsorption in the oxygen A-Band

for cloud top height determination by CO2-slicing in the 14μm CO2 band

Extended dynamical range

for fire monitoring application

for improved aerosol detection

Page 12DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Decisions 3rd MMT meeting 6-7 October 2005

review FC mission in the light as recommended at 2nd User Workshop, Locarno 13-15 April 2005

• discard the oxygen A-band option

• discard CO2-slicing option and approve the 2 core channels

• implement the 2 channel aerosol option instead of 1 core channel

• implement the fire extended dynamical range option

• assess if a 0.9 μm channel to improve on total precipitable water retrieval can beimplemented and deliver the FC-IR 7.3 data only at coarse spatial resolution of 2 km.

IV.28

Page 13DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

'Core' Channels Central wavelength Width Minimum Maximum Reference SNR/NEdT

m m Signal Signal Signal (% / K) FC-VIS 0.4 0.444 0.03 1% 120% 1% 25

Candidate MTG FC Mission Channel specification

*** Channels FC-IR 3.8/ FC-IR 8.5 extended dynamical range for Fire applications

FC-VIS 0.6 0.645 0.05 1% 120% 1% 12*FC-VIS 0.8 0.865 0.04 1% 120% 1% 30

FC-NIR 1.3 1.375 0.03 1% 80% 1% 40FC-NIR 1.6 1.61 0.06 1% 100% 1% 30FC-NIR 2.1 2.26 0.05 1% 100% 1% 12*FC-IR 3.8*** 3.75 0.3 200 K 350 K 300 K 0.2* FC-IR 6.7 6.7 0.4 165 K 270 K 250 K 0.3FC-IR 7.3 7.35 0.3 165 K 285 K 250 K 0.3FC-IR 8.5*** 8.55 0.3 165 K 330 K 300 K 0.1FC-IR 9.7 9.7 0.3 165 K 310 K 250 K 0.3FC-IR 10.8 10.8 0.5 165 K 340 K 300 K 0.2*FC-IR 12.0 12.0 0.7 165 K 340 K 300 K 0.1FC-IR 13.0 13.08 0.4 165 K 300 K 250 K 0.2FC-IR 13.9 13.91 0.4 165 K 290 K 270 K 0.2

FC-VIS 0.5 0.510 (TBC) 0.035 1% 120% 1% 25

FC-VIS 0.9 TBD TBD TBD TBD TBD TBD

Spatial

Res. km1.0

0.5/1.01.0

1.01.0

0.5/1.01.0/2.0

2.02.02.02.0

1.0/2.02.02.02.0

1.0

1.0

* SNR/NEdT @ high spatial resolution

Page 14DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Candidate FC Imagery Mission: How to operate?

at 5 min BRC00.0 - 02.5 min05.0 - 07.5 min10.0 - 12.5 min

at 15 min BRC

02.5 - 05.0 min

17.5. - 20.0 min

at 15 min BRC

07.5 - 10.0 min

22.5. - 25.0 min

at 15 min BRC

12.5 - 15.0 min

27.5. - 30.0 min

IV.29

Page 15DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Kandidat MTG LI Mission

Erfassung aller drei Arten von Blitzen:Wolkenintern (IC), Wolke-Wolke (CC), Wolke-Boden (CG)

Prioritäten:- NWC - Verbesserung bei

Warnungen vor Strumschäden und Blitzschlagalarm

- NWP(?) - Vertreter für: intensive Konvektion und

verbundenem Eisfluss, Vertikalwindstärke, diabatische und latente Erwärmung, Wasserdampfgehalt der oberenTroposphäre

- Chemie - NOx Produktion- Unterstützung Klimaüberwachung

Grundsätzliche/übergreifende Nutzeranforderungen:

Page 16DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

FOV 16° Earth DiskIFOV 8 km at nadir; 10 km at 45 degrees NWavelength Neutral oxygen line OI(1) at 777.4 nmIntegration time 2ms - 1ms optimised to meet DE and FARMedian lightning pulse width 0.5msEnergy range 4 - 400 μJm-2sr-1

Detection Efficiency (DE) > 90% for any individual strikeFalse Alarm Rate (FAR) < 1 flash/sec (averaged over the full Earth, assuming 50% cloud cover)

Repeat cycle continuous (as integration time)Accuracy intensity better 50% (20% goal)

Co-registration HRFI/FDHSI: better than 1 IFOV

Lightning Imaging (LI) Mission

Requested to detect 90 % of individual flashes:In Cloud (IC), Cloud to Cloud (CC), and Cloud to Ground (CG)

MMT proposes to reduce DE to 70% andto reduce coverage through coordination with other Agencies

IV.30

Page 17DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

- Hauptziel - Unterstützung der kurz-, mittel- und langfrist Wettervorhersagedurch Verbesserung der Dynamik.Zusätzlich - in Synergie mit den anderen MTG Missionen (insbesondere UVS) Unterstützung für Anwendungen im Bereich Atmosphärenchemie und Luftqualität.

Ordnung der IRS Anwendungen nach Prorität:- Atmosphärendynamik mit hoher vertikaler/horizontaler Auflösung

(z.B. Wasserdampffluss, Windprofil, Schadstofftransport)- zeitlich/räumlich häufigere Information bezüglich Temperatur- und

Feuchteprofil für NWP (regional und global)- Überwachung von Instabilitäten / frühe Warnung vor intensiver Konvektion- Wolkenmicrophysik- Atmosphärenchemie und Luftqualität

Kandidate MTG IRS Mission

Grundsätzliche/übergreifende Nutzeranforderungen:

Page 18DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Candidate MTG IR Sounding Mission

Hyperspectral IR sounding with focuson time evolution of vertically resolved water vapour structures

Coverage Repeat cycle Full Disk Coverage 18ox18o 30 minLocal Area Cov. 18ox6o 10 min

IV.31

Page 19DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Coverage Repeat cycle Full Disk Coverage 18ox18o 30 minLocal Area Cov. 18ox6o 10 min

Candidate MTG IR Sounding Mission

MissionBand

IRS-0 667 700IRS-1 700 770IRS-2 770 980IRS-3 980 1070IRS-4 1070 1210IRS-5 1210 1600IRS-6 1600 2000IRS-7 2000 2250IRS-8 2250 2400IRS-9 2400 2500

cm-1

Frequency range Main Contribution

CO2

CO2Surface, Clouds

O3

Surface, CloudsH2O, N2O, and CH4 *

H2O, NO *CO, N2O

CO2

Surface, Clouds,N2O(*) Only one of the two bands required

Page 20DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

wavenumber (1/cm)

210

220

230

240

250

260

270

Brig

htne

ss T

empe

ratu

re (K

)

wavelength: 15.0 14.28 12.98 10.20 9.34 8.26 6.25 5.0 4.44 4.17 4.0

Spatial Resolution 6km Spatial Resolution 3km

Candidate MTG IR Sounding Mission

Band Priority:1/5 5/1 3(2) 4 411 325

IV.32

Page 21DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

NEdT (K)at

Tref = 280 K

NEdLmW/[m² sr cm-1]

BandPriority

TBD TBD 5

0.2 0.304 – 0.305 2

0.24 0.366 – 0.318 2

0.2 0.265 – 0.236 3

0.3 0.354 – 0.264 2

0.2 0.187 – 0.077 5/1

0.2 0.077 – 0.024 1/5

0.3 0.036 – 0.016 2

TBD TBD 4

TBD TBD 4

IE = 0.7 @ X = 6km IE = 0.7 @ X = 3km

‘Low Spatial Resolution > 8.26 μm > High Spatial Resolution’

Candidate MTG IR Sounding Mission

Spectral Resolutionwithin bandMission

BandFrequency range

(cm-1)Main Contribution

ResolvingPower * at

centralfrequency (cm-1) μm)

IRS-0 667 – 700 CO2 1367 0.5 0.0107

IRS-1** 700 – 770 CO2 1470 0.5 0.0093

IRS-2 770 – 980 Surface, clouds 1400 0.625 0.0082

IRS-3** 980 – 1070 O3 2070 0.5 0.0047

IRS-4 1070 – 1210 Surface, clouds 1344 0.85 0.0065

IRS-5 1210 – 1600 H2O, N2O, CH4, SO2 2248 0.625 0.0032

IRS-6 1600 – 2000 H2O, NO and CO 2880 0.625 0.0019

IRS-7** 2000 – 2100** CO, N2O 3400 0.625 0.0014

IRS-8 2250 – 2400 CO2 1860 1.25 0.0023

IRS-9 2400 – 2500 Surface, clouds, N2O 1000 2.45 0.004

*: Resolving power: = / = /

Decision taken at 3rd MMT meeting to reduce the band width coverage to maximum as below

** final coverage of IRS-1, IRS-7, and IRS-3 under investigation

Page 22DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Kandidat UVS Mission - derzeit nicht auf MTG

- Die Anforderungen an die notwendigen Beobachtungen ergeben sich alswichtige Zusatzkomponente der meteorologischen Vorhersage aus den raschansteigenden Nutzer/Service Anforderungen bezüglich Information über / Vorhersage von relevanten chemischen Bestandteilen in der Troposphäre.

- Die Betonung liegt dabei auf dem Tagesgang troposphärischer Beiträgeatmosphärischer Spurengase (O3, NO2, SO2, H2CO) und Aerosole, einschließlichihrer räumlichen Variabilität, horizontalem Transport und möglichem vertikalenAustausch verbunden mit Wetter- und Klimaprozessen.

- UVS Mission ist derzeit kein Kandidat für MTG und eine Analyse erfolgt nurauf Instrumentenebene innerhalb der MTG pre Phase-A Studien.Mögliche Realisierung durch GMES Sentinel 4 in Verbindung mit MTG.

UVS Mission zielt direkt auf Anwendungen derAtmosphärechemie und Luftqualität

IV.33

Page 23DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

(placed variable - follow sun illumination)

UVS no MSG heritagebut from user point of view related to

ERS, EPS GOME, ENVISAT SCIAMACHY

capture regional, diurnal and sporadic behaviourof tropospheric contributions of atmospheric

trace gases (O3, NO2, SO2, H2CO) and aerosols due to biological, photochemical, and volcanic factors

Coverage Repeat cycle Nominal 18o NSx6o EW 30 min Special 6ox6o 10 min

Spatial Resolution 6km

Candidate UVS Mission

Page 24DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Candidate UVS Mission

Mission Spectral Threshold TaskBand resolution

nmUVS-1A 290 295 0.40UVS-1B 295 302 0.40UVS-1C 302 310 0.40UVS-2S 310 325 0.40UVS-2P 310 325 0.40UVS-3S 325 335 0.40UVS-3P 325 335 0.40UVS-4 335 360 0.40 Trace gas retrieval notably HCHO and BrOUVS-5 420 450 0.40 Trace gas retrieval notably NO2

UVS-6A 752.5 757.5 5.00UVS-6B 762.0 770.0 0.06UVS-6C 772.5 777.5 5.00

Trace gas retrieval notably stratospheric O3

Trace gas retrieval notably SO2

Trace gas retrieval notably O3

Cloud detection, cloud poperties, scattering height

Wavelength range

nm

Polarisation measurement/Polarisationinsensitive

measurement

Priority ranking:• High Priority: Bands 1C - 5• Lower Priority: Bands 6A, 6B• Lowest Priority: Bands 1A, 1B, 6C

IV.34

Page 25DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Zusammenfassung

Das MTG Konzept der pre Phase-A Industriestudien wurde den Nutzern auf dem2nd MTG User Consultation Workshop 13 - 15 April 2005 in Locarno vorgetstellt:

•Die Reihenfolge der Priorität der fünf MTG Kandidat Missionen wurde bestätigt1st Imagery, 2nd IR Sounding, 3rd Lightning, 4th UV Sounding

• Weitere Aussagen sind: — 3-Achsen stabilisierter Satellit notwendig für Imagery Mission ist akzeptiert ( comp. to IRS)

— schrittweise Entwicklung und Einsatz (2 Satelliten) übereinstimmend mit MTG Anforderungen

— Flexible Combined (FC) Imager Konzept bestätigt als Lösung für FDHSI/HRFI Missionen

— Bedienung der FC Mission (FD/LAC) im operationellen Betrieb muss abgestimmt werden— 0.55 μm Kanal (zusätlicher grüner Kanal für Aerosole) soll implementiert werden— 0.93 μm Kanal (Flüssigwassergehalt) soll als zusätzliche Option geprüft werden— IRS Mission soll bezüglich Anwendungen mit hoher Priorität optimiert (vereinfacht) werden— akzeptiert, dass UVS keine MTG Mission ist (Koordination mit GMES Sentinel 4 angedacht)

Page 26DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

•• 20012001--20052005: “USER CONSULTATION PROCESS” & PRE-PHASE A STUDIES (PHASE 0)

– 2001 - 2004: PHASE 1 - HIGH LEVEL USER NEEDS & PRIORITIES AGREED, PREPARATION OF PRE-PHASE A STUDIES

– 2004 - 2005: PHASE 2 - SYSTEM CONCEPT STUDIES (PRE-PHASE A),EVALUATION / PRE-SELECTION OF MTG MISSIONS

•• 20062006--20072007: (PHASE A) MTG STUDIES OF SELECTED MISSION CONCEPTS

– APPROVAL PROCESSES: MTG PREPARATORY PROGRAMME

•• 20082008--20092009: (PHASE B) MTG SYSTEM DEFINITION COORDINATED ESA & EUM PROGRAMMES (EUM PREPARATORY PROGRAMME),

– APPROVAL PROCESSES: MTG PROGRAMMES (ESA & EUMETSAT)

•• 20102010--20142014: (PHASES C-D) MTG SYSTEM and SEGMENTS DEVELOPMENT / ON-GROUND TEST

•• 20152015 - (PHASE E) MTG NOMINAL NEED DATE

MTG Entwicklungsphasen

IV.35

Page 27DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Bereitstellungsdatum für MTG ist 2015

(optimale Umständevorausgesetzt !!)

90% Verfügbarkeitsanforderung erfordert ‘Hot Back Up’ Strategie

Page 28DWD/DLR Nutzertreffen, Walberberg 7-9 NovemberMET/RSt 04.11.05

Ende

Detailierte Information bezüglich des aktuellen Status von MTG, alle Endberichte durchgeführter Studien

sowie zusammenfassende Berichte und Präsentationenaller Expertentreffen

verfügbar unter:

http://www.EUMETSAT.int/

IV.36

Results of the MTG Pre-Phase A Studies

P. Bensi

ESA-ESTEC

IV.37

IV.38

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

Status of Meteosat Third Generation (MTG) Pre-Phase A System Architecture Studies

Paolo Bensi, Earth Observation Future Programme DepartmentEuropean Space Agency

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

• 2015: NOMINAL NEED DATE FOR MTG

• 2009-2015 : PHASE C/D DEVELOPMENT/ON-GROUND TEST OF MTG SYSTEM

• 2008-2009: PHASE B COORDINATED ESA & EUM PREPARATORY PROGRAMMES

Approval of EUMETSAT and ESA MTG development programmes

• 2006-2007: MTG PHASE A STUDIES FOR SELECTED MISSION CONCEPTS(critical technologies pre-developments)

• 2001-2005: “USER CONSULTATION PROCESS” & PRE-PHASE A STUDIES

– 2004 - 2005 PHASE 2: PRE-PHASE A STUDIES, EVALUATION/PRE-SELECTION OF MISSION CONCEPTS

– 2001 - 2003: PHASE 1: HIGH LEVEL USER NEEDS & PRIORITIES AGREED, PREPARATION OF PRE-PHASE A STUDIES

Planning: Meteosat Third Generation (MTG)

IV.39

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

Pre-Phase A System Architecture studies

Mid-Term Review (MTR)

Mar/Apr 20052nd MTG UCW Locarno

Mission Architecture Review (MAR)Sep/Oct 2005

KO October 2004

Programmatic Aspects Wrap-up System Update

Planning &ROM estimates

CriticalAreas

Close-out:Nov/Dec 2005

Detailed Analysis and Definition

ObservationPayload

Non Observ.Payload

Spacecraft& Launcher

Mission &Operations

G/S conceptData Flow

Architecture Consolidation and Justification

Requirements and Concepts

Requirements &Trade-off tree

Candidate ConceptsCharacterisation

Selection mission / systemArchitecture (s) concepts

2 Parallel Studies – 14 months durationALCATEL ALENIA SPACE EADS ASTRIUM GmbH

v

vIn progress

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MTG Observation Missions Requirements

FDHSI HRFI LI IRS UVS

BRC

x

Full Disk: 10 min6x18 deg: 10/3 min

6x18 deg: 5 min6x6 deg: 5/3 min

16 deg shifted N10-3 sec

Full Disk: 30 min6x18 deg: 10 min

18x6 deg: 30 min6x6 deg: 10 min

15 core channels in the range 0.4-13.9 mFD-OPT1: 4 channelsO2 absorption band (0.755-0.775 m)FD-OPT-2: 4 channels CO2absorption band (13.03-14.07 m)FD-OPT-3: 2 channels Aerosol/true colour imagery (0.44--0.55 m)

5 channels in the range 0.6-11.2 m

1 channel in the neutral Oxygen line (774.4 nm) bandwidth: 0.34 nm

9 bands in the range 4-15 m. Synchronous imaging (sub-pixel characterisation): 1 VIS channel (0.5 km

x) + 2 IR channels (1 km x)

10 bands in the range 290-777 nm. Polarisation measurements along two orthogonal planes for two bands in the range 310-335 nm or polarisation insensitive instrument (TBC). 3 bands in the O2 absorption band (752.5-777.5 nm)

VNIR-SWIR: 1 kmMWIR-TIR: 2 km

VNIR-SWIR: 0.5 kmMWIR-TIR: 1 km

10 km (over Europe)

4-8.3 m: 3 km8.3-15 m: 6 km

6 km

: spectral range/channels; x: spatial resolution at sub-satellite point (SSP); BRC: basic repeat cycle

IV.40

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

From MOP to MTG

MTGMSG

1977 20152002

UVScoordinated with GMES Sentinel 4

5 observation missions:- HRFI: 5 channels- FDHSI: 22 channels- Lightning Imager- Infra-Red Sounder-3-axis stabilised satellite(s)

1 observation mission:-MVIRI: 3 channels-Spinning satellite 2 observation missions:

- SEVIRI: 12 channels- GERB- Spinning satellite

MOP

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

• The following concept was selected for detailed analysis:

Implementation of the imaging mission through the combined imager

• 1 imager instead of 2 on each satellite

• Simpler satellite configuration, reduced launch mass

• Significant cost savings (space segment/launcher)

Payload accommodation (Combined Imager, IRS, LI) on multiple satellites

•Flexible system deployment and development approach

• Decoupling of higher risk sounding mission from the higher priority imaging mission

• Reduced complexity of key platform subsystemsIRS

CombinedImager

LI

HRFI FDHSI

Combined Imager

System Concept Selection at MTR

IV.41

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Combined Imager

Baseplate

Earth face

N/S Face

E/W Face

Entry Baffle

Calibration Slot•10 min. FD coverage (3.3 min LAC)•15 core channels (22 with options)• 250 Kg• 250 W• Data Rate 50 Mbs (all options)• Active cooling (driven by LW channels)• 2 axes scan mechanism

Development Issues

• Detector arrays for the IR (LWIR) channels• Scan Mechanism (complexity, lifetime)• Cryo-coolers• Optical elements (coatings, filters)• Solar inputs effects (thermo-elastic deformations -> mission availability)

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Infrared Sounder

opd = time

TelescopeOptics

Michelsoninterferometer

Imagingoptics

Collimatingoptics

Detectorarray

Mecanism

Spectralsample 0

Wavelength0

Slit

Wavelength0

Dispersivesystem

Detectorarray

Band-passfilter

Cold stop

Two instrument concepts analysed. Final selection still open

Fourier Transform Spectrometer (FTS) Dispersive Spectrometer (DS)

Step and Stare “scanning” Pushbroom scanning in EW direction256 x 256 FPA at 6.5 sec dwell time Array size depends on band

IV.42

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Infrared Sounder

Baseplate

Earth face

N/S Face

E/W Face

DS FTS• 280-320 Kg 280-330 Kg• 350 W 350-480 W(1)

• 400 Mbps 3 Gbps (2)

• Active cooling (driven by LW channels)• 2 axes scan mechanism

(1) Depending on level of data processing and implementation (instrument/DHSS)(2) Raw Instrument data rate before processing

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Infrared Sounder

Development Issues

• LWIR detectors array requires major pre-development (in different direction for the DS and the FTS)• interferometer design (FTS), gratings (DS)• Processing loads (FTS)• Cryo-coolers • Scan Mechanism (but driven by the combined imager)• Solar inputs effects (thermo-elastic deformations -> mission availability)

Preliminary Concept Assessment

• The engineering challenges are different between the DS and FTS concepts but of the same level of complexity at instrument level;• The FPA array/cooler technologies require development for both DS and FTS but in different directions• DS shows better radiometric performances for most bands whereas FTS seems better for LWIR bands;• Spectral calibration requirements more constraining for the DS concept• FTS instrument is more difficult to accommodate (data rate, pointing stability)

IV.43

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Lightning Imager

radiator

baffle

telescope

prox. el.

bench

radiator

baffle

telescope

prox. el.

bench

• 4 cameras 16 deg coverage (shifted N)• 160 mm aperture• 100 Kg• 60-100 W• Data Rate 100 kbps

Development Issues

• Not a “small” instrument, current concept based on reduced DE performances (DE>90% from 6 mJ.m-2.sr-1 )• APS detector with smart pixel (extraction of lightning flash events) and narrow band filter (160 mm) are technologies to be developed• Lightning flash models (at signal level) are essential for assessing the spatial and temporal coupling of the flash event with the detection process. Different assumptions have a significant impact on the instrument sizing

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Space Segment

Combined Imager

LightningImager

UHF patch

L-band antenna

North or

South

Earth

Xs

Zs

Ys

Xs

Zs

Ys

IR-Sounder

X-BandAntenna

S-BandAntenna

XNadirLaunch Direction

DeepSpace

Y

Z

Main Body

Imaging Satellite (MTG-I) Sounding Satellite (MTG-S)

• Payload accommodation on two satellites: MTG-I (CI, LI, DCS) and MTG-S (IRS DS/FTS)• Common S/C bus except communication payload and Data Handling, heritage from Telecom buses• Launch mass: 3+ tons• Power: 1+ kW• PDT: L/X band for MTG-I, X/Ku band for MTG-S (on-board processing, DS/FTS selection)• Launchers: Soyuz (3t), Ariane 5• S band TT&C

IV.44

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Space Segment

MTG Satellite concept – Main Features

• AOCS concept heritage from recent telecom development with improved sensor performances

• CPS for orbit acquisition and station keeping, EPS options for wheels unloading (and possibly N/S S/K)

• Asymmetric solar wing and 2-yearly yaw flip (instrument thermal control)

• High thermo-mechanical stability to minimise thermo-elastic distortion in orbit and particularly at eclipse transitions

• Micro-vibration impacts (Reaction wheels, active coolers) on observing missions performance to be analysed in details in the coming development phases

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – System deployment assumptions

50

10 15

MTG-I satelliteMTG-S satellite

1-year commissioning

Earliest date

Latest date

8 satellites (2 MTG-I nominal + 2 MTG-I back-up; 2 MTG-S nominal + 2 MTG-S back-up)to cover the required mission lifetime (15 years + 5 years extension)

Phased deployment approach (first MTG-S two years after the first MTG-I) to cope withthe critical IRS development schedule and to provide programmatic flexibility

IV.45

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

Real time users

Non real time users

Meteo dataproviders

GOS partners

Primary ground station- Tracking, Telemetry & Command (TTC)- Observation and DCP data acquisition- Level 0 processing- Back-up control centre

Back-up ground station(s)

ArchiveAnd on-line user services

SAF’s- Level 2 processing

Terrestialnetwork

Imager satelliteSounder satellite

0.6 to 1 deg

TT&C (S-band)

ITM (L-band)

ITM (X-band)TT&C (S-band)

ControlCenter

Data Processing & Quality Control

Facility

Data Dissemination Facility

Core facility (Darmstadt)

Real time users

Non real time users

Meteo dataproviders

GOS partners

Primary ground station- Tracking, Telemetry & Command (TTC)- Observation and DCP data acquisition- Level 0 processing- Back-up control centre

Back-up ground station(s)

ArchiveAnd on-line user services

SAF’s- Level 2 processing

Terrestialnetwork

Terrestialnetwork

Imager satelliteSounder satellite

0.6 to 1 deg

TT&C (S-band)

ITM (L-band)

ITM (X-band)TT&C (S-band)

ControlCenter

Data Processing & Quality Control

Facility

Data Dissemination Facility

Core facility (Darmstadt)

MAR status – Ground Segment

Nationaler Nutzerworkshop “Operationelle Satellitensysteme der Erdüberwachung”7-9 November 2005, Tagungsstätte Walberberg

MAR status – Conclusion

• The pre-phase A studies have identified suitable instrument/system concepts for the implementation of the MTG system, based on the present definition of user/mission requirements

• The mission is ambitious and demanding, major technology pre-developments are required (partially already initiated by ESA)

• Phased system development and deployment approach will mitigate the risk in compliance with the MTG mission priorities

• Programmatic inputs to be analysed soon. Affordability consideration will probably drive the consolidation of mission/system requirements applicable to the coming feasibility studies at phase A level

• The operational deployment of the MTG imagery mission by 2015 is judged feasible but challenging. MTG technical and programmatic requirements to be consolidated soon in line with the objective of starting Phase A and major pre-developments by 2006

IV.46

EUMETSAT Activities in Preparation for a Post-EPS System

E. Koenemann

EUMETSAT

IV.47

IV.48

7.-9. November Nationaler NutzerworkshopWallberberg Page 1

Aktuelle und geplante Aktivitäten

zur Vorbereitung des

EPS NachfolgesystemsE.Koenemann

Director Programme Development

7.-9. November Nationaler NutzerworkshopWallberberg Page 2

EUMETSAT Strategic Guidelines for Post-EPS

EUMETSAT will remain committed, as a minimum and top priority, to the mid - morning sounding mission

There is a joint commitment between EUM Member States and NOAAfor a future Polar System (JPS)

Possible EUMETSAT contribution to JPS fully open:

- instruments across the various orbits;- satellites on different orbits; etc.

as long as EUMETSAT keeps responsibility for at least one end-to-end system

IV.49

7.-9. November Nationaler NutzerworkshopWallberberg Page 3

EUMETSAT needs to have requirement processes of its own for future polar systems, to support constructive discussions with NOAA on joint andrespective user requirements

EUM/NOAA White Paper on Common Requirements for Future Systems:

Prepare the definition of common and respective user requirements forfuture systems

It can become a reference for future NOAA/EUMETSAT agreementsafter IJPS

It’s open and defines a baseline to other contributions/partners and can support/facilitate other initiatives (WMO,GMES, GEOSS)

EUMETSAT Strategic Guidelines for Post-EPS

7.-9. November Nationaler NutzerworkshopWallberberg Page 4

Status EPS, POES, NPOESS beginning 2005

POES/NPP/NPOESSNOAA-N (13:30 A)

NOAA-N' (13:30 A)NPP (10:30 D)

C1 (9:30 D)C4 (9:30 D)

C2 (13:30 A)

C5 (13:30 A)C3 (5:30 D)

C6 (5:30 D)

EPSMETOP-A (09:30 D)

METOP-B (09:30 D)

METOP-C (09:30 D)

Phase 0Phase A

Phase BPhase C, D

Post-EPS Need Date

'99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22 '23 '24

Post EPS

IV.50

7.-9. November Nationaler NutzerworkshopWallberberg Page 5

POES, NPOESS and EPS October 2005 t.b.c.

POES/NPP/NPOESSNOAA-N (13:30 A)

NOAA-N' (13:30 A)NPP (13:30 D)

C1 (13:30 A)

C2 (5:30 D)

C3 (7:30 A)

EPSMETOP-A (09:30 D)

METOP-B (09:30 D)

METOP-C (09:30 D)

Phase 0Phase A

Phase BPhase C, D

Post-EPS Need Date

'99 '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22 '23 '24

Post EPS

7.-9. November Nationaler NutzerworkshopWallberberg Page 6

Lower level user requirements

MTG Mission Requirements (MRD)

High level user requirements for selected techniques

Lower level user requirts

- observations/information- non observational

User Needs & Priorities

Customer Strategies

Requirements & Logic

Driver or input

Traceability

Selected/relevant observing techniques

High level user requirements

RS Experts

Application Expert Groups

Mission Teams (Remote Sensing

& Application Experts)

AEG Position Papers(maintained)

Strategy documents

Documents

Assessmentof observing techniquesRS Experts

(MTG) User Consultation starting point for . . . . . . Post-EPS

user/application broad perspectiveGEO and LEO capabilities consideredobservations/performance expected in 2015-2025

Need of expansion recognised

Additional applications seek support of SAFs, draw on IGOS, GMES themesextract/synthesize requirementshold user consultation workshop

Full assessment of LEO capabil.reiterate consultationswith Remote Sensing Experts(ESA)

Study logic User Consultation Process

IV.51

7.-9. November Nationaler NutzerworkshopWallberberg Page 7

Tentative Missions

Atmospheric SoundingAtmospheric ChemistryOcean Imaging

(incl. Sea Ice, Winds)Ocean Surface TopographyCloud & Land Surface Imaging

(incl. Precipitation)Wind Profiling

Sources of Requirements

(MTG) User ConsultationWMOIGOS Themes

OceanAtmospheric Chemistry

GOOSGMES Themes

Ocean MonitoringLand MonitoringAtmospheric Chemistry

Applications

Operational MeteorologyNowcastingNumerical Weather Prediction

OceanographyAtmospheric ChemistryLand Surface AnalysisClimate MonitoringHydrology

Post-EPS- User Consultation Approach

7.-9. November Nationaler NutzerworkshopWallberberg Page 8

Tentative Missions

Atmospheric SoundingAtmospheric ChemistryOcean Imaging

(incl. Sea Ice, Winds)Ocean Surface TopographyCloud & Land Surface Imaging

(incl. Precipitation)Wind Profiling

Applications

Operational MeteorologyNowcastingNumerical Weather Prediction

OceanographyAtmospheric ChemistryLand Surface AnalysisClimate MonitoringHydrology

Sources of Requirements

EUMETSAT User Consultation / AEGsWMOIGOS Themes

OceanAtmospheric ChemistryCarbon Cycle

GMES ThemesOcean MonitoringLand MonitoringAtmospheric Chemistry

Post-EPS- User Consultation Approach

IV.52

7.-9. November Nationaler NutzerworkshopWallberberg Page 9

Applications

Operational MeteorologyNowcastingNumerical Weather Prediction

OceanographyAtmospheric ChemistryLand Surface AnalysisClimate MonitoringHydrology

Sources of Requirements

EUMETSAT User ConsultationWMOIGOS Themes

OceanAtmospheric Chemistry

GOOSGMES Themes

Ocean MonitoringLand MonitoringAtmospheric Chemistry

Tentative Missions

Atmospheric SoundingAtmospheric ChemistryOcean Imaging

(incl. Sea Ice, Winds)Ocean Surface TopographyCloud & Land Surface Imaging

(incl. Precipitation)Wind Profiling

(all supporting also Climate Monitoring)

Post-EPS- User Consultation Approach

7.-9. November Nationaler NutzerworkshopWallberberg Page 10

Atmospheric Chemistry AEG•Identify the evolution of the application •Identify the contributions of space-based observations•Collect and review user requirements•Establish a prioritised list of geophysical variables•Present and discuss findings in open workshops

Cloud, Precip. & Land Surface Imaging AEG•Identify the evolution of the application •Identify the contributions of space-based observations•Collect and review user requirements•Establish a prioritised list of geophysical variables•Present and discuss findings in open workshops

Atmospheric Sounding and Wind Profiling AEG•Identify the evolution of the application •Identify the contributions of space-based observations•Collect and review user requirements•Establish a prioritised list of geophysical variables•Present and discuss findings in open workshops

EUMETSAT User Consultation

EUMETSATUser

ConsultationClimate Experts•Review climate requirements across candidate missions

Ocean Topography and Imaging AEG•Identify the evolution of the application •Identify the contributions of space-based observations•Collect and review user requirements•Establish a prioritised list of geophysical variables•Present and discuss findings in open workshops

Satellite Application Facilities•Provide additional inputs•Review requirements across candidate missions

ESA Remote Sensing Experts•Advice on relevant observation techniques

IV.53

7.-9. November Nationaler NutzerworkshopWallberberg Page 11

Collection and review of user requirements

Presentation and discussion

Review of climate requirementsReview and consolidation across missions

Presentation and discussion

User Consultation - Work Plan

AEG meetings

AEG Workshops1-2 December 2005

ad hoc reviewsand meetings

Consolidation Workshopspring 2006

x 4 AEGs

7.-9. November Nationaler NutzerworkshopWallberberg Page 12

Post-EPS Planning for Phase 0

Initial Scope of Tentative MissionsIntroduction of Tentative Missions at MTG 2nd UC Workshop

Atmospheric Sounding & Wind Profiling AEGOcean Topography & Imaging AEG

Cloud, Precipitation & Land Surface Imaging AEGAtmospheric Chemistry AEG

Consolidation of Application RequirementsUC Consolidation Workshop

Observation Mission Req.

Support Mission Req.Assess METOP Commissioning Results

Programmatic RequirementsMission Definition Review

RSE Support to AEGs

Obs. Techniques ConsolidationSensor Concepts & System Architecture

Sensor Concepts & System Architecture MTR

Pre-Developments TRL-2

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D2004 2005 2006 2007

UserConsultation

MissionRequirements

ArchitectureConcepts

Introduction to SAF NetworkAnalysis and Input/Feedback by SAF Network

Analysis by Climate Experts

IV.54

7.-9. November Nationaler NutzerworkshopWallberberg Page 13

Co-Ordinated EUMETSAT/ESA positions on MTG, Post-EPS and GMES planning Assumptions EUM/C/57/05/DOC/47

Revised Declaration covering the Earth Observation Envelope Programme

(programme proposal for EOEP-3) ESA/PB-EO(2005)72 rev 2

Earth Observation Envelope Programme, Development and Exploitation Element, Preparation of EUMETSAT missions : MTG and Post-EPS,

Assumption shared with EUMETSAT, status and outlook Information Note

ESA/PB-EO(2005)85

Supporting Documents

IV.55

Chapter V

National Technology Studies

Related to a Future Post-EPS System

 

The Imaging Radiometer MetImage

Dr. B. Voß

Jena Optronik GmbH

V.1

V.2

METimageDr. B. Voß

1

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage

Walberberg Workshop

07-09 Nov. 2005

METimageDr. B. Voß

2

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage

• General need for AVHRR successorJena-Optronik proposed instrument concept METimage for future operational weather satellites (Polar platforms).Various instrument concepts were established in a METimage study co-financed by DLR.

V.3

METimageDr. B. Voß

3

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Instrument requirements

Spectral coverage between VIS (400 nm) and Thermal IR (14 μm)

Only reflecting optical system can cover the completebandwidth

Wide swath width (> 2300 km) to allow global coverage

Spatial resolution between 250 m and 1 km

High absolute radiometric accuracyCarefully devised calibration strategy

High accuracy calibration sources

Low polarisation sensitivity

METimageDr. B. Voß

4

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Development approach

Requirements are developing

Trade-off between user requirements and available budget

Flexibility is the most important design driver Flexible number of channels

Flexible SNR/NEdT

Flexible instrument configuration

METimage instrument family (A, B1, B2, C)

V.4

METimageDr. B. Voß

5

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Spectral separation

Dichroic beam splittersParallel beam required: afocal telescope + relay opticsSingle detector for each channelLimited to 10 channels because of accommodationconstraints

In-planeMany channels in a small volumeRequires focal plane design with multiple detectorsLarger aperture required, but confocal telescope can be utilizedImage rotation to be compensated

METimageDr. B. Voß

6

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

FPA design approach

Matrix detector based FPAFast random access ROICsTelescope design independent from number of channelsTDI flexible SNR

BaseplateDetector matrix

Spectral filterpossible SNR

050

100150200250300350400450

0 5 10 15 20 25 30Number of detector elements in scan-direction

SNR

possible SNR

050

100150200250300350400450

0 5 10 15 20 25 30Number of detector elements in scan-direction

SNR

V.5

METimageDr. B. Voß

7

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Time Delay Integration (TDI)

METimageDr. B. Voß

8

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Pixel usedfor oneearth pixel

Imagedearth region

Pixel size over Scan region

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

Scan angle [deg]

Pixe

l siz

e[k

m]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

norm

aliz

edSN

R

GSD (ACT)GSD (ALT)GSD (ACT) with stepsNormalized SNR

Scan geometry

V.6

METimageDr. B. Voß

9

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Half angle mirror

Scan principle – rotating telescope

METimageDr. B. Voß

10

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

FoV

BB1

BB2

Sun Diffusor

Deep space

Entrance

PM

SM

HAM

Entra

SM

Principle derotation mechanism

V.7

METimageDr. B. Voß

11

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage C

• Based on ESA future imager studyrequirements

• Up to 30 channels• Low polarisation < 1% due to polarisation

scrambler

• METimage exceeds chosen SNR requirementsfor 800m GSD

• Ground sampling distance down to 250m possible with reduction of radiometricperformance.

METimageDr. B. Voß

12

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage C Optics

Polarisation scramblerfocal plane

IR entrancepupil

V.8

METimageDr. B. Voß

13

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Radiometric performance– solar channels

Wavelength

[μm]

Spectr.bandwidth

[nm]

Minimalradiance

Lmin[W/(m² sr

μm)]

typical radiance

Ltyp[W/(m² sr

μm)]

Maximalradiance

Lmax[W/(m² sr

μm)]

Req.SNR @

Ltyp@ 800m

GSD

Possib. SNR @

Ltyp@ 800m

GSD

Possib. SNR @

Ltyp@ 400m

GSD

2176 515

396

342

348

209

210

179

160

196

72

1627

1508

1493

951

963

794

627

742

314

1100

800

700

585

350

406

297

200

200

71

Possib. SNR @

Ltyp@ 250m

GSD

0,443 20 8 42 585 179

0,490 20 11 31 582,7 197

0,554 20 8 18,5 528 117

0,670 20 2,7 9 1010 120

0,708 20 2 7 425,1 72

0,750 14 2 5 377 71

0,877 35 1,5 3,2 631 61

1,375 30 6 6 109 58

1,610 60 0,4 3,8 104 71

2,25 60 0,1 3,2 31,7 25

METimageDr. B. Voß

14

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Radiometric performance– thermal channels

Wavelength

[μm]

Spectralbandwidth

[nm]

Minimaltemp.Tmin[K]

Typical temp.Ttyp[K]

Maximaltemp.Tmax[K]

Req.NEdT@ Ttyp

[K]@ 800m

GSD

Poss.NEdT@ Ttyp

[K]@ 400m

GSD

0.08 0.080.260.280.10.080.070.29

0.30.30.10.080.080.3

Poss.NEdT@ Ttyp

[K]@ 250m

GSD

3.70 380 190 270 335 0.216.30 1000 190 240 300 0.837.30 1000 190 240 300 0.928.55 1000 190 300 335 0.310.85 950 190 270 340 0.2

12 1000 190 270 340 0.213.40 600 190 270 270 0.77

• METimage exceeds chosen SNR requirements for 800m GSD• Reduction of GSD down to 250m possible with reduction of

radiometric performance.

V.9

METimageDr. B. Voß

15

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Performance METimage Polarisation

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

5,00%

400 500 600 700 800 900 1000

wavelength [nm]

pola

risat

ion

sens

itivi

tyPolarisation sensitivity of one reflective surface

Withpolarisationscrambler

Withoutpolarisationscrambler

442nm: 1%670nm: 0.5%855nm: 0.5%

442nm: 11%670nm: 3%855nm: 2.7%

Except for blue channel, 5% polarisationrequirement can be met without scrambler

METimageDr. B. Voß

16

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage B2

Volume:65 x 83 x 70 cm³Mass:85 kg

CalibrationSources

MIR/TIRFPA

VNIR/SWIRFPA

Half Angle Mirror

65 x 68 x 70 cm³

V.10

METimageDr. B. Voß

17

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

Reduced SNR requirements METimage B1

• Entrance pupil and with that complete optical instrument can be scaled.

• Based on ESA VIRI-M requirements

• METimage B1 exceeds the VIRI-M requirements:– Solar channels can be operated at 400m

GSD by reducing the detector pixel size.– Thermal IR channels meet requirements

with 800m GSD

METimageDr. B. Voß

18

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

METimage B1 Budget for VIRI-M requirements

• Volume: – Instrument: 26 x 33 x

28 cm³– ICU: 30 x 24 x 25

cm³• Mass: 40kg

330 mm

260 mm

280

mm

Half angle mirror

FPAs

V.11

METimageDr. B. Voß

19

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

VIRI-M requirements

• METimage B1 exceeds the VIRI-M requirements:– Solar channels can be operated at 400m GSD by reducing the

detector pixel size.– Thermal IR channels meet requirements with 800m GSD

Channel Centrewavelength [μm]

SpectralWidth [μm]

Required SNR possibleSNR/NedT @ 800m GSD

possibleSNR/NedT @ 400m GSD

ME443 0.443 0.02 20 109

226

165

180

215

0.07K

0.24K

0.10K

0.08K

0.09K

0.19K

23

AH1 0.670 0.02 20 51

AH2 0.865 0.02 20 36

VI1.38 1.375 0.03 40 40

AH3A 1.61 0.03 40 46

AH3B 3.74 0.38 0.1K 0.28K

MO6.7 6.7 0.36 0.3K 1.35K

SE8.7 8.7 0.3 0.1K 0.45K

AH4 10.8 1.0 0.1K 0.34K

AH5 12.0 1.0 0.1K 0.40K

SE13.4 13.4 0.3 0.2K 0.83K

METimageDr. B. Voß

20

This

docu

men

t co

nta

ins

info

rmat

ion p

ropriet

ary

to J

ena-

Optr

onik

Gm

bH

. Any

dis

closu

re,

use

or

duplic

ation o

f th

is d

ocu

men

t is

exp

ress

lypro

hib

ited

.

SummaryMinimum Advanced Maximum

METimagerequirements VIRI-M ESA future imager study

GSD 1 km 500 m (VIS) – 1 km (IR) 250 m

pol. scrambler no yes

entrance pupil 150 mm 50 mm 120 mm

dichroic beam splitters in-plane spectral separation

rotating telescope

half angle mirrorcharacteristics

1 detector / channel matrix based detector

pol. sensitivity 5 % < 1 %

8 11 Up to 30

A B1 B2 C

channels

volume 74 x 25 x 56 cm³ 56 x 33 x 28 cm³ 65 x 83 x 70 cm³

40 kgmass 36 kg

100 W(+ 50 W active

cooling)

90 x 83 x 70 cm³

150 kg115 W (11 channels)165 W (17 channels)

+ 60W for active cooling

85 kg

powerconsumption

45 W

105 W (11 channels)155 W (17 channels)

+ 60W for active cooling

V.12

Concept for a Low-Cost EPS-Gapfiller

 Dr. H. Lübberstedt OHB System AG

V.13

V.14

EPS Bridge Low-Cost Satellite

OpSE Workshop Walberberg

8th November 2005

EPS-HO-OHB-003

Results of a Concept Study being performed for

Dr. Hendrik LübberstedtOHB-System AG

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

EPS Bridge Key System Requirements

Minimum Payload complement to NPOESS consisting of IASI - Infrared Atmospheric Sounding Interferometer

IMR - Imaging Radiometer to support IASI (successor of AVHRR)

Low-Cost Satellite Platform with best possible compliance to existing EPS G/S - Deviations possible if motivated by cost-benefit analysisLifetime 3 - 5 years

Nominal launch late 20195 years Storage

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 20201 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

METOP-A

METOP-B

METOP-C FAR LaunchOperationsStorage

LaunchOperations

LaunchOperationsStorage

EPS-BridgeLaunch

V.15

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

System Overview

EPS Bridge Satellite providesP/L DHS (Payload Data Handling System)GDS (Global Data Stream) X-Band linkHRPT real-time L-Band linkTTC S-Band link

EPS Overall Ground Segment (OGS)

EUMETSAT

EPS Bridge Satellite

TTC GDS

Command & DataAquisition (CDA)

Svalbard

IASI IMR

HRPT

UserStations

ProductGeneration,

Facility (PGF)

Mission ControlSystem (MCS)

Archiving &Dissemination User

P/L DHS

EPS G/S with small modifications in most of its subsystems, e.g.CDA: S/C I/F (IMR data)MCS: Satellite TTC & DynamicsPGF: Advanced IMR Products OGS Interfaces

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Mission & Operations

Orbit as METOP (SSO @ ~825 km)

Svalbard G/S (1 Antenna)

Data Aquisition with 100% duty cycle(except of the solar channels)

Data Delivery (level 1c) < 3 h (each orbit is required)

Ground Track (24 h)

Access EPS-Bridge to Svalbard

4

6

8

10

12

14

16

0 20 40 60 80 100

Time [orbits]

Acc

ess

Dur

atio

n [m

in]

Elevation 0°Elevation 5°

Minimum Access 6.6 minX-Band Downlink 70 Mbit/ s

=> Max possible Net Data Rates:Total 3.4 Mbit/sIASI 1.5 Mbit/sImager 1.9 Mbit/s

V.16

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Core Payload IASI

Parameter Characteristics

Scan type Step and dwell

IFOV size at Nadir 12 km

Swath ± 48.3° (1026 km)

Spectral range 3 μm to 16 μm

Lifetime 5 years

Power 244 W

Size 1.2 x 1.1 x 1.3 m3

Mass 231 kg

Data rate 1.5 Mbps

Michelson InterferometerIntegrated imaging system(cloud detection)IASI needs supporting ImagerBig & complex instrument

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Imager requirementsRequirement Minimum Advanced Priority

Across track field of view 55° 55° 1

GSD across track @ nadir 800 m 400 m 2

GSD along track @ nadir 1100 m 550 m 2

Spectral channels 6 AVHRR channels 11 VIRI-M channels 2

Acquisition of solar channels (up to 1.6 m)

Daytime part of orbit Complete orbit &Low light capability

3

SNR/ NedT AVHRR VIRI-M 2

Polarisation sensitivity 10 % 5 % 2

Pointing knowledge (pitch/ roll) 0.17° (< 1.9 km) 0.17° (< 1.9 km)

Inter-channel co-registration As accurate as possible < 0.1 mrad / < 12 ms 1

Temporal co-registration with IASI < 10 s < 5 s 2

Co-alignment IASI/imager 1 km 500 m

Absolute radiometric accuracy 10 % / 1 K 5 % / 0.5 K 1

V.17

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Imager Options

Minimum requirementsMETimage A

Advanced requirementsMETimage B1

• Rotating telescope• Dichroic Beam Splitter• Single detector per channel

• Rotating telescope and half angle mirror• In-plane spectral separation• Matrix based detector

Channels 6 – 8 11

Mass 36 kg 40 kg

Power (average) 40 – 45 W 100 W + 50 W for active cooling

Volume 74 x 25 x 56 cm³ 56 x 33 x 28 cm³ (incl. OU & EU)

GSD ACT @ Nadir 800 m 400 m (solar) – 800 m (IR)

Characteristics

Data Rate (average) 0.85 – 1.14 Mbit/ s1.28 Mbit/ s - 11 ch @ 800 m1.56 Mbit/ s - 3 ch @ 800 m +

3 ch @ 400 m (half orbit)

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

SNR Requirements and METimage Performance

MinimumRequirements

AdvancedRequirements

METimage A performance

METimage B1 performance

SNR/NedT@ 800m GSD

5554

490.1K

0.04K0.08K

Central wave length [μm]

SNR @ 0.5% albedo / NedT @ 300K

SNR @ 0.5% albedo / NedT @ 300K

SNR/NedT@ 800m GSD

SNR/NedT@ 400m GSD

0.443 20 109 230.670 9 20 226 510.865 9 20 165 361.375 40 180 401.61 20 40 215 463.74 0.12 K 0.1 K 0.07 K 0.28 K6.7 0.3 K @ 250K 0.24 K 1.35 K8.7 0.1 K 0.10 K 0.45 K10.8 0.12 K 0.1 K 0.08 K 0.34 K12.0 0.12 K 0.1 K 0.09 K 0.40 K13.4 0.2 K @ 270K 0.19 K 0.83 K

V.18

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Satellite Configuration

OHB System AG / 2005OHB System AG / 2005

SolarGenerator

PowerConditioning

&Distribution

Battery

TT&CS/S

S-Band

S-BandAnt.

(+z/-z)

ActuatorsSensors

PropulsionS/S

S/S Power

Hea

ter‘s

TM/TC(serial)

Payload I/F‘s

Pwr

28V PayloadPower I/F‘s

Imager

P/L

BusInterfaces

Redundancy not shown

PPS/TMTC

OBDH & AOCSTM/TC

Pwr

IASI

PL DHS:

Formatter Storage

X-Band Ant.

Ant.HRPT

Based on OHB’sSAR-Sat Bus

Option EPS-1 Mini-mum

EPS-2 Ad-

vanced

ParameterP/L mass [kg] 297 301

P/L power (avg.) [W] 331 441

Data Vol. [Gbit/orbit] 14 21

S/C mass [kg] 688 718

S/C power (avg.) [W] 518 639

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Solar Panel

Launch adapter

IASI

IMR

Satellite Concept

HRPTAntenna

S-/ X-Band Antennas

Z - Nadir

X - flightdirection

Y

V.19

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

Small Launcher Candidates

EPS-Bridge requirements: Launch mass : 700 kg classSSO @ 825 km

Launcher Payload Mass*

Firstlaunch

Status

COSMOS 700 kg 1966 > 740 Launches, > 97% reliability

TAURUS XL 780 kg 1994 7 launches 1 failure

ROCKOT 900 kg 1990

9 launches 1 failure

Availability 2019 TBC

PSLV 1200 kg 1993 8 launches 1 failure

VEGA 1300 kg 2007 Under development

FALCON 5 >2800 kg 2007 Under development

*Payload Mass capability to h=825 km at i=98.7°

Pre-selection of compliant cost-effective launcher:

=> Two Classes of Launcher Constraints:Small - up to 700 kg: Reference COSMOSMedium - up to 1200 kg: Reference VEGA

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

G/S Compatibility

Option GS1: Imager similar to AVHRR (GSD, spectral channels)Full compliance to AVHRR formats performed on-board or in CDA

Option GS2:Enhanced Imager (GSD, spectral channels)Split into AVHRR-”compliant” + additional dataImager/IASI L1 Processing to be adapted Expected

ChangesGS1

Additional expectedChanges

GS2

V.20

All Rights reserved © OHB System AG 2005

EPS Bridge Low-Cost Satellite OpSE Workshop, 08.11.2005

EPS-HO-OHB-003

System Summary

Option EPS-1 Minimum

EPS-2 Advanced

Configuration

Payload IASI METimage A

IASI METimage B1

Platform Bus 1 Bus 2

Ground Segment GS 1 GS 2

S/C Characteristics

Satellite mass 688 kg 718 kg

Satellite power (orbit average) 518 W 639 W

Data Rate 2.6 Mbit/ s 3.4 Mbit/ s

System Driver: IASI AccommodationSmall Launcher complianceEPS-G/S compliance

EPS-2 option is proposed as baseline on the way towards advanced Post-EPS requirements

EPS options : System Impact of EPS-2 in relation to EPS-1 is moderateDelta of EPS-Options < Uncertainties of system driversin terms of overall effort

V.21

V.22

Concept for a Post-EPS Initial Satellite (PEPSIS)

  Dr. R. Münzenmayer EADS Astrium GmbH

 

   

V.23

V.24

Page 1 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

Post EPS Initial Satellite (PEPSIS)National User Workshop on Operational E/O SystemsWalberberg, 7.-9. November 2005Dr. Ralf Münzenmayer / EADS Astrium GmbH

Page 2 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

Post EPS Initial Satellite (PEPSIS)Contents1. Introduction – Early Need of PEPSIS?

2. P/L Requirements and Options2.1 Overview2.2 Infrared Sounder2.3 Microwave Sounder2.4 Imaging Radiometer 2.5 Reference P/L – Budgets

3. System Concept3.1 Mission Architecture and Candidate Launcher3.2 Satellite Concept and Options3.3 Compatibility to the EPS G/S

4. Recommended Solution for PEPSIS and Possible Implementation Scenario

V.25

Page 3 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

1 Introduction

Page 4 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

1 IntroductionIJPS- and JTA Agreement

EUMETSAT NOAA Agreements concerning polar orbiting systems for meteorologyInitial Joint Polar System (IJPS) Agreement dated Nov. 1998• EUMETSAT

- MetOp 1 & 2 - morning orbit- Launch 2006

• NOAA- NOAA N & N´

Polar Orbiting Environmental Satellites (POES)- afternoon orbit- Launch of NOAA N was May 2005

V.26

Page 5 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

1 IntroductionNeed for a Gap Filler / Post EPS Initial Satellite

JTA requires sounding data from MetOp-3 (after 2014)Need of a backup for MetOp-3Post-EPS is too late

MSGMSG-1

MSG-2MSG-3

MSG-4MTG

Phase 0Phase A

Phase BPhase CD

MTG-1 Need DatePOES/NPP/NPOESS

NOAA-N (14:30)NOAA-N' (14:30)NPP (10:30)

C1 (21:30)C4 (21:30)

C2 (13:30)C5 (13:30)

C3 (17:30)C6 (17:30)

EPSMETOP-A (09:30)

METOP-B (09:30)METOP-C (09:30)

Potential GapEPS Gap FillerRequirements

DesignPhase C, D

Gap FillerPost EPS

Phase 0Phase A

Phase BPhase C, D

Post-EPS Need Date

'00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22 '23 '24 '25

Page 6 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

1 IntroductionPost-EPS Definition Process

Initial Scope of Tentative MissionsIntroduction of Tentative Missions at MTG 2nd UC Workshop

Atmospheric Sounding & Wind Profiling AEGOcean Topography & Imaging AEG

Cloud, Precipitation & Land Surface Imaging AEGAtmospheric Chemistry AEG

Consolidation of Application RequirementsUC Consolidation Workshop

Observation Mission Req.Support Mission Req.

Assess METOP Commissioning Results

Programmatic RequirementsMission Definition Review

RSE Support to AEGs

Obs. Techniques ConsolidationSensor Concepts & System Architecture

Sensor Concepts & System Architecture MTR

Pre-Developments TRL-2

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D2004 2005 2006 2007

User Consultation

MissionRequirements

ArchitectureConcepts

V.27

Page 7 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2 P/L Requirements and Options

Page 8 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

IASI IASI IASI

MinimumImager

MediumImager

MaximumImager

PEPSIS

Optional Microwave Payload

2.1 Payload OverviewPayload Options for PEPSIS

Core payload:IR Sounder - IASIImaging Radiometer (required as supporting imager for IASI)• Minimum Imager (VIRI-M requirements)

- Modular Concept (Kayser Threde GmbH)- METimage B1 (Jena-Optronik GmbH)

• Medium Imager- METimage B2 (Jena-Optronik GmbH)

• Maximum Imager (dual view)- EADS Astrium Future Imager concept

Microwave Sounder (optional)• ATMS (provision by NOAA unclear)• CTS concept from SULA Systems Ltd.• LEOMIS concept from EADS Astrium SASOptional GRAS (GNSS Receiver for Atmospheric Sounding)

CorePayload

SupportingImager

OptionalPayload

V.28

Page 9 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

Imager(VIIRS):max. 1km

IASI:12km

MW Sounder(ATMS):10-37km

IASI data product generation require Co-registration in time and space:

• Timeliness between IASI and imager < +/-10s• Spatial co-registration < 1 km

Spectral and Radiometric Requirements for Imagers• Depending on “atmospheric mission” (not driven by IASI needs)

Relation of pixel sizes at Nadir

2.1 Payload OverviewCo-registration requirements

VIIRS: 3000kmATMS: 2300km

IASI: 2052km

Page 10 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.2 Infra-Red Sounder IASI Main Data

Characteristic Value Unit Scan type Stepp and stare -Scan rate 8 sStare interval 151 msStep interval 8/37 sNumber of earth scans / line - EFOV 30 -Swath +/- 48.333 degSwath width +/- 1100 kmIFOV - shape at nadir circular -IFOV - size at nadir 12 kmIFOV - size at edge of scan line across track 39 kmIFOV - size at edge of scan line along track 20 km

Volume 120 x 108 x 134 cmMass 230kgPower 200WData Rate 1.5Mb/sCooling passive

V.29

Page 11 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.3 Microwave Sounder Spectral Range

Observation of water vapour line at 183GHz and O2 line at 53GHz is mandatory.

Page 12 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.3 Microwave Sounder MetOp and NPOES Instruments

AMSU-A will no longer beavailable after MetOp

MHS is limited to frequencies of89 GHz and higher, thus no observation of the O2 line at 53 GHz is possible

ATMS currently under development for NPOES by Northrop Grumman has less radiometric performance compared to AMSU-A and MHS but combines both spectral ranges Instrument l * b * h (mm) Mass (kg) Power (W)

ATMS 700 600 400 66 85

V.30

Page 13 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.3 Microwave Sounder Candidate Instrument Concepts

ESA has initiated Pre-Phase A studies resulting in two interesting instrument alternatives:

• Cross-Track Scanner from SULA Systems Ltd- Single aperture across track scanner

• Conical Scanner from EADS Astrium SAS- Conical scan imager with two dishes

Instrument Size (l * b * h) (mm) Mass (kg) Power (W)

Main Module 1425 700 550Electronics Module 580 400 400 80 140

8311214001200LEOMIS

Power (W)Mass (kg)Size dia x height (mm)Instrument

Earth

Scanning

Earth

Scanning

Page 14 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.3 Microwave SounderInstrument Capabilities

cross-track scanner conical scannerFrequency range 22.9 – 229 GHz 23.8 – 220 GHzBeam width 2.5° - 1.1° 1.0° - 0.7°Radiometric resolution 0.15 K – 1.6 K 0.16 K – 0.88 Kpolarisation V, single (V) dualCross-Track scanner offers improvements in radiometric and spatial resolution, allowing to derive more precise temperature/moisture profilesThe conical scan offers similar sounding capabilities as a cross-track scan with additional advantages:

- constant horizontal resolution- fixed polarisation state

Due to its scan concept and the polarisation measurement capability a conical scan instrument can deliver additional information of climatologicalrelevance, e.g. surface moisture content and precipitation data

V.31

Page 15 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.4 Imaging RadiometerVIRI-M Requirements – Minimum Concept (P0)

Channel Priority CentralWL FWHM Reference

Scene

Expectedscenerange

SNR/NEDT(Minimum)

AbsoluteAccuracyMinimum /

Goal

PolarisationSensitivityThreshold/

goal

D/N Target

ME443 P3 443nm 20nm 0.5% albedo

0%-100% albedo

20 @ 0.5% albedo 10% / 5% 5% / 2% D

Aerosol detection over land. Blue channel providing correction for air molecular scattering to improve observation of aerosol and of land surface radiativeparameters.

AH1 P0 670nm 20nm 0.5% albedo

0%-100% albedo

20 @ 0.5% albedo 10% / 5% 5% / 2% D

Continuity of AVHRR data with im-prove-ment of cirrus clouds and aerosols detection (centred on minimum brightness of vegetation).

AH2 P0 865nm 20nm 0.5% albedo

0%-100% albedo

20 @ 0.5% albedo 10% / 5% 5% / 2% D

Continuity of AVHRR data with im-provement of cirrus clouds and aero-sols detection (cleaner window).

VI1.38 P2 1.375um 0.03um 0.5% albedo

0%-100% albedo

40 @ 0.5% albedo 10% / 5% 5% / 2% D

Cirrus and high level aerosols. Water vapour absorption band masking the surface improving the contrast of cirrus clouds and high level aerosols.

AH3A P0 1.61um 0.03 0.5% albedo

0%-100% albedo

40 @ 0.5% albedo 10% / 5% 5% / 2% D

Continuity of AVHRR data with improvement of cirrus clouds and aerosols detection (cleaner window).

AH3B P0 3.74um 0.38um 300K 180-335K 0.1K @ 300K 0.5K - DN Continuity of AVHRR data.

MO6.7 P1 6.7um 0.36um 250K 180-280K 0.3K @ 250K 0.5K - DNWater vapour channel to derive winds in Polar Regions (MODIS heritage) and to improve height assignment.

SE8.7 P1 8.7um 0.3um 300K 180-335K 0.1K @ 300K 0.5K - DN Cirrus and synergy with SEVIRI. AH4 P0 10.8um 1um 300K 180-335K 0.1K @ 300K 0.5K - DN Continuity of AVHRR data. Split window channels. AH5 P0 12.0um 1um 300K 180-335K 0.1K @ 300K 0.5K - DN Continuity of AVHRR data. Split window channels.

SE13.4 P2 13.4um 0.3um 270K 180-300K 0.2K @ 270K 0.5K - DN Height assignment by CO2 slicing.

Page 16 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.4 Imaging RadiometerSpectral Channels Medium & Maximum Concept

Similar bands on Channel Application Center of band

Bandwidth Dual View channel AVHRR VIIRS

VIRI 1 LAN/OC 442.5 20 nm yes VIIRS VIRI 2 OC/(LAN) 490 20 nm VIIRS VIRI 3 LAN/OC 554 20 nm VIIRS VIRI 4 LAN/ATM/(OC) 670 20 nm yes

AVHRR VIIRS

VIRI 5 LAN/(OC) 708 20 nm VIIRS VIRI 6 OC/(LAN) 750 14 nm VIIRS VIRI 7 LAN/OC/(ATM) 877 35 nm

AVHRR

VIIRS VIRI 8 EUM 1375 30 nm VIIRS VIRI 9 SST/ATM 1610 60 nm yes AVHRR VIIRS VIRI 10 ATM/(LAN) 2250 60 nm VIIRS VIRI 11 SST/ATM 3700 150 nm* yes AVHRR VIIRS VIRI 12 EUM 6300 1000 nm VIRI 13 ATM 8550 1000 nm VIIRS VIRI 14 ATM/SST/LAN 10800 950 nm yes AVHRR VIIRS VIRI 15 ATM/SST/LAN 12000 1000 nm yes AVHRR VIIRS VIRI 16 EUM 13400 600 nm** SEVIRI

LAN = LandOC = Ocean ColourATM =AtmosphereSST =Sea Surface TemperatureEUM =Eumetsat (ATM)

Additional OC, LAN, ATM channelCompared to VIRI-M SpecificationDual view channels for maximum concept

V.32

Page 17 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

Modular Push Broom conceptfrom

5.1 Imaging Radiometer - Overview Imager Classes for PEPSIS

METimage concept from

The AVHRR type (METimage A) is not further investigated due to is low potential for future operational useThe only difference between METimage C and METimage B is an additional polarisation scrambler for low priority P3 channels (METimage C unattractive as size and mass impact very high)

Imager Class Instrument Concepts Performance Budgets Minimum (METimage A)

METimage B1 Modular Concept

1 km GSD 6-11 channels

40-60kg

Medium METImage B2 17 channels 85kg Maximum (VIIRS)

FI-VIRI*(METimage C)

200-500m GSD 16 channels *(Dual View)

120-160kg

Reference concept per imager class , (not considered for implementation)

Derotator

TMATelescope

3 FEEUnits

Active CoolingSystem (2 Units)

Dual ViewScanner

TIR Black Bodies

2 InstrumentControl Units

Nadir

33°

33°

33°

FD

Opt.Bench &

FPA 3x1Optics

Nadir

33°

33°

33°

FD

Opt.Bench &

FPA 3x1Optics

In- FieldSeparationSpectralDetectorLine

36°

2300 km

flight direction6.8 km/sec viewing angle

110°

36° 36°

3 xOptics

Future Imager (FI) Study Concept VIRI from

Page 18 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.4 Imaging RadiometerData products from Different Concepts

Modular Concept METimage B1 METimage B2 FI-VIRIConcept Size minimum minimum medium maximum Products AVHRR Level

AVHRR continuation With significantly improved SNR (respectively spatial sampling)

AVHRR continuation With significantly improved SNR (respectively spatial sampling)

AVHRR continuation With significantly improved SNR (respectively spatial sampling)

AVHRR continuation With significantly improved SNR (respectively spatial sampling)

VIRI-M Level Threshold Level:Aerosol detection over land Cirrus and high level aerosols Water vapour to derive winds in polar regions Cirrus and synergy with MTG (SEVIRI) Cloud height assignment

Threshold Level:Aerosol detection over land Med.- Goal Level:Cirrus and high level aerosols Water vapour to derive winds in polar regions Cirrus and synergy with MTG (SEVIRI) Cloud height assignment

Goal Level:Aerosol detection over land Cirrus and high level aerosols Water vapour to derive winds in polar regions Cirrus and synergy with MTG (SEVIRI) Cloud height assignment

FI-VIRI Level climate

Threshold Level:Climate observation

Goal Level:Climate observation

FI-VIRI Level Land Application

Potential for goal Land products

Land Application LAI, f-cover, etc.

Land Application LAI, f-cover, etc.

FI-VIRI Level Ocean Colour

Potential Ocean Colour Products

Ocean Colour Products

Ocean Colour Products

Comments Due to high achieved SNR if additional VIS channels are implemented

VIRI-M atmosphere products due to additional channels

Goal levels achieved due to radiometric sizing

All goal levels achieved due to dual view and polaris. sensitivity < 2% all MCT detectors

V.33

Page 19 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.4 Imaging RadiometerPrinciple Performance and Products

200 m 400 m 600 m 800 m 1000 m

BreakThroughSNR/NedT

GoalSNR/NedT

ThresholdSNR/NedT

MINIMUMClimate/LAN/OC

Meteoro

logy

MEDIUM

Climate

/ Lan

d

Ocean

Colour

MINIUMMeteorology

Meteorology

MAXIMUM

Climate / Land

Ocean Colour

Page 20 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.4 Imaging RadiometerConcept Selection

AVHRR continuation• METimage A

Minimum EUMETSAT user needs (VIRI-M requirements)• Modular Concept (good SNR but only P0 channels)• METimage B1 (P0, P1, P2 & P3 channels)

Additional channels for ocean andland applications and better performance (radiometry, spatial resolution)• METimage B2

Climate monitoring (goal requirements) and better ocean and land products (polarisation) • FI-VIRI

Optimumconsideringsystemimpact

Increasedperform

ance

but alsoincreased

instrument budgets

(mass, volum

e, power, cost!)

V.34

Page 21 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

2.5 Reference PayloadInstrument Bugets

IR Interferometer Imager Microwave Sounder

IASI ModularConcept

540x420x360

71

80

800-4400

METimage B2 FI-VIRI SULA MS

Volume[mm3]

1200x1080x1340

ATMS

650x680x700

85

155

Mass[kg]

230

1425x700x550

1500-23800

700x600x4001200x920x610

80110

140

66

85

1400-34000

140

50 27,5

Power[W]

210

Data Rate[kbit/s]

1527

Page 22 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3 System Concept

V.35

Page 23 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.1 Mission Architecture & Candidate Launcher

Maximum reuse of EPS ground segment• Ground station in Svalbard is consideredReuse of hard- & software as much as possible from MetOp and ASTROBUS concept (e.g. Cryosat, TerraSAR,…)

Identical orbit as for MetOp(800 km, 9:30 LTDN)Candidate low cost launcher for this orbit are Rockot, Angara 1.1 and VEGA• Vega selected as a reference as

- European Launch Service Provider- Best performance within the ‘low cost’ launchers- Fairing comparable to Rockot / Angara 1.1

• Soyuz is best candidate in case performance (e.g. fairing envelope) of low cost launcher is not sufficient

Sun

9,30hLTDNSSO

DeepSpace

Page 24 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.2 Satellite Concept and OptionsInvetigated Satellite Options

Config.Number

Modular Concept(minimum)

METimage B2(medium)

FI-VIRI(maximum)

1:IASI +Imager

1_KT 1_B2

2_1_B2

2_3_B2

1_FI

2.1:IASI +Imager +ATMS

2_1_KT 2_1_FI

2.3:IASI +Imager +SULA MS

2_3_KT 2_3_FI

V.36

Page 25 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.2 Satellite Concept and Options Configuration 2_3_B2 (IASI+Medium Imager+MS)

Launch (X)

IASI

S/C MainBodyX=2175 mmY=1550 mmZ=1025 mm (1400 mm)

X-BandAntenna

HRPTAntenna

MetImage B2

Nadir (Z)

Flight (-Y)

LRPT Antenna

GPS Antennas

S-Band Antennas

Solar Array9,9 m2

Star Tracker

Sun Sensors

Sula MS

IASI instrument defines the overall configuration (due to mounting interface, launch direction, FoV requirements)

Page 26 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.2 Satellite Concept and Options GRAS Implementation Impact - Configuration

GRAS instrument can be implemented without major impact (mass and volume) in all options• Total mass of GVA, GAVA and GZA:

about 20 kg compatible with Vega• Accommodation at positions similar to MetOp

GZA

GAVA

GVA11221165 1205

12961337

13821309

13531395

0

200

400

600

800

1000

1200

1400

1600

A1_KT

A1_B2

A1_LS

A2_1_

KT

A2_1_

B2

A2_1_

LS

A2_3_

KT

A2_3_

B2

A2_3_

LS

Type

Lau

nch

Mas

s [k

g]

VegaAngara 1.1

Rockot

Soyuz>>2000

V.37

Page 27 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.3 Compatibility to the EPS G/SComparison PEPSIS / METOP

MeteorologicalPayload

IASI: unchangedGRAS: unchangedSAR: unchangedDCS: unchangedImager: newOptional New Microwave Sounder

Space Segment Command and Control

TC Uplink Frequency and Data Rate: no changeOBC: different (similar to TS-X)Operational Concept: some differencesTTC Databases: different

Instrument Data Downlink to Polar Station

Downlink Frequency: no change for baselineDownlink Formats: all unchangedDownlink Data Rate: no change for baselineSeveral Options require Downlink Data Rate increase

Instrument Data Downlink to LRPT and (A)HRPT

No change

Data TransferSvalbard - Darmstadt

Unchanged for “low rate”Several Options require data rate increase

Page 28 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

3.4 System Concept Conclusions

Astrobus (e.g. TerraSAR-X) provides platform concept with high degree of re-usability but still offers the required flexibility to support specific system needsAdditionally maximum re-use of MetOp downlink equipment (Imager data-rate driving for S/C and G/S)• Restriction to minimum data-rates => Full re-usability of MetOp

downlink equipment and G/S• Higher data rates => Change to higher modulation

schemes / compression and resulting impact on G/SAstrobus and MetOp heritage provides very cost efficient P/Fsolution with no critical elements relying on existing equipmentSchedule uncritical (P/L pre-developments are already initiated)Re-use of existing EPS G/S to a large extent. Changes on product processing, generation and distribution as well as mission simulator and mission planning facility are independent from selected scenarioAll configurations except IASI + maximum imager + Sula MS (Option 2_3LS) feasible on Vega launcher=> Option 2_3LS requires Soyuz launch or distribution on separate platforms

V.38

Page 29 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

4 Recommendation & Implementation Scenario

Page 30 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

4 Recommendation & Implementation Scenario Candidate Payload

Apart from IASI no existing European instruments are suitable for PEPSISImager:• VIIRS (US) existing but price and availability not clear• no large cost difference between minimum and medium concept• medium concept proposed as a baseline for PEPSISMicrowave Sounder• ATMS offers reduced performance and is not European• ATMS-like MS found to be no design driver – implementation

uncritical• Sula -CTS feasible option but leads to a more complex structure

design (structure cost no major contributor to overall cost)• LEOMIS concept not compatible with IASI onboard a low-cost

platform – dedicated Sounder platform recommended• Sula MS proposed as a baseline for PEPSISImplementation of GRAS uncritical for all options (no design driver)

V.39

Page 31 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

4 Recommendation & Implementation Scenario Proposed Baseline (1/2)

Obviously the minimum cost are achieved with the minimum system but there is no significant step in system cost due to higher instrument complexity etc. as long as a low cost launcher can be maintained• IASI + Minimum Imager (e.g. Modular Concept from KT) or• IASI + Medium Imager (e.g. METImage B2 from DJO)• IASI + Maximum Imager (e.g. FI-VIRI from EADS Astrium)

Dedicated platform for microwave sounder mandatory if an conical microwave sounder (LEOMIS) is envisaged – not detailed within this study

Page 32 PEPSIS - National User Workshop on Operational E/O Systems / Walberberg, 7.-9.11.2005

Earth Observation, Navigation & Science

4 Recommendation & Implementation Scenario Proposed Baseline (2/2)

Due to the user need of IR and MW sounding option 2_3B2 (IASI + Sula MS + METImage B2) is proposed as baseline• Compatible to launch with Vega• Imager and Microwave Sounder with good performance• Adaptation of data downlink to higher modulation schemes to

support higher data rate• Implementation of GRAS possible without major system impact

ID Activity

1 Pre-Phase A2 Phase A3 Phase B 4 Milestones5 System PDR6 System CDR7 Flight Acceptance Review (FAR)8 Pre-ship Review9 Launch10 Phase C/D11 Detailed design & specification12 Manufacturing and Procurement13 PFM structure AIT 14 Realtime test bed activities15 Flat sat AIT16 PFM AIT17 Instrument FM Need Date18 Environmental test program19 System validation tests20 Contingency21 Launch campaign22 LEOP & bus commissioning23 Instrument commissioning

System PDRSystem CDR

Flight Acceptance ReviePre-ship Review

Launch

Instrument FM Need Date

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q42006 2007 2008 2009 2010 2011 2012 2013 2014 2015

V.40

PolareKleinsatellitensystemefür die Meteorologie

Endpräsentation22.03.2001

Horst FaasHenry FaulksDr. Ralf MünzenmayerManfred Langemann© Astrium GmbH

Supplem

entaryInforma

tion

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 2 © Astrium

IASI

AVHRR

HIRS

GRAS1 of 3 antennas

AMSU-A

GOME-2

S&Rrelay ant.

ASCAT3 Antennen

DCS

MHS

PKMet (Polare Kleinsatelliten für die Meteorologie)Heute

Morgen ?

Sat A: IASI Sat B: VIIRS Sat C: ATMS Sat D: ASCAT

V.41

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 3 © Astrium

Missionskonzepte und AnalysenVergleich: EPS/Metop - Kleinsatellitensysteme

Programmatische Aspekte:+ Verzögerung bei der Entwicklung eines Instruments wirkt sich bei

Kleinsatelliten nur auf einen Satelliten und nicht wie bei EPS/Metop auf ein ganzes Programm aus

+ Ersatzbeschaffung im Fall des Ausfalls eines „Hauptinstruments“ mit Kleinsatelliten schneller und kostengünstiger zu verwirklichen

Technische Aspekte:+ Verteilung der Instrumente aus verschieden Plattformen reduziert EMV, FoV

(Field of View) u.a. Probleme+ Lebensdauer der Satelliten kann an Instrumente angepasst werden+ Kostengünstigere Trägerraketen für Kleinsatelliten möglich– Betriebsaufwand bei Kleinsatelliten-Flotte unwesentlich größer

Wissenschaftliche Aspekte:+ Auswahl eines optimalen Umlaufbahn für jeden Satelliten (Bahnhöhe und

Tageszeit)+ schnellere Realisierung von neuen Instrumenten auf Kleinsatelliten

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 4 © Astrium

Plattform-Konzept für Formation

Plattform muß kompatibel sein mit:• Metop Orientierung und Flugrichtung

- Querflieger wegen existierenden Metop Instrumentenund neuen US Instrumenten

• Metop Orbit- 9:30 Überflugszeit- Drehbarer Solar Generator

Solar Generator(6-9 m2)

Sonnenrichtung

Flugrichtung

NadirX-BandAntenne

L-BandHRPT Antenne

Stern-sensoren

BusCompartment

VirtuellesInstrumentInterface

V.42

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 5 © Astrium

Formations-Satelliten

VIIRS

GRAS

ATMS

GRAS

SEM

IASI GOME

GRAS

S&R + DCSReceive Ant.

GPS

Sat A(IASI)

Sat B(VIIRS)

Sat C(ATMS)

Masse 720 kg Masse 600 kg Masse 500 kg

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 6 © Astrium

Free-Flyer Satelliten

Plattform kann individuell an jeweiliges Instrument angepaßt werden

Beispiele:• ASCAT und potentielle zukünftige Missionen ADM, Cryosat

- Keine Orbit Vorgaben bzgl. Lokalzeit der Bodenspur- Kann hinsichtlich maximaler Leistungsausbeute optimiert werden

PKMet Sat D: ASCATMasse ca. 700 kgLokalzeit 18:00

ADMMasse ca. 780 kgLokalzeit 18:00

CRYOSATMasse ca. 680 kgnicht sonnensynchron

Mid-Beam Antenne

Fore/Aft-Beam Antenne

V.43

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 7 © Astrium

Implementierungsszenario

Basis Szenario

2010 2015 2020 2025

Formation

A1

B1

C1

D1

LaunchSequence ca. alle20 Monate mit Rockot

METOP-2METOP-1

A2

B2

C2

D2

Free-Flyer

OperationsEntwicklung

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 8 © Astrium

Ausgabenprofil

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

Launcher

G/S

S/C & PrimeInstruments

MTG Satellite

2010 2011 2012 2013 2014 2015

Launcher

G/S

S/C & Prime

Instruments

Jährliches Eumetsatbudget- General Budget- Operations (MSG + MetOp)= ca. 250 M€

V.44

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 9 © Astrium

Missionskonzepte und AnalysenFormationskonzept

Sat A: IASI Sat B: VIIRS Sat C: ATMS

Abstand < 1 Sekunde

0,2 0,35 s

Formationsflug

Free-Flyer Sat D: ASCAT

Andere InstrumenteGRAS, GOME, SESs, DCS, S&R

zukünftigeInstrumente(z.B. ADM)

Option 1: zu verteilen auf obige SatellitenOption 2: zusätzlicher Satellit

Basis-Konzept für eine Gruppierung in Formation und Free-Flyer

Flugrichtung

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 10 © Astrium

Missionskonzepte und AnalysenDatenübertragungsoptionen

Option1: Implementation Szenario für 2 Satelliten mit X-Band und einem mit S-Band bei Benutzung einer 15 m Antenne

15 m Antenne

X-Band0,2° (2,8 km)

3,5 km

S-Band0,7° (9,8 km)

Maximaler Abstand zur „Antennen-Richtung““

X-Band2,8 km / 2 = 1,4 km

S-Band9,8 km / 2 = 4,9 km

4,9 km

1,4 km

Antennen-Richtung

AB

C

V.45

Endpräsentation PKMet-Studie, 22. März 2001 - Auszug für Walberberg 2005 11 © Astrium

Optimierte Instrumentverteilung

Formation Free-Flyer

Instrument Sat A Sat B Sat C Sat DIASI

VIIRS

ATMS

ASCAT

GOME

GRAS ( ) ( ) ( )

SES

X-Band

HRPT

DCS

S&R

Haupt-Instrumente

Free-Flyer

Zusatz-Instrumente

Comms-Nutzlasten

V.46

Chapter VI

Results of the Working Groups

 

Working Group

Severe Weather Forecasting and Nowcasting

Participants:

G. Steinhorst, DWD (Chair)

       W. Benesch, DWD 

K. Berndt, DJO 

Th. Böhm, DWD 

U. Gärtner, GEO  

S.Hofer, Kayser-Threde 

N. Jakowski, DLR 

H. Nothaft, AIM 

O. Roll, DWD 

O. Sievers, DWD 

R. Ullrich, DWD 

R. Stuhlmann, EUMETSAT 

P. Ingmann, ESA 

VI.1

VI.2

Working Group Severe Weather Forecasting and Nowcasting

  1. Critical evaluation of the status of severe weather forecasting and nowcasting

practices  There are still forecasting problems as regards the following meteorological phenomena: 

 • Convection (rain showers and thunderstorms)  - Problem: Location of onset

 partly imprecise knowledge of the instability in earlier stages.  

Solution MTG: the sounding mission will help  

- Problem: Time of onset and phase of the development  presently no good knowledge about the humidity structure in the lower troposphere. 

 Solution MTG: Imager + Sounder will provide the information.

     - Problem: Automatic detection of thunderstorm cell formation to lines  

 the wind field of the lower atmosphere is partly not well known.   Solution MTG: More accurate cloud motion vectors can be derived because of an increased observation repetition rate and better horizontal resolution of the VIS channels.       

- Problem: Cell tracking of thunderstorms  common cell tracking methods are unreliable.  

 Solution MTG:. More accurate cell displacement vectors can be derived because of an in-creased observation repetition rate and better horizontal resolution of the visible channels.   

- Problem: Tornado and mesocyclone detection  No reliable observation systems are available. 

 Solution 1: The combination of satellite and radar observations (e.g. satellite cloud

top heights + doppler radar information + wind profiler) will contribute to an easier detection.

Solution 2: Wind shear and wind advection can be detected by means of wind pro-filer missions from satellite (e.g. ADM Aeolus)

 • Problem: Identification of severe storm developments

 the early stage of developments is not easily detectable.  

Solution: Scatterometer data, required from Post-EPS, can contribute over ocean areas.      • Problem: Estimation and forecasting of heavy rain

  Ground based radar networks are not always area covering, but very cost intensive. In 

addition the observations are affected by attenuation and by shadowing from mountains.  Solution: Rain observations from Post-EPS and other satellite missions shall complement the ground-based systems, the observation repetition rate must be as high as possible.

VI.3

 • Problem field: Visibility, fog (cloud base), cloud layer, aerosol information especially

for aviation and other transport systems

 No area covered information is available.  

Solution: Satellite-based LIDAR / cloud radar missions shall provide those information in the future.

 • Problem: Turbulence in the atmosphere

 Turbulence is not measured although the information is very important for aviation.  

Solution: The working group could not find an answer to this problem field.. A partial solu-tion could be the observation of the tropopause by LIDAR-measurements.

  2. Innovative observation methods and services for the improvement of nowcasting  • Targeted Observations  - Targeted observations are important for quasi-continuous monitoring of specific, especially 

severe weather events. 

Solution MTG: Two solutions can be imagined: a) relevant areas shall be observed by means of higher temporal and horizontal resolution; b) or a dedicated area band (e.g. the first third of the instrument scan to observe Europe) could be scanned with a higher temporal and horizontal resolution than the residual scan

 • Lightning Imager

Lightning imagers on board of satellites provide in contrast to ground-based systems infor-mation on flashs from cloud to cloud, inside clouds and from cloud to ground. 

Following aspects plead for a lightning imager mission: - An additional advance warning time of up to 10 min. is achievable by early detection of 

lightning in clouds (discharges in clouds precede the lightning between cloud and ground). Therewith an early assessment of further development of severe convection is facilitated and early indications on a possible development of tornadoes can be derived. 

- Aviation safety (risks from flash strikes) is improved. - Improved detection of lightning in comparison to the ground-based systems is provided. - Data is input for statistical weather forecasting methods (e.g.  MOS). - Observations may contribute to climate monitoring (registration of changes in occur-

rence, frequency , and intensity of thunderstorms as a result of global warming). - Data may contribute to atmospheric chemistry applications (source for NOx). - In the long run a lightning mission might be probably more cost efficient in comparison 

to area covered ground-based  lightning detection systems, especially over oceans.  The lightning imager on MTG is regarded as essential for nowcasting and severe weather warnings purposes.

 Note: USA / NOAA will operate a lightning imager on the next generation of GOES  satellites (GOES-R).

 

VI.4

3. A new forecasting task: Space Weather • Definition of Space Weather

Space Weather includes the conditions and processes of the sun, in the magnetosphere, thermosphere and ionosphere which may endanger technical systems in space and on earth as well as life.

• Importance of Space Weather

- Impact on the dispersion of electromagnetic signals in communication and navigation systems 

- Risk of damage of satellites  - Exposure on aircrews and passengers  - Impact of atmospherics on radar systems (L-band) - Probable impact on cloud state parameters and climate   

Due to the importance of space weather monitoring, operational forecasts including warnings are required.   Note: No new technological developments are required for services in the field of Space Weather, in fact an extended use of GRAS and SEM on METOP is sufficient - but no ope- rational service with committed obligations is available so far in Germany.    4. Assessment of the MTG concepts • Imager: The user requirements for the temporal and spatial resolution as findings of  the 

pre-phase-A study and of the EUMETSAT expert groups are in agreement with the view of the working group: 

horizontal resolution: ≤ 500 m SSP (e.g. for monitoring of fog, convection) corresponding to ≤ 1 km for Central Europe temporal resolution: ≤ 3 minutes (e.g. for monitoring of the development of con-

vection) • An Imager, possibly  in combination with a Sounder, is required for monitoring the at-

mospheric instability • Sounder and Imager shall be on one platform either. • A lightning imager is essential, but can be simpler than a 4-camera-system.           

VI.5

5. Assessment of the presented Post-EPS concepts   • An Imager is required for:  

- detection of forest fires - detection of snow in valleys (esp. in the Alps) - monitoring of sea ice for ship routing 

 - Relevance of an imager for nowcasting (0-2 hours forecast period):  

During the MTG-era the relevance of the polar orbiting satellites for nowcasting pur-poses is less demanding, because the performance of the MTG-imager will be better compared to MSG.  It has to be clarified if there are specific requirements of the armed forces and the crisis management as regards the performance of an imager in the post-EPS era for meteoro-logical purposes. 

 • Relevance of Post-EPS data for very-short-range forecasting (2-12 hours forecast

period) A greater demand for data from polar orbiting satellites is seen for the task of very-short-range forecasting, which will be increasingly based on numerical weather models. Regional models in the post-EPS era are expected to provide suitable forecasts already for forecast time periods beginning with one hour. The number of overpasses per day is essential for the effective use of data from polar orbiting satellites in regional models.   The requirements for very-short-range forecasts correspond to the requirements for regional NWP models.

VI.6

Working Group

Numerical Weather Prediction

Participants:

N. Bormann, ECMWF (Chair),

Ch. Köpken, DWD 

M. Alpers, DLR Bonn 

J. Fischer,  FU Berlin 

H. Lübberstedt, OHB System 

B. Ritter, DWD 

G. Seuffert, BMVBW 

U. Schumann, DLR IPA 

F. Tanner, EADS Astrium 

B. Voß, Jena-Optronik 

J. Wickert, GFZ Potsdam 

 

Additional Input:

          P. Bauer, ECMWF 

G, Heygster, Uni. Bremen 

VI.7

VI.8

Working Group Numerical Weather Prediction

  NWP framework in 2015/2025  Based  on  past  trends,  operational  Numerical  Weather  Prediction  (NWP)  for  the MTG/Post-EPS  time-frame  is  expected  to  evolve as  follows, driven by  requirements of NWP  users  (see  also  MTG  Position  Papers  “Requirements  of  Observation  for Regional/Global NWP”, 20021):  

• Improved NWP products for current applications (incl. forecasts of main weather parameters;  specialized  aviation  forecasts;  severe  weather  forecasts;  monthly and seasonal forecasts) 

• Extended  applications  expected:  incl. monitoring  of  atmospheric  constituents (global and regional), air quality forecasts, lightning forecasts (for regional NWP) 

• Increased horizontal and vertical resolution of NWP models:   Horizontal resolution:     Global models: 8-15 km (2015), 3-5 km (2025)     Regional models: about 1km (2015); 0.2-0.3km (2025)   Vertical resolution:     Global models:     Boundary layer:  70 m (2015),  40 m (2025)     Free atmosphere:  300 m (2015),  200 m (2025)     Stratosphere:    500 m (2015),  200 m (2025)     Regional models:  100 levels (2015), 200 levels (2025)   Model top for global models: about 0.01 hPa 

• Improved  data  assimilation  systems  (3-4DVAR,  better  characterization  of uncertainties) 

  Requirements for geophysical variables  German  observational  requirements  have  been  reviewed  at  the  last  National  User’s Workshop,  and  quantitative  requirements  were  found  to  be  sufficiently  addressed through  the  continuously updated WMO Rolling Review of Requirements  (RRR2).  The working  group  endorsed  the  RRR  as  a  comprehensive  quantitative  list  of  all requirements.  The group identified key deficiencies in the current observing system. The following is a list of the “top seven” for which observations are currently not considered sufficient or are  largely  absent,  with  a  discussion  of  currently  available  or  planned  satellite observations relating to each:   

• 3-d wind field  Atmospheric  Motion  Vectors  (AMVs)  from  geostationary  satellites:  Currently 

available  globally  with  good  horizontal  and  temporal  coverage,  but marginal vertical resolution and only acceptable accuracy. It was noted that the  methodology  for  cloudy  AMVs  imposes  limitations  to  accuracy improvements.  

1Available under http://www.eumetsat.int/groups/pps/documents/document/pdf_mtg_aeg_global.pdf, pdf_mtg_aeg_nwp_regional.pdf)

2 See http://alto-stratus.wmo.ch/sat/stations/_asp_htx_idc/Requirementsearch.asp

VI.9

ADM-Aeolus:  Expected  to  be  available  in  2008.  Significant  impact  expected; spatial coverage will still be below breakthrough levels. 

The above observations provide primarily horizontal wind information. For high-resolution  regional models,  the  vertical wind  component  is  expected  to gain importance.  

Wind  profile  information  below  thick  clouds  is  missing/not  observable  with current satellite systems.  

• 3-d temperature and 3-d humidity field in and below cloudy areas AMSU gives  some  information  in cloudy areas, but better vertical  resolution  is 

required. GPS  radio  occultation  provides  all  weather  capabilities  and  global  coverage. 

Currently  available  from CHAMP  only, with  sparse  global  coverage,  but demonstrated impact on temperature in the UTLS region (limitations in the lower troposphere). Future availability from GRAS on Metop and COSMIC (US). 

• Soil moisture   SMOS allows a first step in direct soil moisture estimation. 

• Precipitation (incl. phase) Temporal resolution remains poor. The group noted a lack of European activities 

for precipitation missions.  • Snow (coverage and equivalent water content) • Surface pressure over sea 

Some information provided through scatterometer winds, together with surface-based anchor points.  

 Future NWP developments  require additionally  information on  the  following  for which operational observations are currently very sparse or absent: 

• 3d ozone concentrations and other atmospheric constituents • 3d aerosols (optical properties type-by-type)  • 3d cloud variables (water/ice, drop size, etc.) 

 Resulting from the above considerations, the working group recommends the following regarding operational follow-on missions to ESA’s Earth Explorers: 

• ADM-Aeolus should be followed up operationally with first priority. • Operational follow-on missions from SMOS and EarthCARE are also considered 

beneficial to NWP.  The  working  group  also  recommends  a  European  contribution  to  the  Global Precipitation Mission  (GPM) program,  in  cooperation with US-American  and  Japanese activities.  Assessment of proposed MTG concepts  The working group considered  the pre-phase A  instrument studies  for MTG presented at the workshop.  The working group expresses a clear first priority for an  infrared sounder (temperature, humidity, and ozone profiling). Only this  instrument  is considered to have the potential to  improve  the  vertical  structure of  the dynamics  through detection of movements  in 3d-features  of  humidity  (and  ozone  to  a  lesser  extend).  All  proposed  bands  of  the sounder are considered important, especially the water vapour, CO2 and ozone bands.  

VI.10

The proposed imager is considered useful to maintain current AMV capabilities, and for other regional and land surface characterization applications.  Information from the lightning imager is considered potentially useful for regional NWP applications. The working group encourages studies in this respect.  Assessment of proposed PEPSIS/Low-cost bridge satellites  The working group considered  the situation after Metop-3, as summarized during  the Workshop presentations.  Two  issues  require  attention: 1)  There  is  the possibility of  a gap  in coverage  in case of a Metop  failure, as Post-EPS  is unlikely  to be  ready around 2015. 2) Cost considerations may require the delay in Post-EPS activities.  The working group recommends that these  issues are addressed through the provision of a backup-satellite with equivalent capabilities to Metop  (“Metop-4”) or through the direct continuation of the European polar satellite program within the context of a full Post-EPS. A degradation in forecast quality has to be expected if only a reduced system can be realized.   The working group considered  the proposed PEPSIS/Low-cost bridge  satellites only  for the case that the above scenarios prove impossible.  The  low-cost  bridge  satellite  with  IASI+imager  is  considered  below  the  minimum required  configuration  due  to  the  lack  of  a microwave  sounder.  The working  group considered a microwave sounder with  temperature and moisture sounding capabilities as  essential  (in  addition  to  the  IASI+imager  configuration,  as proposed  for  PEPSIS). A conical  scanner  combining  window  and  atmospheric  channels  (similar  to  SSMI/S  or CMIS)  is considered advantageous, rather than a cross-track scanner. The main reasons for this are the constant horizontal resolution and the additional information on surface properties (including surface wind) and precipitation contained in separate observations of fixed polarisation states.   The working group noted  that data  from polar orbiting  imagers are currently used  in data  assimilation mainly  in  the  following  areas: MODIS-winds  in  polar  regions  (these derived winds require a WV channel and cloud top pressure capabilities); input for sea-surface  temperatures  and  snow  covers;  tuning  of  cloud  detection  algorithms.  Other observations provided by current imagers are likely to be used in the near future, such as cloud  information (e.g., for the selection of sounder data), or  information on humidity, land surface, and aerosols.  The working group  recommends  the  inclusion of a GRAS or GRAS-like  instrument on PEPSIS  (proposed  as  optional)  to  provide  unbiased,  global  all-weather  sounding capabilities.  The working group recommends that an ASCAT  instrument should be  included as part of the PEPSIS concept, to provide continuity in ocean surface wind measurements.  Post-EPS aspects: Instrumentation and data distribution  The working group  stressed  that a European LEO capability  is essential  (in addition  to GEO capabilities) to provide global coverage (in particular for high latitudes).  

VI.11

Based on  • NWP requirements (WMO-RRR) • Key deficiencies in the observing network • Upcoming instrument developments 

Post-EPS should encompass at its core: • Wind profiling • Atmospheric profiling with capabilities for the following: 

  - Temperature and humidity sounding, including in and below clouds   - Atmospheric chemistry and aerosol monitoring   - Cloud information  

• (Sea) surface wind • Precipitation (in the framework of GPM) • Land surface (soil moisture, snow, ice, vegetation, etc.) 

 Other  instrument concepts which should be considered for Post-EPS or research/future operational missions: 

• Passive  limb  sounding  (IR  or  MW)  to  meet  NWP-atmospheric  chemistry requirements 

• Differential absorption lidar - DIAL to meet humidity sounding requirements • GPS/GALILEO scatterometry for land/ocean/ice surface variables and wind speed/ 

direction over oceans  • Sub-mm microwave sensors for cirrus characterisation 

 Temporal and  spatial collocation  requirements need  to be  studied  further  if a  fleet of small satellites  is chosen for Post-EPS, and the working group was not  in a position to quantify these in an ad-hoc way. Collocation requirements may be more stringent for IR imager/sounder and MW imager/sounder combinations, respectively.   The working group stressed the importance of globally distributed transmission systems such as EARS for fast real-time data delivery, and such concepts should be continued for future satellites (goal of maximum 30 min latency as specified in WMO-RRR).     Other aspects  The working  group  strongly  recommends  that  resources  for  use  of  satellite  data  are considered  as  integral  part  of  planning  for  future  systems  to  optimize  the  return  of investment.  The working  group  recommends  increased  activities  in  the  enhanced  use  of  satellite data in NWP/data assimilation in Germany (DWD, Universities, etc.).   

VI.12

Working Group

Ocean

Participants:

D. Stammer, Uni. HH (Chair)

B. Brügge, BSH 

F. Colijn, GKSS 

W. Dierking, AWI 

J. Horstmann, GKSS 

H. Günther, GKSS 

W. Klein, DLR Bonn 

M. Langemann, EADS Astrium 

R. Romeiser, Uni. HH 

O. Trieschman, BfG 

L. Weimer, JenaOptronik

VI.13

VI.14

Working Group Ocean

 Premises  The group highlights the fact that GEOSS will consist of a combination of the following elements:   

• A space-based permanent global monitoring system • In-situ observations • Operational modeling and forecasting centers • A network of users/ customers 

 In particular, the assimilation component is part of the observing system and required to synthesize all available observations into one analysis.  The group also stresses the need of free data exchange and scientific involvement at all levels of the effort to assure high-quality data sets and products to emerge.   ESA and EUMETSAT Activities in Germany contribute at some level to all of the following operational activities or service provides:

• Marine Operations Wind and wave forecast services, NRT currents and ocean structure, climatology (wind, wave and currents), ice monitoring, integrated services (routing, decision support)  

• Safety at Sea Insurance, design safety, vessel monitoring, search and rescue, military applications (ocean modelling, real time decision support systems, rapid environmental assessment). 

• Environmental Safety Harmful Algal Blooms, Eutrophication, Prevention of damage to the land by the sea, coastal zone management. 

• Pollution Monitoring Oil spill monitoring, pollution from land sources, other non-hydrocarbon contaminants 

• Sustainable Exploitation Services for fishing (including regulation), mineral exploitation, renewable energy, leisure services.  

• Climate Research GODAE, GOOS, Climate change and impact on extremes. 

 Examples include:  

• BSH: Regional support in North Sea and Baltic as part of an European Network (e.g., ship support, sea level, ice distribution, environmental monitoring, ballast water dumping, …) 

• DWD: Global sea state modeling and prediction using wind fields from NWP plus altimeter wind and wave information, to some extend SAR information (could use SAR spectral wave information).  

• Other examples: Oil spill monitoring, fishery monitoring  • More information provided, e.g., to research vessels, but only on request and not 

operationally. • Most or all ocean observations play a role in providing ocean BC in NWP models or coupled 

seasonal-to-interannual predictions.  

VI.15

Main Ocean Variables observable from satellites:  

• Ocean sea surface topography • Ocean currents • Marine geoid and its changes  

 • Sea ice: cover extend, thickness, drift • Sea ice albedo/melt pond fraction. • Ocean color: primary production, Chl_a, yellow substances, SPM • Ocean wind vectors • SST, SSS 

 • Waves, wave spectra, single wave detection • Surface roughness (oil spill, etc.) 

 • Snow cover on sea ice.  • Ocean surface heat fluxes, surface freshwater flux, river discharge • CO2, nutrients, dust fluxes • Surface pressure • Sea bed topography, classification, sediment transports.  

 Operational Satellite Products include:  

• Sea level and sea level rise  • Current nowcasting and predictions  • Winds • Sea state, waves • Ice extent, thickness and drift • Oil detection and monitoring • Sediment transports  • Fishery monitoring • Ship detection • Emergency, search and rescue,  container monitoring • Water quality (habitat, …), ballast water dumping • Monitoring of constructions 

 Priorities for Continuity of Satellite Observations:

• ALT • SST • COLOR • SAR 

 It is assumed that scatterometer wind observations will be provided from meteorological satellites.  Fundamental Sensors

• ALT (CRYOSAT): JASON plus one high-inclination 10-3-1 cm; 200-100-15km, 15-10-5days. 

• AATSR-Follow-on: daily coverage, 1km; Assumes and relies on presence of MW SST! Coastal resolution higher. 

• MERIS-Follow-on: daily coverage, 1km; coastal resolution higher. Required Developments: Wider swath or two satellites (2000km), better corrections of 

VI.16

atmospheric effects (additional channels). Research required to make full use of existing data capacity. To detect composition of species and its change requires research. 

• SCAT: daily to twice-daily coverage, Resolution: 25-5-1km, 1-0.5-0.2d • C-Band SAR: daily coverage, 500 -1000 km swath width, 5-10m • Ice:  assumption that SSMI and AMSR is continuous. Scatterometer is required for drift 

estimates. Higher spatial resolution (5km - 1km) is required.  Challenge: detect snow on sea ice which requires fundamental research. 

• Pollution: C-band SAR, daily coverage – needs two instruments. Ship tracking would need higher resolution.    

 New Technologies:

• InSAR • SMOS • Wide-swath altimeter • CO2 surface fluxes • LIDAR,LASER for bathymetry and fluorescence 

  Additional comments to the instrumentation of existing European earth observation missions and the presented concepts for future missions JASON-2 will be part of a series of high-quality altimeter satellites that need to be maintained indefinite due to its critical value for a global observing system. EUMETSAT should make this part of its operational service.   EUMETSAT MTG

• Role of geostationary satellites in oceanography is (potentially) limited. Useful new information about low and mid latitude surface fluxes (heat, freshwater), SST and primary production with high spatial resolution can be anticipated. 

• Problematic in the sense that observations are VIS/IR and cloud-contaminated.  • Addition of MW sounders might make a difference and could lead potentially to much 

improved surface flux observations with high temporal and continuous spatial resolution. • Geostationary satellites will be needed to allow for a sufficient monitoring of coastal 

regions     DLR concept study “PEPSIS” The transition to smaller (than ENVISAT) satellites is likely. The concept of a gap-filler is dangerous, however. Instead an additional version of the existing satellites should be used to bridge a possible gap until a post-EPS is in place. From an oceanographic point of view core sensors should be flown that are listed below.   The following instruments need an improvement with respect to resolution, accuracy, coverage etc.:  ALT, COLOR, SST, SAR, SCAT  These ESA Earth Explorers have the highest priority for operational follow up missions: CRYOSAT, ADM and SMOS (after prove of concept)  Existing technology that should become operational ALT, CRYOSAT, COLOR, (SMOS), C-BAND SAR  Additional observational parameters, proposed new instruments, required development: L-Band SAR, Multi-Fr. SAR, InSAR  

VI.17

 Special aspects EUMETSAT should operate GMES Satellite Missions: In contrast to ESA EUMETSAT has its mandate in operating sustained Earth Observations Satellites while ESA has its mandate in designing satellites and new sensors.  

VI.18

Working Group

Atmospheric Chemistry

Participants:

H. Fischer, IMK, FZ Karlsruhe (Chair)

H. Bovensmann, IUP Uni. Bremen 

W. Thomas, DWD 

T. Trautmann, DLR IMF 

A. Friker, DLR Bonn 

A. Kaifel ZSW  

R. Münzenmayer, EADS Astrium 

VI.19

VI.20

Working Group Atmospheric Chemistry

A.) Application Areas and User Needs for Operational Atmospheric Chemistry

Measurements  

There are three major application areas currently emerging from scientific use of satellite data as well as data assimilation and modelling: The field of Chemical Weather / Air Qual-ity  (monitoring  and  forecast),  the  space  based monitoring  of  the  distribution  of  green-house  gases  (GHG)  and,  by  using  inverse modelling,  the  determination  of  sources  and sinks as well as the monitoring of the recovery of the stratospheric Ozone layer in combi-nation with climate-chemistry  interaction. The potential contributions of and detailed  re-quirements on satellite data are summerised  for example  in  the WMO  IGACO  theme  re-port [RD 1].  It has to be noted that the data on atmospheric composition  is also required by the numerical weather prediction [RD 2] and the climate community. 

 A. 1) Chemical Weather and Air Quality 

The  United  Nations  Economic  Commission  for  Europe  (UN/ECE)  Convention  on  Long-Range  Trans-boundary  Air  Pollution  (CLRTAP)  (http://www.unece.org/env/lrtap /lrtap_h1.htm)  requires  a  consistent  long-term monitoring  programme  for  air  pollution from regional to global scales. Since its introduction in 1979 the convention has been rati-fied by almost all European countries,  the Russian Federation,  the USA and Canada. Fol-lowing the convention the EC has  introduced controls on emissions of sulphur, nitrous oxides  (NOx),  volatile  organic  compounds  (VOCs),  heavy metals,  and  persistent  organic pollutants (POPs) for the European area. The most recent Protocol (Gothenburg, 1999) in-troduces a multi-pollutant, multi-effect approach  to  reduce emissions of  sulphur, NOx, VOCs and ammonia (NH3), in order to abate acidification of lakes and soils, eutrophication, ground-level ozone, and to reduce the release in the atmosphere of toxic pollutants (heavy metals) and Persistent Organic Pollutants (POP). It is stated in the Convention that monitor-ing of the concentrations of air pollutants  is necessary  in order to achieve the objectives. The  EU  is  strongly  committed  towards  cleaner air and has  introduced  the Clean Air  for Europe (CAFE) program (http://europa.eu.int/comm/environment/air/cafe.htm). The EC has introduced a series of Directives to control levels of certain pollutants and to monitor their concentrations in the air. The list of atmospheric pollutants to be considered includes sul-phur dioxide  (SO2), nitrogen dioxide  (NO2), particulate matter,  lead and ozone  (O3), ben-zene, carbon monoxide (CO), poly-aromatic hydrocarbons (PAH), cadmium, arsenic, nickel and mercury. Besides  international directives and conventions, each state and  region has its own policy,  limit values and monitoring standards  for air pollution. However,  interna-tional standards are gradually taking over, allowing a more uniform approach to the prob-lem.  The  contribution of  and  the  requirements on  satellite data  are  summarized  in  the WMO IGACO report [RD 1].   The geophysical parameters  required with highest priority  and  currently  accessible  from space, are aerosol  (AOT,  type, size) and  total and  tropospheric columns  (incl. PBL) of O3, CO, NO2,  SO2, HCHO  (VOC  indicator),  PAN.  For  the  regional  European  applications  (air quality  forecast, monitoring  of  emissions,  transport  of  pollutants within  Europe)  hourly temporal sampling is required due to the diurnal variability of the parameters in the tropo-sphere. The horizontal resolution should be 10 km for the trace gases and at  least 5 km for aerosol. This high  temporal and horizontal  resolution can be achieved  in an effective way by measurements  from geostationary orbit  (MTG). For  the  forecast applications  the data should be available with a delay of not more than 2-3 hours.  

VI.21

For  the global applications daily  temporal  sampling will be  sufficient and  the horizontal resolution should be 10 – 20 km for the trace gases  (1-5 km for aerosol). For the global applications a LEO  is well suited (EPS, post EPS). To have optimum  information on tropo-spheric  distributions  of  pollutants  including  the  boundary  layer,  the  data  from  ground based networds need to be included in data assimilation and forecast models. The feasibil-ity to determinate the above mentioned parameters from space has been demonstrated by GOME, SCIAMACHY, IMG and TES. Precursor instruments with strong German heritage are SCIAMACHY and MIPAS. For the application areas mentioned above several groups in Germany and Europe already built or are building precursor services for data assimilation and forecast: EURAD system (University Cologne), MATCH (MPI for Chemisty, Mainz), GSE PROMOTE (DLR-DFD), GEMS (MPI HH, ECMWF).   Currently the global applications are partly served by MERIS, AATSR and SCIAMACHY on ENVISAT and will be partly served by AVHRR, IASI and GOME on Metop. The regional ap-plications currently cannot be served adequatly due to the  lack of highly temporally sam-pled  (hourly)  data.  The  ESA  earth  explorer  proposal GeoTROPE-R  addresses  this  lack  of hourly trace gas and aerosol data.  In this mission, the synergistic use of  IR and UV meas-urements is exploited particularly. 

 A. 2) Greenhouse Gas (GHG) Monitoring 

The most important greenhouse gases (except water vapor) are CO2, CH4, tropospheric O3, N2O, and CFCs. The UN Framework Convention on Climate Change (UNFCCC) adopted at the Earth Summit of Rio de Janeiro in 1992 and the resulting Kyoto Protocol (1997) com-mits  signatories  to  cut  the  emissions  of  greenhouse  gases  by  8%  in  the  5-year  period 2008-2012 compared with 1990 levels. The Kyoto Protocol confines itself to the emission of six main greenhouse gases, CO2, CH4, N2O, HFC’s, PFC’s and SF6. The European Com-munity  ratified  the  Kyoto  Protocol  in  31  May  2002  following  Commission  Decision 2002/358/EC.  The Kyoto  Protocol  is  legally  regulated  in  the EU by  the Council decision 93/389/EEC  for a monitoring mechanism of Community CO2 and other greenhouse gas emissions  and  its  amendment  (Council  Decision  99/296/EC).  The  European  Climate Change Programme and a number of Council and Commission decisions stress the need for monitoring GHG emissions and  sinks as a means  for assessment of progress  toward meeting Kyoto  Protocol  targets. Global  greenhouse  gas  sources  and  sinks  are  not well known.  Better  source  and  sink  estimates  are  needed  in  support  of  the  Kyoto  Protocol monitoring, verification and  reporting  requirements. To date, an  independent global ob-servation system for the monitoring of GHG emissions does not exist.  

 The regulated geophysical parameters required for these applications which are currently accessible from space, are CH4 and CO2. At least tropospheric total column amounts (incl. PBL) with an accuracy of 1% or better are needed. Global  coverage within 24 h and a horizontal resolution of 10-20 km are required. To minimise the impact of clouds a higher spatial resolution of the measurement might be necessary. To have optimum  information on tropospheric sources and sinks of the greenhouse gases, data from ground based net-works needs to be included in data assimilation and inverse modelling. SCIAMACHY dem-onstrated the quantitative determination of Methane with high accuracy. For the applica-tion areas mentioned above  several groups  in Germany and Europe already built or are building precursor services  for data assimilation and  inverse modelling of GHG sources and sinks: EU EVERGREEN, MPI Jena, GSE PROMOTE (DLR-DFD), GEMS (ECMWF, MPI HH). 

 Currently the GHG applications are partly served by SCIAMACHY on ENVISAT and will be partly served by OCO  (NASA) and GOSAT  (JAXA)  (scientific missions). After SCIAMACHY on ENVISAT  there  is currently no European mission planned  to monitor GHGs with high accuracy.  It  is  recommended  that  the  synergy  between UV/VIS  and  IR measurements  is considered. 

VI.22

 A. 3) Climate-Chemistry Interactions and Ozone Recovery

The discovery of the ozone hole and the scientific understanding of the processes that lead to the depletion of ozone have resulted in the Vienna Convention for the Protection of the Ozone  Layer  (1985)  and  the Montreal  Protocol  on  Substances  that Deplete  the Ozone Layer  (1987). Subsequent amendments and adjustments of  this protocol are based, and will be based on current scientific, environmental, technical, and economic information. In the last years it was recognised that climate change also affects the recovery of the ozone layer. To provide  input to the decision-making process assessments were and will be car-ried out regularly, e.g. the UNEP-WMO Scientific Assessment of Ozone Depletion.. The as-sessements and the monitoring of the Montreal Protocol requires the  long-term monitor-ing of global concentration distributions of ozone, ozone depleting substances  like CFC’s and their replacement HCFC’s, halons, and active chlorine and bromine compounds repre-sentatives  as  well  as  PSCs.  Due  to  their  long  atmospheric  lifetime  Halons,  CFC’s  and HCFC’s can be monitored from ground for example by FTIR spectroscopy. It  is expected  that  future  changes of  the dynamics and  composition  in  the  tropical  tro-popause  layer  (TTL) will  lead  to  changes  in  the  fluxes  of water  vapour  and  short-lived chemical species from the upper troposphere into the stratosphere. The sign of the change is uncertain because the knowledge of the underlying processes  is  incomplete. Therefore, estimates of future trends are currently unreliable. The future composition of the northern hemisphere lower stratosphere is therefore highly uncertain.  The global mean  tropospheric  temperature  reacts  relatively strongly  to changes  in upper tropospheric and  lower stratospheric (UTLS) ozone,  leading to a coupling between strato-spheric ozone and climate change. Ozone  in the mid-latitude lowermost stratosphere has decreased over  the past decades, although  the exact magnitude of  the  trend  is  still de-bated. Therefore, understanding the causes for the observed ozone changes in the lower-most stratosphere remains an important issue.  Therefore geophysical parameters required with high priority are H2O, O3, CH4 and Cirrus clouds around the tropopause  level as well as O3, Halogen Oxides, NOx and PSCs  in the stratosphere. Global coverage within 24 h  is needed.  In addition  to  total column Ozone, the parameters need to be determined with a vertical resolution of 1-2 km and a horizon-tal resolution of 50 - 100 km along the  line of sight and 20 km acrross the  line of sight. This requires a limb sounding mission in LEO. Data from operational aircraft programs like CARIBIC, MOZAIC will complement the satellite data.   

MIPAS,  SCIAMACHY  and MLS  already demonstrated  the potential of  limb  sounding  in-struments.  For  the  application  areas mentioned  above  several  groups  in Germany  and Europe already have built or are building precursor  services  for data assimilation and  in-verse  modelling  of  GHG  sources  and  sinks:  EURAD  SACADA/IMACCO  (University  Co-logne), GSE PROMOTE (DLR-DFD), GEMS (ECMWF, MPI HH), WMO.  Currently the applications are partly served by MIPAS, GOMOS and SCIAMACHY on ENVI-SAT and will be partly  served by OMPS on NPOESS. The UTLS applications currently can not be served adequatly due to the lack of high vertically sampled data. The ESA earth ex-plorer  proposal  PREMIER  addresses  this  lack  of UTLS  data. Currently  no  European  limb sounding mission is planned after ENVISAT. 

 

VI.23

B.) Satellite Missions  B. 1) MTG Assessment 

The regional Chemical Weather /Air Quality applications can be addressed in particular by the combined use of UVS and  IRS. The UVS  is mandatory to cover tropospheric O3, NO2, SO2, HCHO as well as aerosol Single Scattering Albedo (aerosol type). The IRS will be able to  deliver  O3  and  CO with  some  vertical  information  and  PAN.  It  is  recommended  to slightly  improve  the  spectral  resolution  in  IRS-3  (O3)  and  IRS-7  (CO)  bands  by  factor  of about 1.5 in order to improve the vertical resolution in the troposphere. The measurement of the Aerosol Optical Thickness is covered by imager channels in the visible.  

 B. 2)  Post EPS AC-1: Global Air Quality & Kyoto Monitoring 

It is proposed to combine IR with solar backscatter nadir sounders to improve tropospheric sounding of O3, CO, NO2, SO2, HCHO, CH4, CO2, and aerosol. Therefore an improved IASI (O3, CO, CH4, CO2) w.r.t.  spectral  resolution  for  improved  tropospheric  sounding and an advanced SCIAMACHY nadir sounder (O3, CO, NO2, SO2, HCHO, SSA, CH4, CO2) w.r.t. im-aging capabilities and  improved horizontal  resolution of 10-20 km should be part of  the post EPS payload. Aerosol Optical Thickness should be determined  from a  future  imager (Maximum Imager Concept) and additional information about the single scattering albedo can be  taken  from  the UV channel of  the advanced SCIAMACHY nadir  instrument.  It  is therefore important to have co-located imager data available. Such a payload would yield accurate CH4 and CO2 distributions as required for the  GHG Monitoring in addition to the continuity of the GOME-2/IASI (METOP) data set.  

 B. 3)  Post EPS AC-2: Climate-Chemistry Interactions and Ozone Recovery 

To address  the climate-chemistry  interaction and ozone  recovery  theme a  limb sounding mission with a focus on the UTLS and the stratosphere  is recommended. An  imaging MI-PAS (H2O, O3, CH4, cirrus, PSC, NOx, reservoirs) can form the backbone of the mission op-tionally complemented by an advanced SCIAMACHY  limb  sounder  (for O3, aerosol, BrO, OClO,  PSC, Cirrus)  and/or  a microwave  limb  sounder  for  improved measurements  in  a cloudy upper troposphere.  In addition,  it was  suggested  to  complement post EPS AC1 and AC2 with data on  tro-popause height, boundary  layer height,  aerosol  layering,  as well  as  cirrus/PSC detection from a lidar mission. It has to be clarified in how far the ATLID on EarthCare (or an opera-tionalised version) can serve these requirements. 

 B. 4)  ENVISAT Data Continuity 

There are two  important areas where EPS will not continue  important ENVISAT data sets. This is the Climate-Chemistry Interactions and Ozone Recovery theme (profiles of O3, H2O, BrO, PSC, etc. from MIPAS, SCIAMACHY and GOMOS) and the GHG monitoring (started with SCIAMACHY) as there  is currently no European  limb sounding capability after ENVI-SAT. 

 

VI.24

C.) General Recommendations  

• Free and easy access to GEOSS data should be envisaged. • Data continuity should be envisaged for atmospheric composition measurements 

• IR  (improved  IASI-type)   and UV/Vis/SWIR  (GOME/SCIAMACHY-type) na-dir sounder should be part of a post EPS initial satellite 

• Future space missions should include budgets for data processing and analysis.  • A better coordination is needed between MTG / EPS and GMES missions.  

• MTG UVS – Sentinel 4 - (Explorer GeoTROPE-R)  • post EPS – Sentinel 5 - (Explorer PREMIER) 

 D.) Summary

 To  address  the  regional  air quality/chemical weather  applications  a  combination of  IRS- and UVS-type instruments should be included in MTG (Sentinel-4) as also proposed in the GeoTROPE-R mission.  To address the high vertical resolution requirements of  the Climate-Chemistry Interactions and Ozone Recovery theme a limb sounding payload needs to be included in the post EPS, in addition to advanced IR and UV/VIS nadir sounders.    [RD 1] The Changing Atmosphere. The IGACO Theme report. Editors Leonard A Barrie, Pe-ter Borrell, Joerg Langen, approved at IGOS-P meeting May 2004.  [RD 2] Golding et al. 2003 B.W. Golding, S. Senesi, K. Browning, B. Bizzari, W. Benesh, D. Rosenfeld, V. Levizzani, H.P. Roesli, U. Platt, T.E. Nordeng, J.T. Carmona, P. Ambrosetti, P, Pagano and M. Kurz.   EUMETSAT Position Paper on Observation Requirements  for Now-casting and Very Short Range  Forecasting  in 2015-2025.   Technical Report, Version 11, EUMETSAT, Darmstadt, Germany, 2003, (available via http://www.eumetsat.de) 

VI.25

Annex: Requirements Tables  Chemical Weather and Air Quality  Regional Applications  Requirement 

 Data Product 

 Height Range 

 Horizontal resolution (km) 

 Vertical resolution (km) 

 Revisit  Time (hours) 

 Uncertainty 

 Notes  

Aerosol OD  Troposphere  5  /  20  --  0.5 /  2  0.05  PBL  sensitivity needed 

Aerosol Type/Size  Troposphere  

5  /  20  --  0.5  /  2  < 10% mis-assignments 

PBL  sensitivity needed 

O3 Troposphere Total Column 

5  /  20 20  / 50 

2-3 pieces of information, one including PBL 

0.5  /  2 0.5  /  2 

 

25% 3% 

PBL  sensitivity needed 

CO  Troposphere  Total Column 

5  /  20 5  /  20 

2-3 pieces of information, one including PBL 

0.5  /  2 0.5  /  2 

 

20 % 25 % 

PBL  sensitivity needed 

NO2 Tropospheric Column 

Total Column 

5  /  20 5  /  20 

--  0.5  /  2 0.5  /  2 

20 % 20 % 

PBL  sensitivity needed 

SO2 Tropospheric Column 

Total Column 

5  /  20 5  /  20 

--  0.5  /  2 0.5  /  2 

20% 20% 

PBL  sensitivity needed 

CH2O  Tropospheric Column 

Total Column 

5  /  20 5  /  20 

--  0.5  /  2 0.5  /  2 

20% 20% 

PBL  sensitivity needed 

PAN  Troposphere Total Column 

5  /  20 5  /  20 

--  0.5  /  2 0.5  /  2 

20% 20% 

PBL  sensitivity needed 

  Global Applications  Requirement 

 Data Product 

 Height Range 

 Horizontal resolution (km) 

 Vertical resolution (km) 

 Revisit  Time (hours) 

 Uncertainty 

 Notes  

Aerosol OD  Troposphere  10 / 50  --  24  0.05  PBL  sensitivity needed 

Aerosol Type/Size  Troposphere  

10 / 50  --  24  < 10% mis-assignments 

PBL  sensitivity needed 

O3 Troposphere Total Column 

10 / 50  2-3 pieces of information, one including PBL 

24  25% 3% 

PBL  sensitivity needed 

CO  Troposphere  Total Column 

10 / 50  2-3 pieces of information, one including PBL 

24  20 % 25 % 

PBL  sensitivity needed 

NO2 Tropospheric Column 

Total Column 

10 / 50  --  24  20 % 20 % 

PBL  sensitivity needed 

SO2 Tropospheric Column 

Total Column 

10 / 50  --  24  20% 20% 

PBL  sensitivity needed 

CH2O  Tropospheric Column 

Total Column 

10 / 50  --  24  20% 20% 

PBL  sensitivity needed 

PAN  Troposphere Total Column 

10 / 50  --  24  20% 20% 

PBL  sensitivity needed 

VI.26

    Greehouse Gas Monitoring (global)  Requirement 

 Data Product 

 Height Range 

 Horizontal resolution (km) 

 Vertical resolution (km) 

 Revisit  Time (hours) 

 Uncertainty 

 Notes  

CH4 Troposphere   

Total Column 

10 / 50  Trop. Column / 2-3 pieces of 

information, one including PBL 

24  1 – 2 %  PBL  sensitivity needed 

CO2 Troposphere    

Total Column 

10 / 50  Trop. Column /  2-3 pieces of 

information, one including PBL 

24  0.5 – 1 %   PBL  sensitivity needed 

 Climate-Chemistry Interactions and Ozone Recovery (Global) Requirement 

 Data Product 

 Height Range 

 Horizontal resolution (km) 

 Vertical resolution (km) 

 Revisit  Time (hours) 

 Uncertainty 

 Notes  

H2O  UT LS MS 

Total Column 

20 / 100 50 / 100 100 / 200 10 / 20 

0.5 / 2 1 / 2 2 / 3 -- 

24 24 24 24 

20 % 20 % 20 % 10% 

 

O3 UT LS MS 

Trop. Column Total Column 

20 / 100 50 / 100 100 / 200 10 / 50 20 / 50 

0.5 / 2 1 / 2 2 / 3 -- -- 

24 24 24 24 24 

20 % 20 % 20 % 20 % 3 % 

 

CH4 UT LS MS 

Total Colum 

20 / 100 50 / 100 100 / 200 10 / 20 

0.5 / 2 1 / 2 2 / 3 -- 

24 24 24 24 

10 - 20 % 10 - 20 % 10 - 20 % 

2 % 

 

Cirrus  UT  50 / 100  0.5 / 1  24  < 10% mis-assignments 

 

NOx LS MS 

Strat. Column 

50 / 100 100 / 200 50 / 200 

1 / 2 2 / 3 -- 

24 24 24 

30 % 20 – 30 % 10 – 20% 

 

BrO  LS MS 

Strat. Column 

50 / 100 100 / 200 50 / 200 

1 / 2 2 / 3 -- 

24 24 24 

20 – 30 % 20 – 30 % 20 – 30% 

 

ClO/OClO  LS MS 

Strat. Column 

50 / 100 100 / 200 50 / 200 

1 / 2 2 / 3 -- 

24 24 24 

30 – 50 % 30- 50 % 30- 50 % 

 

PSC  LS  50 / 100  0.5 / 2  24  < 10% mis-assignments 

 

Strat. Aerosol  LS MS 

Stratosphere 

50 / 100 100 / 200 50 / 200 

1 / 3 2 / 3 -- 

24 24 24 

30% 30% 30% 

 

VI.27

VI.28

Working Group

Hydrology

Participants:

W. Mauser, Uni München (Chair)

V. Hochschild, Uni Tübingen  

S. Knabe, BfG  

W. Kusch, DWD 

T. Mohr, WMO  

H. Staudenrausch, DLR Bonn 

C. Thiel, Uni Jena 

VI.29

VI.30

Working Group Hydrology

 Objectives and approach  

• Target Parameters – All terms of the water budget equation (precipitation  – evapotranspiration – 

runoff – storage components) – Data that are needed for/assimilated in future hydrological and water 

management models • Criteria 

– National priorities, international aspects, planned EUMETSAT and GMES missions – Visionary, interdisciplinary scope – Legal Framework: EU Water Framework Directive 

• Approach    Applications   Information Needs   Data Requirements   Operational Applications vs. Information needs  

����������  Precip-itation 

Soil Moisture 

Water Level  Topography  Vegetation  Water quality 

Snow water equivalent 

 Flood Forecast   ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Shipping/Water   transportation 

 ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Water energy/   reservoir manag. 

 ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Agriculture/   Forestry 

 ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Water quality   protection 

 �����   ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Wetland  management 

 ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Groundwater   management 

 ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Snow   ���������� 

 ���������� 

 ����������  ����������  ����������  ����������  ���������� 

 Drinking water   ���������� 

 ��������� 

 ����������  ����������  ����������  ����������  ���������� 

               

VI.31

Hydrological Data Requirements

Temporal resolution 

Spatial resolution 

Accuracy Parameter with most demanding application Top Priorities 

Requirement (threshold – goal – breakthrough level) 

remark 

1. Precipitation Driver: flood forecast, regional water management (small-medium scale catchments).  

15 – 5 – 10 min  10 – 0,1 – 1 km   10 – 2 – 5 %  Including distinction rain-snow. Even higher requirements for urban applications (sewage discharge etc.), but aerial coverage is no prerequisite    space borne solution not required 

2. Soil Moisture  Driver: agriculture and forestry, wetlands, floods 

72 – 12 – 24 h  30 – 10 – 20 m   10 – 2 – 5 %  Soil profiles are of importance: e.g. 0-2/0-5/0-30 cm depth. Spatial resolution driven by agricultural machinery 

3. Water level Driver: inland water transport; most important Cal/Val parameter of hydro models 

24 – 3 – 6 h  50 – 10 – 30 m  20 -1 -5 cm  Requirements mainly driven by Federal Water Ways  

    

Temporal resolution 

Spatial resolution 

Accuracy Parameter with most demanding application Further needs 

Requirement (threshold – goal – breakthrough level) 

remark 

Topography Driver: Subsidence caused by groundwater exploitation 

2 – 0,1 – 1 years  30 – 10 – 20   2 – 0,1 – 1 cm  For construction issues and stream/lake morphology limited applicability of space borne data 

Vegetation (LAI, Land use, biomass, plant water content, albedo) Driver: Agriculture and Forestry 

14 – 3 - 7 days  30 – 10 - 20 m  10- 2 – 5 % For  albedo: 1 – 0,2 – 0,5 

Cloud cover to be taken into account for temporal resolution requirement, as optical system needed. Biodiversity would be another driver, but ist not considered here. 

Water quality –  Driver and most important parameter is suspended matters/sediments 

14 – 3 – 7 days  100 – 10 – 30 m  tbd  Issues are Water ways, lakes, drinking water reservoirs, point sources (industry)  

Snow water equivalent Driver: flood forecast, energy management 

24 – 3 – 6 h  250 –30 – 100 m  10 – 2 - 5 %  Parameter comparable with precipitation, but due to attenuation the requirements  are a bit more relaxed 

         

VI.32

Mapping needs on planned Missions

• Precipitation – GPM does not match requirements of most demanding hydrological applications – No direct observation with required resolution and accuracy planned – May be feasible by GEO Mission only. Option for MTG? 

• Soil moisture – GMES Sentinel 1 is a first step towards a space based solution, but far from 

sufficient – Multifrequency radar system (C/L/P bands) with high spatial resolution and wide 

swath is needed • Water level 

– Requirements may be covered by Altimeter mission • Topography 

– Interferometric missions may cover requirements  • Vegetation and sediments 

– GMES Sentinel 2 is a first step, but spectral resolution not sufficient – Imaging Spectrometer is needed 

• Snow – may also be covered by multifrequency radar system – Further studies needed 

 

VI.33

VI.34

Working Group

Climate

Participants:

H. Graßl, MPI Hamburg (Chair)

J.P. Burrows, IUP Uni. Bremen 

Ch. Brüns, DLR Bonn 

B. Fladt, EADS Astrium 

A. Gratzki, DWD 

S. Grünler, Uni Jena 

A. Macke, IFM GEOMAR 

B. Mayer, DLR 

R. Preusker, FU Berlin 

R. Schricke, EADS Astrium 

H. Stark, ESA 

R. Strobel, JenaOptronik 

J. Schulz, DWD 

VI.35

VI.36

Working Group Climate

 1 Introduction  The need to understand the natural processes, which determine climate and in particular the modification of climate resulting from anthropogenic activity, is an essential part of modern  hypothesis  driven  earth  system  science.  The  observation  of  climate  variables provides  unique  and  objective  knowledge  about  the  system  comprising  the  sun,  the atmosphere and  the earth. This  is needed by policymakers  to attribute accurately  the origins  of  global  climate  change  and  to  assess  the  natural  variability  and  impact  of anthropogenic emissions on the environment.   In order  to  improve our understanding of  the earth’s  climate and  its  response  to  the consequences  of  an  increasing  population  and  standard  of  living,  long  term  regional and global measurements of key parameters and atmospheric constituents are required. In the  last 20 years Europe,  led by a significant contribution from the German national agencies, scientists, industry, and their international partners, has developed a variety of successful  atmospheric  remote  sensing  measurement  techniques.  These  have  been deployed from the ground and successfully from orbiting satellite platforms. A series of research  satellites  has  demonstrated  the  capability  to measure  key  atmospheric  and surface parameters as well as the constituents, required for atmospheric chemistry and climate  research.  Examples  of  the  first  retrievals  of  the  global  distributions  of  the greenhouse  gases  Methane  and  Carbon  Dioxide,  retrieved  from  space  based observations, are shown  in figure 1 and 2. These have been derived from the national research project SCIAMACHY, which  flies aboard  the ESA ENVISAT. The continuity of these new data sets is a national, European and international priority.   Since 1999 the Deutsche Wetterdienst has been leading the Satellite Application Facility on Climate Monitoring (CM-SAF). The latter is part of the EUMETSAT distributed ground segment and  is a consortium of 6 national meteorological services. Currently, CM-SAF focuses on atmospheric parameters related to the energy and water cycle. The CM-SAF produces or will produce climate data sets from  instrumentation on (semi-) operational satellite platforms such as EUMETSAT’s MetOp and Meteosat Second Generation (MSG) as well as U.S. NOAA and  the DMSP polar orbiters. Some examples of CM-SAF cloud products derived  from  the SEVIRI  instrument onboard  the MSG  satellite are  shown  in figure  3.  The  production  of  climate  data  sets within  the CM-SAF  follows  the GCOS climate monitoring principles and assures  full  traceability as a  result of  the established operational environment.  2 Scope of the Climate Sub-group Meeting  This  National  User Workshop meeting  to  discuss  an Operational  Satellite  System  for Earth  Monitoring  was  called  together  by  the  DWD  and  DLR.  It  brought  together expertise  in  climate  research  from  the  observational  and  modeling  communities  in Germany. National representatives from scientific research, operational meteorology and industry  came  together  in  response  to  the  DLR  and  DWD  invitation  to  discuss  the developments, needs and progress  towards an Observational System  for all aspects of Monitoring the Earth System.  The  central  theme of  the workshop  addressed  the post Meteosat  Second Generation System, MSG, the Meteosat Third Generation, MTG, and the post EPS system as well as potential national  involvement  in  the GMES. The  sub group  for  climate was asked  to identify priorities for these themes. This comprises both operational and scientific goals as well as national strategic interests. 

VI.37

3 Climate Sub Group Discussions  The Climate sub group discussions focused on the requirements for a Global Observing system with  respect  to Climate  parameters.  The  following  summarizes  the  discussion and the recommendations from the sub group, as presented by Professor Grassl.  3.1 Relevant Recent European Developments  A European operational observation system,  required  for numerical weather prediction and nowcasting, has been developed and has been improving in the last 25 years. After initially being developed by ESA,  the  responsibility  for  the  satellite contribution  to  this system  has  been mandated  by  the  European Governments  and  their Meteorological Services to EUMETSAT and its partners. EUMETSAT, ESA and their national partners have worked together to develop and remove deficits  in  its observational capability through the Meteosat Second Generation, MSG, Satellites in geostationary earth orbit, GEO, and the upcoming series of polar orbiting MetOp satellites carrying  instruments  to monitor the atmosphere, ocean, ice, and land systems.   The European operational space operator EUMETSAT has  introduced  the concept of a distributed ground  segment  in which  the expertise of national meteorological  services and  science  institutions  throughout  Europe  has  been  combined  to  strengthen developments  in  the  sector  of  Earth  system  remote  sensing.  This  resulted  in  the foundation  of  eight  Satellite  Application  Facilities  on  diverse  themes  ranging  from Nowcasting to Climate Monitoring.  Additionally, the improving observational capability has initiated the following emerging meteorological market areas, which are of great potential  importance and significance, have much in common: 

a) Atmospheric  pollution  and  numerical  environmental  prediction  or  “chemical weather” 

b) Greenhouse  Gas  Detection  from  Space  and  the  Monitoring  of  international, European Treaties and Directives, as well as national laws. 

These new objectives demand measurements of atmospheric constituents from space on a regular basis and the necessary ground segment to handle the data flow and provide Near Real Time analysis for short term prediction and long term climate research.   Since the last national meeting at the Cloister Walberberg the charter of EUMETSAT has been enhanced to include climate monitoring and Germany taken a lead in this activity in  Europe  by  establishing  the  Climate  Monitoring  SAF  at  DWD  and  the  successful management of SCIAMACHY. However, the fate of the emerging market of numerical environmental prediction and its related impact on climate is not yet clear. Resources are required  to  sustain  the  communities  involved  in  the  new  and  emerging  sectors  of meteorology  to  provide  the  impetus  for  maintaining  this  are  of  internationally recognized expertise and related multiplicative wealth creation.  3.2 Climate monitoring objectives  The  overall  objective  for  the  climate  aspect  of  an  Earth  Monitoring  System  is  the generation of data sets of key climate parameters and atmospheric constituents, which describe well  the  earth  climate  and  its  variability.  This  data  is  required  to  assess  the relative importance of the natural variability of climate and the impact of anthropogenic activity on global climate change. This overall objective is a long term undertaking as the derivation  and  attribution  of  trend  as  opposed  to  the  observation  of  change  in  the system requires typically several decades of measurements.  

VI.38

The accurate observation of climate requires a representative set of measurements. This in  turn  requires  an  adequate  spatial  resolution  and  temporal  sampling.    In  summary, temporal  and  spatial  scales  able  to  detect  diurnal,  daily, weekly, monthly,  seasonal, yearly, and decadal cycling at high spatial scales are required.  In this context there  is a very strong overlap with the objectives of the measurement of atmospheric pollution as envisaged  in  the  IGOS  (Integrated Global Observing  Strategy)  -  IGACO  (International Global Atmospheric Chemistry Observations) theme.   Overarching Requirements of an Earth Monitoring System  The operational space segment of an Earth Monitoring System has a variety of different objectives.  It  needs  to  measure  key  parameters  and  constituents,  which  describe effectively  the  climate  and  its  variability  and provide where possible  early warning of potential  hazards  for  the  climate.  There  are  several  overarching  requirements which need to be addressed by the observational system for climate monitoring:  

i) The selection of an appropriate and adequate set of constituents and parameters to observe climate variability and to be used for attribution  

ii) Accuracy  of measurement  sufficient  to  detect  often  small  but  significant  short term and long term changes, 

iii) The spatial and temporal sampling of the measurement must be representative, 

iv) Long term continuity of the measurements coupled with  improved measurement accuracy and sampling. 

 The Required Climate Variables and Sampling Strategy  The Sub group for climate agreed that the following parameters for climate research are required to address the climate system (not in order of priority, not exclusive): 

1) Temperature: a. Temperature profiles in the troposphere, stratosphere, mesosphere,  

upper Air Temperature, b. Sea surface and land surface temperature. 

2) Wind System: Horizontal and vertical winds at an adequate spatial resolution and sampling. 

3) Momentum and Energy Fluxes. 

4) Cloud Parameters:  Water and ice cloud optical and microphysical properties, cloud top height, cloud cover, cloud optical thickness, cloud bottom, liquid and ice water content. 

5) Precipitation: Global distribution over land and water, profile information 

6) Aerosol Parameters:  Aerosol optical thickness in UV, Visible and Short wave IR regions, aerosol extinction and absorption characteristics size and mass distribution and profile information. 

7) Water Vapour:  Total column amount and vertical profiles are required. 

8) Greenhouse Gases: Carbon dioxide, CO2, Methane, CH4, Nitrous oxide, N2O. 

9) Cryosphere:  Sea Ice thickness and extent,  Ice/Snow pack volume and mass,  Glacier volume / mass. 

VI.39

10) Surface radiation covering the UV to the near IR. 11) Solar Radiation Output Parameters:  

Solar Constant and wavelength dependent output in the UV, visible and IR. 

12) Sea Surface Salinity 13) Hurricane: 

Adequate high pressure/low pressure data products, 

14) Top-of-atmosphere radiation budget: Reflected solar radiation and outgoing longwave radiation. 

More details of data product specifications can be provided by the GCOS, IGOS-IGACO, and IGOS-IGCO documents.  Recommendations  General Overarching Recommendations  i) The GCOS climate monitoring principles should be followed. 

ii) The global observing system for climate is required to combine in an integrated manner ground based and satellite observations 

iii) The  space  segment  of  the  climate  monitoring  system  requires  an  adequate calibration and validation through the lifetime of individual missions. 

iv) Overlap between missions  is an essential  requirement  for  the establishment of a long  term data  set  required  for operational  services  for and  research on climate and global change. 

v) Adequate funding of calibration and validation is required through the lifetime of any of the planned or potential missions. 

vi) Reprocessing of  the agreed data products  is  required  to  reach  the agreed goals and  threshold,  which  are  typically  limited  by  instrument  performance,  e.g., stability, and not by algorithm limitations. 

vii) Reanalysis is required to create a combined data product. 

viii) A  structure  is  required  whereby  scientific  demonstration  missions  initiate  the necessary climate data sets and these are then transferred to operational missions without loss of the quality of the data product. 

ix) Proper  data  stewardship  including  an  adequate  archiving  of  data  products  is necessary  to  provide  access  to  all  the  relevant  data  products  by  all  user communities, research operational meteorology, policymakers etc. 

x) In  order  to  provide  operational  services  demonstration  research  missions  are required to generate adequate methods and procedures that can be implemented at operational centers, e.g., SAFs. 

xi) The  use  of  derived  climate  data  sets  in  climate  departments  of  National Meteorological  Services  and  for  climate  research has  to be  fostered by  training components within the individual space programs. 

 Specific Recommendations from the Climate Sub Group  1. Metop 4 or Gap filler: 

The scientists were of the view that a full Metop compliment plus improved data products is required. A gap filler between Metop 3 and a new post EPS was considered not acceptable, rather a step backwards. 

 

VI.40

2. Continuity of measurements and new Climate variables from space: There is an urgent need to generate continuity of data products for climate research. This requires new experiments and possibly new missions, which provide improved precision and accuracy of the existing parameters and yield the missing parameters required for climate research such as SCIAMACHY and the related instruments. 

3. Demonstration missions: In order to improve the Earth monitoring System, demonstration missions for example in Geostationary orbit for atmospheric chemistry and climate relevant parameters are necessary. These missions also provide the necessary scientific and human capacity building. 

 

 

 

   Figure 1. The dry  total column of Methane, CH4, over  land derived  from SCIAMACHY measurements (Courtesy of Buchwitz and Burrows University of Bremen).                    Figure 2. The anomaly (i.e. the difference between the actual value and the mean) in the dry column of Carbon Dioxide, CO2, for 2003 derived from SCIAMACHY measurements (courtesy of Buchwitz and Burrows University of Bremen). 

VI.41

 

  Figure 3. Monthly averages of cloud cover and shortwave irradiance for August 2005 derived from SEVIRI measurements. Both products are represented in equal area sinusoidal projection.    

VI.42

Annex

Workshop Agenda

A.1

A.2

Nationaler Nutzerworkshop

zum Thema

Operationelle Satellitensysteme der Erdüberwachung

7. – 9. November 2005, Tagungsstätte Walberberg

Leitung: Prof. H. Graßl

Montag, 07. November 2005

11:00 – 14:00 Anmeldung

14:00 – 14:15 Eröffnung

Begrüßung durch den Vorstand des DLR Dr. L. Baumgarten, DLR

Begrüßung durch das BMVBW K. Trauernicht, BMVBW

Begrüßung durch den Präsidenten des DWD W. Kusch, DWD

14:15 – 14:45 Satelliten und das System Erde Prof. H. Graßl, MPI Hamburg

14:45 – 15:15 Das Global Earth Observation System U. Gärtnerof Systems, GEOSS

15:15 – 15:45 Planung von künftigen Satellitensystemen Prof. Jian Liu, WMOaußerhalb Europas

15:45 – 16:15 Kaffeepause

16:15 – 16:45 Das GMES-Weltraumsegment & relevante Prof. A. Ginati, ESAEarth-Explorer Missionen

16:45 – 17:15 Die MTG User-Requirements Dr. R. Stuhlmann, EUMETSAT

17:15 – 17:45 Ergebnisse der MTG Pre-Phase A Studien P. Bensi, ESA

17:45 – 18:00 Diskussion

18:30 Abendessen

20:00 Gemeinsame lockere Diskussion beim Tagesausklang im Clubraum

A.3

Dienstag, 08. November 2005

09:00 – 09:30 Aktuelle und geplante Aktivitäten zur E. Koenemann, EUMETSATVorbereitung des EPS-Nachfolgesystems

09:30 – 10:30 Technologische Analysen zu einem EPS-Nachfolgesystem

Das abbildende Radiometer MetImage Dr. B. Voss, JenaOptronik

Low-Cost EPS-Überbrückungssatellit Dr. H. Lübberstedt, OHB System

Post-EPS Initial Satellite (PEPSIS) Dr. R. Münzenmayer, Astrium

10:30 – 10:40 Vorstellung und Bildung der geplanten Arbeitsgruppen

10:40 – 11:00 Kaffeepause

11:00 – 12:30 Gruppenarbeit (Teil 1)

12:30 – 14:00 Mittagspause

14:00 – 15:30 Gruppenarbeit (Teil 2)

15:30 – 16:00 Kaffeepause

16:00 – 16:45 Zwischentreffen im Plenum: Kurzberichte der Arbeitsgruppen

¾ AG Unwetterwarnmanagement Dr. G. Steinhorst, DWD

¾ AG numerische Wettervorhersage Dr. N. Bormann, EZMW

¾ AG Ozean Prof. D. Stammer, Uni Hamburg

¾ AG Klima Prof. H. Graßl, MPI Hamburg

¾ AG Atmosphärenchemie Prof. H. Fischer, FZ Karlsruhe

¾ AG Hydrologie Prof. W. Mauser, Uni München

16:45 – 18:00 Gruppenarbeit (Teil 3)

18:30 Abendessen

20:00 Gemeinsame lockere Diskussion beim Tagesausklang im Clubraum

A.4

Mittwoch, 09. November 2005

08:30 – 09:15 Gruppenarbeit (Teil 4)

09:15 – 11:15 Präsentation und Diskussion der Ergebnisse der Gruppenarbeit

¾ AG Unwetterwarnmanagement Dr. G. Steinhorst, DWD

¾ AG numerische Wettervorhersage Dr. N. Bormann, EZMW

¾ AG Ozean Prof. D. Stammer, Uni Hamburg

¾ AG Klima Prof. H. Graßl, MPI Hamburg

¾ AG Atmosphärenchemie Prof. H. Fischer, FZ Karlsruhe

¾ AG Hydrologie Prof. W. Mauser, Uni München

11:15 – 11:45 Kaffeepause

11:45 – 13:00 Formulierung und Verabschiedung der Prof. H. Graßl, MPI HamburgEmpfehlungen des Workshops

13:00 Mittagessen & Workshop-Ende

A.5

A.6

Workshop Participants

A.7

A.8

Name Forename Affiliation & Address E-Mail Alpers Matthias DLR, Raumfahrtmanagement

Königswinterer Str. 522-524 53227 Bonn [email protected]

Banfi Stefano EUMETSAT Am Kavalleriesand 31 64295 Darmstadt [email protected]

Benesch Wolfgang Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Bensi Paolo ESA-ESTEC Keplerlaan 1 2201 AZ Noordwijk ZH Niederlande [email protected]

Berndt Klaus Jena-Optronik GmbH Prüssingstr. 41 07745 Jena [email protected]

Böhm Thomas-Marian

Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Bormann Niels ECMWF Shinfield Park, Reading RG2 9AX England [email protected]

Bovensmann Heinrich Institut f. Umweltphysik, Universität Bremen Postfach 33 04 40 28334 Bremen

[email protected]­bremen.de

Brügge Bernd Bundesamt für Seeschifffahrt und Hydrographie Bernhard-Nocht-Str. 78 20359 Hamburg [email protected]

Brüns Christian DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

Burrows John P. Institut für Umweltphysik Universität Bremen Postfach 33 04 40 28334 Bremen [email protected]

Colijn Franciscus GKSS Forschungszentrum Geesthacht Max-Planck-Str. 1 21502 Geesthacht [email protected]

Dierking Wolfgang Alfred-Wegener-Institut für Polar- und Meeresforschung Postfach 120161 27515 Bremerhaven [email protected]

Fischer Herbert Institut für Meteorologie und Klimaforschung, FZ Karlsruhe Postfach 3640 76021 Karlsruhe [email protected]

Fischer Jürgen Institut für Weltraumwissen-schaften, FU Berlin, Carl-Heinrich-Becker-Weg 6-10 12165 Berlin [email protected]

Fladt Burkhard EADS Astrium GmbH 88039 Friedrichshafen [email protected]

Friker Achim DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

A.9

Name Forename Affiliation & Address E-Mail Gärtner Udo Lilienweg 2

63165 Mühlheim [email protected] Ginati Amnon ESA-ESTEC

Keplerlaan 1; 2201 AZ Noordwijk ZH Niederlande [email protected]

Graßl Hartmut MPI für Meteorologie Bundesstr. 53 20146 Hamburg [email protected]

Gratzki Annegret Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Grünler Steffen Universität Jena Löbdergraben 32 07743 Jena [email protected]

Günther Heinz GKSS Forschungszentrum Geesthacht Max-Planck-Str. 1 21502 Geesthacht [email protected]

Hochschild Volker Geographisches Institut Universität Tübingen Hölderlinstr. 12 72074 Tübingen [email protected]

Hofer Stefan Kayser-Threde GmbH Wolfratshauser Str. 48 81379 München [email protected]

Horstmann Jochen GKSS Forschungszentrum Geesthacht Max-Planck-Str. 1 21502 Geesthacht [email protected]

Ingmann Paul ESA-ESTEC Keplerlaan 1; 2201AZ Noordwijk ZH Niederlande [email protected]

Jakowski Norbert DLR, Institut f. Kommunikation und Navigation Kalkhorstweg 53 17235 Neustrelitz [email protected]

Kaifel Anton Zentrum f. Sonnenenergie- und Wasserstoff-Forschung Industriestr. 6 70565 Stuttgart [email protected]

Klein Wolfgang DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

Knabe Stefan Bundesanstalt f. Gewässerkunde Am Mainzer Tor 56068 Koblenz [email protected]

Koenemann Ernst EUMETSAT Am Kavalleriesand 31 64295 Darmstadt [email protected]

Köpken Christina Deutscher Wetterdienst Postfach 100465 63004 Offenbach [email protected]

Kuhlmann Rolf, von DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

A.10

Name Forename Affiliation & Address E-Mail Kusch Wolfgang Deutscher Wetterdienst

Kaiserleistr. 42 63067 Offenbach [email protected]

Langemann Manfred EADS Astrium GmbH 88039 Friedrichshafen [email protected]

Lewis John VEGA Informations-Technologien GmbH Hilpert Str. 20a 64293 Darmstadt [email protected]

Lübberstedt Hendrik OHB- System AG Universitätsallee 27-29 28359 Bremen [email protected]

Lüttenberg Hans-Peter DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

Macke Andreas IFM GEOMAR Düsterbrooker Weg 20 24105 Kiel [email protected]

Mauser Wolfram Lehrstuhl f. Geographie u. Geographische Fernerkundung LMU München Luisenstr. 37f 80333 München [email protected]

Mayer Bernhard DLR Münchener Str. 20 82234 Wessling-Oberpfaffenhofen [email protected]

Mohr Tillmann Else-Sterne-Roth-Str. 8 63075 Offenbach [email protected]

Münzenmayer Ralf EADS Astrium GmbH 88039 Friedrichshafen [email protected]

Nothaft Hans-Peter AIM, AEG Infrarot Module GmbH Theresienstr. 2 74072 Heilbronn [email protected]

Preusker René FU Berlin Carl-Heinrich-Becker-Weg 6-10 12165 Berlin [email protected]

Ritter Bodo Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Ritter Peter DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

Roll Ortrun Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Romeiser Roland Institut für Meereskunde, Universität Hamburg 20146 Hamburg [email protected]

Schricke Reiner EADS Astrium GmbH 88039 Friedrichshafen [email protected]

Schumann Ulrich DLR, Institut f. Phys. d. Atmosphäre Münchener Str. 20 82234 Wessling-Oberpfaffenhofen [email protected]

Schulz Jörg Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Seuffert Gisela BMVBW Robert-Schuman-Platz 1 53175 Bonn [email protected]

A.11

Name Forename Affiliation & Address E-Mail Sievers Oliver Deutscher Wetterdienst

Kaiserleistr. 42 63067 Offenbach [email protected]

Simmer Clemens Meteorologisches Institut Universität Bonn Auf dem Hügel 20 53212 Bonn [email protected]

Stammer Detlef Institut f. Meereskunde, Zentrum f. Meeres- und Klimaforschung der Universität Hamburg Bundesstr. 53 20146 Hamburg [email protected]

Stark Hendrik ESA-ESTEC Keplerlaan 1 2201 AZ Noordwijk ZH Niederlande [email protected]

Staudenrausch Helmut DLR, Raumfahrtmanagement Königswinterer Str. 522-524 53227 Bonn [email protected]

Steinhorst Gerhard Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Strobel Reiner Jena-Optronik GmbH Prüssingstr. 41 07745 Jena [email protected]

Stuhlmann Rolf EUMETSAT Am Kavalleriesand 31 64295 Darmstadt [email protected]

Tanner Fred EADS Astrium GmbH 88039 Friedrichshafen [email protected]

Thiel Christian Universität Jena Löbdergraben 32 07743 Jena [email protected]

Thomas Werner Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Trautmann Thomas DLR, Institut f. Methodik der Fernerkundung Münchener Str. 20 82234 Wessling-Oberpfaffenhofen [email protected]

Trieschmann Olaf Bundesanstalt f. Gewässerkunde Am Mainzer Tor 56068 Koblenz [email protected]

Ullrich Rolf Deutscher Wetterdienst Kaiserleistr. 42 63067 Offenbach [email protected]

Voß Burkart Jena-Optronik GmbH Prüssingstr. 41 07745 Jena [email protected]

Weimer Lars Jena-Optronik GmbH Prüssingstr. 41 07745 Jena [email protected]

Wickert Jens GFZ Potsdam Telegrafenberg 14473 Potsdam [email protected]

A.12