6
8/3/13 1 Early Algebra in the Era of Common Core Maria Blanton The research reported here was supported in part by the Na8onal Science Founda8on under DRK12 Awards #1154355 and #1207945. Any opinions, findings, and conclusions or recommenda8ons expressed in this material are those of the authors and do not necessarily reflect the views of the Na8onal Science Founda8on. Early Algebra in the Era of Common Core Maria Blanton Angela Murphy Gardiner Bárbara Brizuela Katie Sawrey Ashley NewmanOwens Eric Knuth Ana Stephens Isil Isler The research reported here was supported in part by the Na8onal Science Founda8on under DRK12 Awards #1154355 and #1207945. Any opinions, findings, and conclusions or recommenda8ons expressed in this material are those of the authors and do not necessarily reflect the views of the Na8onal Science Founda8on. Trivia…. Some questions you might ask… What is early algebra? Why do we need to start this in Kindergarten? Won’t it be enough to teach arithmetic “really well” so that children will be ready for algebra in middle grades? Does it really matter? How can elementary students be expected to do the kinds of mathematics with which older students struggle? Why do we need to start this in Kindergarten? America’s “Algebra Problem” Around 1900: “shopkeeper arithmetic” for all; algebra for the elite (3%-5% of school population) Introduction ofAlgebra for all Result:Arithmetic-then-algebra” approach leading to abrupt introduction of high school algebra, resulting in high student failure/ dropout “Algebra has become an academic passport for passage into virtually every avenue of the job market and every street of schooling. With too few excep8ons, students who do not study algebra are therefore relegated to menial jobs and are unable oUen to even undertake training programs for jobs in which they might be interested. They are sorted out of the opportuni8es to become produc8ve ci8zens in our society.” Alan Schoenfeld, 1995 Some (more) reasons we need to do “algebra” well… Successfully completing Algebra 2 is the best leading indicator of college graduation* 53% of college students take remedial mathematics or English; most of them will not graduate* Lack of sufficient math preparation is a significant factor in students not pursuing/completing technical majors* “Children’s ini8al skill levels predict their later learning in many domains, but the rela8on between early math knowledge and future math achievement is…roughly twice as strong as the rela8on between early and later reading achievement”. (Diamond et al., 2013) * Courtesy of Richard Schaar, Texas Instruments, keynote address at MAA/NSF Algebra Conference (sources: NSF, NCES, Tapping America’s Potential)

Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

1  

Early  Algebra    in  the  Era  of  Common  Core  

Maria  Blanton  

The  research  reported  here  was  supported  in  part  by  the  Na8onal  Science  Founda8on  under  DRK-­‐12  Awards    #1154355  and  #1207945.  Any  opinions,  findings,  and  conclusions  or  recommenda8ons  expressed  in  this  material  are  those  of  the  authors  and  do  not  necessarily  reflect  the  views  of  the  Na8onal  Science  Founda8on.        

Early  Algebra    in  the  Era  of  Common  Core  

Maria  Blanton  Angela  Murphy  Gardiner  

Bárbara    Brizuela  Katie  Sawrey  Ashley  Newman-­‐Owens      

Eric  Knuth  Ana  Stephens  Isil  Isler        

The  research  reported  here  was  supported  in  part  by  the  Na8onal  Science  Founda8on  under  DRK-­‐12  Awards    #1154355  and  #1207945.  Any  opinions,  findings,  and  conclusions  or  recommenda8ons  expressed  in  this  material  are  those  of  the  authors  and  do  not  necessarily  reflect  the  views  of  the  Na8onal  Science  Founda8on.        

Trivia….  

Some  questions  you  might  ask…  

ì  What is early algebra?

ì  Why do we need to start this in Kindergarten?

ì  Won’t it be enough to teach arithmetic “really well” so that children will be ready for algebra in middle grades?

ì  Does it really matter?

ì  How can elementary students be expected to do the kinds of mathematics with which older students struggle?

Why do we need to start this in Kindergarten?

America’s  “Algebra  Problem”  

ì  Around 1900: “shopkeeper arithmetic” for all; algebra for the elite (3%-5% of school population)

ì  Introduction of“Algebra for all”

ì  Result:“Arithmetic-then-algebra” approach leading to abrupt introduction of high school algebra, resulting in high student failure/dropout

 

“Algebra  has  become  an  academic  passport  for  passage  into  virtually  every  avenue  of  the  job  market  and  every  street  of  schooling.  With  too  few  excep8ons,  students  who  do  not  study  algebra  are  therefore  relegated  to  menial  jobs  and  are  unable  oUen  to  even  undertake  training  programs  for  jobs  in  which  they  might  be  interested.  They  are  sorted  out  of  the  opportuni8es  to  become  produc8ve  ci8zens  in  our  society.”    Alan  Schoenfeld,  1995    

Some  (more)  reasons  we  need  to  do  “algebra”  well…  

ì  Successfully completing Algebra 2 is the best leading indicator of college graduation*

ì  53% of college students take remedial mathematics or English; most of them will not graduate*

ì  Lack of sufficient math preparation is a significant factor in students not pursuing/completing technical majors*

ì  “Children’s  ini8al  skill  levels  predict  their  later  learning  in  many  domains,  but  the  rela8on  between  early  math  knowledge  and  future  math  achievement  is…roughly  twice  as  strong  as  the  rela8on  between  early  and  later  reading  achievement”.  (Diamond  et  al.,  2013)  

* Courtesy of Richard Schaar, Texas Instruments, keynote address at MAA/NSF Algebra Conference (sources: NSF, NCES, Tapping America’s Potential)  

   

Page 2: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

2  

The  response  to  “America’s  Algebra  Problem”:  Algebra  as  a  K-­‐12  Strand  of  Thinking:    

 

(1989)

(2000)

(2006)

COMMON CORE State  Standards  Ini8a8ve    

1989 2000 2006 2010 What  is  early  algebra?

What  is  early  algebra  NOT?  

ì It is not pre-algebra

ì It is not “algebra early”

What  is  early  algebra?  

Four Key Practices

ì  Generalizing mathematical relationships and structure

ì  Representing generalizations in diverse ways (e.g. words, variable notation, tables, graphs, pictures)

ì  Justifying generalizations

ì  Reasoning with generalizations as mathematical objects

Does  early  algebra  ma_er?  

Project  LEAP                (National  Science  Foundation)      

ì  Developed  a  grades  3-­‐5  early  algebra  curricular  progression  focusing  on  core  content  domains:    1.  generalized  arithme8c  

2.  equivalence,  expressions,  equa8ons,  inequali8es  

3.  func8onal  thinking  

4.  variable  

ì  Developed  validated  assessments  to  measure  learning  along  this  progression  

Project  LEAP  

ì  300  students  in  grades  3-­‐5  from  one  school  district;  

ì  ~20  one-­‐hour  early  algebra  lessons  (one  per  week)  taught  by  one  member  of  the  research  team;  

ì  Same  (grade  3  level)  lesson  taught  at  each  grade;  

ì  One-­‐hour  assessment  given  as  pre/post  measure.  

 

Project  LEAP  

ì  No  significant  differences  on  overall  performance  at  pre-­‐test  between  experimental  and  control  students  at  each  of  grades  3-­‐5,  across  all  content  domains;  

ì  At  post-­‐test,  experimental  students  significantly  outperformed  control  students  at  each  of  grades  3-­‐5  (most  significant  at  grade  3);  

 

A  closer  look  at  third-­‐grade  students’  performance  and  strategy  use  

!

Page 3: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

3  

Project  LEAP        

ì Rela8onal  thinking  (children’s  understanding  of  the  equal  sign)  

Project  LEAP      relational  thinking    

ì  Item  1a  

Fill  in  the  blank  with  the  value  that  makes  the  following  number  sentence  true.  How  did  you  get  your  answer?  

7  +  3  =  ____  +  4    Why?    

ì  Item  2b  

Circle  True  or  False  and  explain  your  choice.  

57  +  22  =  58  +  21    True                      False                                    

How  do  you  know?  

Project  LEAP      relational  thinking    

ì  Sta8s8cally  significant  gains  in  experimental  students’  ability  to  correctly  interpret  and  to  think  rela8onally  about  the  equal  sign.    

ì  Control  students  con8nued  to  exhibit  misconcep8ons  (opera8onal  thinking)  and  showed  no  evidence  of  rela8onal  thinking.  

Project  LEAP      

ì Represen8ng  unknown  quan88es  

Project  LEAP    representing  unknown  quantities  

ì  Sta8s8cally  significant  gains  in  experimental  students’  ability  to  correctly  interpret  and  to  think  rela8onally  about  the  equal  sign.    

ì  Control  students  con8nued  to  exhibit  misconcep8ons  (opera8onal  thinking)  and  showed  no  evidence  of  rela8onal  thinking.  

Project  LEAP    representing  unknown  quantities  

7.  Tim  and  Angela  each  have  a  piggy  bank.  They  know  that  their  piggy  banks  each  contain  the  same  number  of  pennies,  but  they  don’t  know  how  many.  Angela  also  has  8  pennies  in  her  hand.  

a)  How  would  you  describe  the  number  of  pennies  Tim  has?  

b)  How  would  you  describe  the  total  number  of  pennies  Angela  has?  

c)  Angela  and  Tim  combine  all  of  their  pennies  to  buy  some  candy.  How  would  you  describe  the  total  number  of  pennies  they  have?  

 

 

Project  LEAP    representing  unknown  quantities  

ì  Sta8s8cally  significant  gains  in  experimental  students’  ability  to  represent  unknown  quan88es  with  variable  nota8on  and  to  represent  related  quan88es  in  meaningful  ways.    

ì  No  controls  were  able  to  use  variables  in  any  way  pre  or  post.  

Project  LEAP    recognizing  &  representing  arithmetic  structure  

Marcy’s  teacher  asks  her  to  figure  out  “23  +  15.”  She  adds  the  two  numbers  and  gets  38.  The  teacher  then  asks  her  to  figure  out  “15  +  23.”  Marcy  already  knows  the  answer.  

a)  How  does  she  know?  

b)  Do  you  think  this  will  work  for  all  numbers?    

Project  LEAP    recognizing  &  representing  arithmetic  structure  

recognizing  &  represen8ng  arithme8c  structure  

Page 4: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

4  

Project  LEAP    recognizing  &  representing  arithmetic  structure  

6.  Evelyn  computes  the  following:          

8  –  8  =  ___                    12  –  12  =___  

She  gets  an  answer  of  0  each  8me.  She  starts  to  thinks  that  any8me  you  subtract  a  number  from  itself,  the  answer  is  0.  Which  of  the  following  best  describes  her  thinking?  Circle  your  answer.    

a)  a  +  0  =  0                    

b)  a  =  b  +  a  +  b                      

c)  a  –  a  =  0                    

d)  a  ×  0  =  0  

Project  LEAP    recognizing  &  representing  arithmetic  structure  

ì  Experimental  students  were  more  likely  to  recognize  the  underlying  structure  of  fundamental  proper8es  and  use  this  as  a  basis  for  jus8fying  generaliza8ons;  

ì  Experimental  students  were  be_er  able  to  interpret  equa8ons  with  variable  nota8ons  and  navigate  between  representa8ons  (natural  language  and  symbolic);  

ì  Experimental  students  were  more  likely  to  understand  that  a  generaliza8on  might  hold  over  a  broad  domain  of  numbers,  not  just  a  par8cular  instance.  

Project  LEAP      

recognizing  and  represen8ng  co-­‐varying  rela8onships  

!

Project  LEAP    recognizing  and  representing  co-­‐varying  relationships  

10.  Brady  is  having  his  friends  over  for  a  birthday  party.  He  wants  to  make  sure  he  has  a  seat  for  everyone.  He  has  square  tables.    

 

 

   

   

a)  If  Brady  keeps  joining  square  tables  in  this  way,  how  many  people  can  sit  at:  

3  tables?  4  tables?  5  tables?  Record  your  responses  in  the  table  below  and  fill  in  any  missing  informa8on:    

b)  Do  you  see  any  pa_erns  in  the  table?  Describe  them.  

c)  Find  a  rule  that  describes  the  rela8onship  between  the  number  of  tables  and  the  number  of  people  who  can  sit  at  the  tables.  Describe  your  rule  in  words.  

d)  Describe  your  rela8onship  using  variables.  What  do  your  variables  represent?  

e)  If  Brady  has  10  tables,  how  many  people  can  he  seat?  Show  how  you  got  your  answer.  

 

!

He  can  seat  4  people  at  one  square  table  in  the  following  way:  

If  he  joins  another  square  table  to  the  first  one,  he  can  seat  6  people:  

Project  LEAP    recognizing  and  representing  co-­‐varying  relationships  

ì  Experimental  students  significantly  outperformed  control  students  in  their  ability  to  iden8fy  and  describe  func8on  rules  in  words  or  variables;  

ì  Experimental  students  were  more  likely  to  choose  variables  than  words  to  represent  their  rule.  

!

In  one  year,  in  about  one  day  of  a  students’  life,  we  can  sta8s8cally  significantly  improve  children’s  algebraic  understanding  

!

Children’s  Understanding  of  Functions  (National  Science  Foundation)  

Ø  Grades  K  -­‐  2  

Ø  8  weeks  instruc8onal  interven8on  focused  on  algebraic  thinking  in  the  study  of  func8ons  

Ø  Two  30-­‐45  minute  lessons  each  week  (16  lessons  total)  

 

Growing  Train  

There  was  a  train  that  ran  the  same  route  everyday.    As  it  went  along,  it  picked  up  two  train  cars  at  each  stop.      

1.  How  many  train  cars  did  it  have  at  stop  1?  How  many  train  cars  did  it  have  at  stop  2?  How  many  train  cars  did  it  have  at  stop  3?  

2.  Organize  your  informa8on  in  a  func8on  table  (t-­‐chart).  Write  an  equa8on  that  shows  the  rela8onship  between  the  values  in  your  table  for  each  set  of  values.  

3.  Find  a  rela8onship  between  the  number  of  stops  and  the  total  number  of  cars  on  the  train.  Represent  your  rule  in  words  and  le_ers  (variable  nota8on).  

4.  If  we  count  the  engine,  how  would  this  affect  your  func8on  table?  How  would  this  affect  your  rule?  

1st-­‐Grader  and  the  Growing  Train  

ì  (video)  

Page 5: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

5  

1.  Make  sense  of  problems  and  persevere  in  solving  them.    

ì  “Monitor  and  evaluate  [her]  progress  and  change  course”  when  she  ini8ally  incorrectly  represented  an  arbitrary  number  of  train  cars;  

ì  Make  sense  of  regularity  in  problem  data  by  no8cing  structure  in  number  sentences;  

ì  Explain  the  meaning  of  parts  of  an  equa8on  (func8on  rule),  including  variables,  in  terms  of  the  problem  context;  

ì  Make  sense  of  data  in  func8on  tables  (t-­‐charts),  including  interpre8ng  these  data  to  find  problem  solu8ons,  such  as  how  to  represent  the  new  rela8onship  where  the  train  engine  is  counted.  

 

COMMON CORE MATHEMATICAL  PRACTICES  

2.  Reason  abstractly  and  quantitatively.  

ì  Make  sense  of  co-­‐varying  “quan88es  and  their  rela8onships  in  problem  situa8ons”  ì  Decontextualizing    

Ø  abstract  the  problem  situa8on  about  a  train  that  grows  in  a  specific,  numerical  way  (at  each  stop,  the  train  adds  2  more  cars)  and  represent  the  func8onal  rela8onship  in  a  generalized  symbolic  form;  

Ø   manipula8ng  symbols  as  objects  themselves,  “as  if  they  have  a  life  of  their  own”  (Meagan’s  use  of  her  original  func8on  rule  to  represent  the  rule  coun8ng  the  engine)  

ì  Contextualizing  –  explain  at  any  point  the  meaning  behind  the  symbols  used  to  represent  the  rela8onship  (‘v’  represents  the  number  of  stops  the  train  makes)  

COMMON CORE MATHEMATICAL  PRACTICES  

3.  Construct  viable  arguments  and  critique  the  reasoning  of  others.  

ì  Reason  induc8vely  about  data  (here,  a  set  of  number  sentences)  in  order  to  find  a  generalized  rela8onship  (func8on  rule);  

ì  Build  arguments  that  explain  the  correctness  of  a  generalized  rule  based  on  the  problem  context  from  which  data  arose  (e.g.,  “Whatever  number,  how  [sic]  many  stops  it  made,  if  you  doubled  it,  that’s  how  many  cars  it  would  have”.  ).  

COMMON CORE MATHEMATICAL  PRACTICES    

4.  Model  with  mathematics.  

ì  Write  number  sentences  (“addi8on  equa8ons”)  to  describe  rela8onships  between  specific  numbers  in  co-­‐varying  data;  

ì  Iden8fy  important  data  in  a  situa8on  and  map  their  rela8onship  using  tables  and  formulas;  

ì  Analyze  the  rela8onship  in  data  about  co-­‐varying  quan88es  and  draw  conclusions  about  a  generalized  rela8onship;  

ì  Interpret  results  (func8on  rule)  within  the  problem  context  as  a  way  to  make  sense  of  their  model  (e.g.,  does  the  model  accurately  reflect  the  situa8on?).  

COMMON CORE MATHEMATICAL  PRACTICES      

5.  Use  appropriate  tools  strategically.  

ì  Use  different  representa8ons  such  as  natural  language,  algebraic  nota8on,  and  tables  to  reason  about  co-­‐varying  rela8onship  and  navigate  between  representa8ons;  

ì  Use  of  tables  as  a  strategic  choice  to  organize  co-­‐varying  data.  

 

COMMON CORE MATHEMATICAL  PRACTICES      

6.  Attend  to  precision.  

ì  Understand  that  variable  nota8on  represents  a  quan8ty,  not  an  object  and  accurately  state  the  meaning  of  symbols  they  choose  (‘r’  represents  the  number  of  stops,  not  the  actual  stops);  

ì  Represent  func8on  rule  with  precision  (completeness  and  consistency  of  representa8on),  that  is,  as  an  equa8on  (‘R  +    R  =  V’),  not  an  expression  (‘R  +  R’)  or  in  syncopated  language  (“the  number  of  cars  is  R  +  R).  

COMMON CORE MATHEMATICAL  PRACTICES      

7.  Look  for  and  make  use  of  structure.  

ì  Able  to  discern  a  pa_ern  or  structure  in  co-­‐varying  quan88es;  

ì  Able  to  make  use  of  an  exis8ng  structure  (i.e.,  func8on  rule)  to  generate  and  represent  a  new  rela8onship.  

COMMON CORE MATHEMATICAL  PRACTICES      

8.  Look  for  and  express  regularity  in  repeated  reasoning.  

ì  No8ce  that  calcula8ons  are  repeated  in  number  sentences  expressing  a  rela8onship  between  two  co-­‐varying  values  and,  from  this,  abstract  the  func8on  rule  and  express  this  regularity  in  symbolic  nota8on  (“R  +  R  =  V”  or  “R  +  R  +  1  =  V”).  

COMMON CORE MATHEMATICAL  PRACTICES      

Closing  Thoughts  

Of  the  mathema8cal  content  in  grades  K-­‐5,  early  algebra  is  most  able  to  comprehensively  address  the  8  Mathema8cal  Prac8ces  of  the  Common  Core.  

Page 6: Early Algebra Math Summit v2 no video - Sas Institute · Early&Algebra&& in&the&Era&of&Common&Core& MariaBlanton ... Result:“Arithmetic-then-algebra” approach leading to abrupt

8/3/13  

6  

Closing  Thoughts  

If  we  don’t  adequately  invest  in  early  algebra…  

…we  will  likely  have  “algebra  early”    

Closing  Thoughts  

L + 2 = 1!

Closing  Thoughts  

We  need  to  teach  children  to  be  mathema8cally  fearless  

Closing  Thoughts  

ì  Child  cannot  learn  arithme8c  apart  from  early  algebra  

ì  Developing  children’s  algebraic  reasoning  requires  significant  professional  development  for  elementary  teachers  

ì  We  cannot  con8nue  to  priori8ze  literacy  in  the  elementary  grades  at  the  expense  of  mathema8cs    

Ques-ons?    

[email protected]