148
UNIVERSIDAD ALAS PERUANAS CARRERA: INGENIERIA CIVIL CURSO: ANALISIS ESTRUCTURAL II ALUMNO: GARCIA CONDORCALLO, ALAN EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ REL S 180 Paso 01 Barra 1 2 3 0.170 0.150 0.150 0.00197843137 0.003125 0.003125 280 280 280 2509980.0796 2509980.0796 2509980.0796 L (m) 6.00 5.00 6.32 Angulo (grados) 0 90 108.43 Grados (Rad) 0.00000000 1.57079633 1.89254688 Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura A (m²) Inercia (m 4 ) F´C (Kg/cm 2 ) E (Tn/m²) 1m 6m 2m 0.50m 5m 1 3 2 4 5 1 2 3 6 7 8 9 10 11 12 0.20m 0.20m 0.25m 0.60m 0.30m

E-PORTICO

Embed Size (px)

DESCRIPTION

diseño de portico exel

Citation preview

Page 1: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.001978431373 0.003125 0.003125

280 280 280

2509980.079602 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 2: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

TIPO DE FIGURA 4

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 0.3 r(m) 0.42 175 h(m) 0.60 A(m2) 0.282743339 r(m) 0.23 210 A(m2) 0.24 I(m4) 0.006361725 A(m2) 0.3769911184 280 I 0.0072 As 0.254469 I(m4) 0.0188495565 315 As 0.2 As 0.188495566 420

VIGA 1CO,CA 0 5A (m²) 0.213 1 2 3 4 5 6Inercia (m4) 0.00386 1 92382.53 0.00 0.00 -92382.53 0.00 0.00F´C (Kg/cm2) 210 2 0.00 806.35 2015.87 0.00 -806.35 2015.87E (Tn/m²) 2173706.51 3 0.00 2015.87 6719.58 0.00 -2015.87 3359.79L (m) 5.00 4 -92382.53 0.00 0.00 92382.53 0.00 0.00Angulo 0 5 0.00 -806.35 -2015.87 0.00 806.35 -2015.87Radianes 0 6 0.00 2015.87 3359.79 0.00 -2015.87 6719.58COS 1SEN 0

TIPO DE FIGURA 4

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

VIGA 2CO,CA 0 5A (m²) 0.213 7 8 9 10 11 12Inercia (m4) 0.004 7 92382.53 0.00 0.00 -92382.53 0.00 0.00F´C (Kg/cm2) 210.000 8 0.00 806.35 2015.87 0.00 -806.35 2015.87E (Tn/m²) 2173706.512 9 0.00 2015.87 6719.58 0.00 -2015.87 3359.79L (m) 5.00 10 -92382.53 0.00 0.00 92382.53 0.00 0.00Angulo 0 11 0.00 -806.35 -2015.87 0.00 806.35 -2015.87Radianes 0.00 12 0.00 2015.87 3359.79 0.00 -2015.87 6719.58COS 1SEN 0

TIPO DE FIGURA 4

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 3

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

Page 3: E-PORTICO

1 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

VIGA 3CO,CA 0 5A (m²) 0.213 13 14 15 16 17 18Inercia (m4) 0.004 13 92382.53 0.00 0.00 -92382.53 0.00 0.00F´C (Kg/cm2) 210.000 14 0.00 806.35 2015.87 0.00 -806.35 2015.87E (Tn/m²) 2173706.512 15 0.00 2015.87 6719.58 0.00 -2015.87 3359.79L (m) 5.00 16 -92382.53 0.00 0.00 92382.53 0.00 0.00Angulo 0 17 0.00 -806.35 -2015.87 0.00 806.35 -2015.87Radianes 0.00 18 0.00 2015.87 3359.79 0.00 -2015.87 6719.58COS 1SEN 0

TIPO DE FIGURA 6

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 4CO,CA 3 0A (m²) 0.813 1 2 3 7 8 9Inercia (m4) 0.037 1 35626.43 0.00 -53439.65 -35626.43 0.00 -53439.65F´C (Kg/cm2) 210.000 2 0.00 588712.18 0.00 0.00 -588712.18 0.00E (Tn/m²) 2173706.512 3 -53439.65 0.00 106879.29 53439.65 0.00 53439.65L (m) 3.00 7 -35626.43 0.00 53439.65 35626.43 0.00 53439.65Angulo 90 8 0.00 -588712.18 0.00 0.00 588712.18 0.00Radianes 1.57 9 -53439.65 0.00 53439.65 53439.65 0.00 106879.29COS 0SEN 1

TIPO DE FIGURA 6

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 5CO,CA 3 0A (m²) 0.813 7 8 9 13 14 15Inercia (m4) 0.037 7 35626.43 0.00 -53439.65 -35626.43 0.00 -53439.65F´C (Kg/cm2) 210.000 8 0.00 588712.18 0.00 0.00 -588712.18 0.00

Page 4: E-PORTICO

E (Tn/m²) 2173706.512 9 -53439.65 0.00 106879.29 53439.65 0.00 53439.65L (m) 3.00 13 -35626.43 0.00 53439.65 35626.43 0.00 53439.65Angulo 90 14 0.00 -588712.18 0.00 0.00 588712.18 0.00Radianes 1.57 15 -53439.65 0.00 53439.65 53439.65 0.00 106879.29COS 0SEN 1

TIPO DE FIGURA 6

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 6CO,CA 3 0A (m²) 0.813 13 14 15 19 20 21Inercia (m4) 0.037 13 35626.43 0.00 -53439.65 -35626.43 0.00 -53439.65F´C (Kg/cm2) 210.000 14 0.00 588712.18 0.00 0.00 -588712.18 0.00E (Tn/m²) 2173706.512 15 -53439.65 0.00 106879.29 53439.65 0.00 53439.65L (m) 3.00 19 -35626.43 0.00 53439.65 35626.43 0.00 53439.65Angulo 90 20 0.00 -588712.18 0.00 0.00 588712.18 0.00Radianes 1.57 21 -53439.65 0.00 53439.65 53439.65 0.00 106879.29COS 0SEN 1

TIPO DE FIGURA 2

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 0.4 r(m) 42 175 h(m) 0.60 A(m2) 0.502654825 r(m) 23 210 A(m2) 0.24 I(m4) 0.020106193 A(m2) 37.699111844 280 I 0.0072 As 0.45238934 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 7CO,CA 3 0A (m²) 0.503 4 5 6 10 11 12Inercia (m4) 0.020 4 19424.43 0.00 -29136.64 -19424.43 0.00 -29136.64F´C (Kg/cm2) 210.000 5 0.00 364208.02 0.00 0.00 -364208.02 0.00E (Tn/m²) 2173706.512 6 -29136.64 0.00 58273.28 29136.64 0.00 29136.64L (m) 3.00 10 -19424.43 0.00 29136.64 19424.43 0.00 29136.64Angulo 90 11 0.00 -364208.02 0.00 0.00 364208.02 0.00Radianes 1.57 12 -29136.64 0.00 29136.64 29136.64 0.00 58273.28COS 0SEN 1

TIPO DE FIGURA 2

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 0.4 r(m) 42 175 h(m) 0.60 A(m2) 0.502654825 r(m) 2

Page 5: E-PORTICO

3 210 A(m2) 0.24 I(m4) 0.020106193 A(m2) 37.699111844 280 I 0.0072 As 0.45238934 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 8CO,CA 3 0A (m²) 0.503 10 11 12 16 17 18Inercia (m4) 0.020 10 19424.43 0.00 -29136.64 -19424.43 0.00 -29136.64F´C (Kg/cm2) 210.000 11 0.00 364208.02 0.00 0.00 -364208.02 0.00E (Tn/m²) 2173706.512 12 -29136.64 0.00 58273.28 29136.64 0.00 29136.64L (m) 3.00 16 -19424.43 0.00 29136.64 19424.43 0.00 29136.64Angulo 90 17 0.00 -364208.02 0.00 0.00 364208.02 0.00Radianes 1.57 18 -29136.64 0.00 29136.64 29136.64 0.00 58273.28COS 0SEN 1

TIPO DE FIGURA 2

F`c 3 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 0.4 r(m) 42 175 h(m) 0.60 A(m2) 0.502654825 r(m) 23 210 A(m2) 0.24 I(m4) 0.020106193 A(m2) 37.699111844 280 I 0.0072 As 0.45238934 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 9CO,CA 3 0A (m²) 0.503 16 17 18 22 23 24Inercia (m4) 0.020 16 19424.43 0.00 -29136.64 -19424.43 0.00 -29136.64F´C (Kg/cm2) 210.000 17 0.00 364208.02 0.00 0.00 -364208.02 0.00E (Tn/m²) 2173706.512 18 -29136.64 0.00 58273.28 29136.64 0.00 29136.64L (m) 3.00 22 -19424.43 0.00 29136.64 19424.43 0.00 29136.64Angulo 90 23 0.00 -364208.02 0.00 0.00 364208.02 0.00Radianes 1.57 24 -29136.64 0.00 29136.64 29136.64 0.00 58273.28COS 0SEN 1

Page 6: E-PORTICO

1 2 3 4 5 6 7 8 91 184765.05 0.00 0.00 -92382.53 0.00 0.00 -92382.53 0.00 0.002 0.00 1612.70 0.00 0.00 -806.35 2015.87 0.00 -806.35 -2015.873 0.00 0.00 13439.15 0.00 -2015.87 3359.79 0.00 2015.87 3359.794 -92382.53 0.00 0.00 #REF! #REF! #REF! 0.00 0.00 0.005 0.00 -806.35 -2015.87 #REF! #REF! #REF! 0.00 0.00 0.006 0.00 2015.87 3359.79 #REF! #REF! #REF! 0.00 0.00 0.007 -92382.53 0.00 0.00 0.00 0.00 0.00 92382.53 0.00 0.008 0.00 -806.35 2015.87 0.00 0.00 0.00 0.00 806.35 2015.879 0.00 -2015.87 3359.79 0.00 0.00 0.00 0.00 2015.87 6719.58

10 0.00 0.00 0.00 #REF! #REF! #REF! 0.00 0.00 0.0011 0.00 0.00 0.00 #REF! #REF! #REF! 0.00 0.00 0.0012 0.00 0.00 0.00 #REF! #REF! #REF! 0.00 0.00 0.00

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

Page 7: E-PORTICO

Paso 04

1 0 TN2 -7.5 TN3 -6.25 TN-M4 0 TN5 -14 TN6 -0.125 TN-M

Paso 05

1 2 3 4 5 61 #REF! #REF! #REF! #REF! #REF! #REF!2 #REF! #REF! #REF! #REF! #REF! #REF!3 #REF! #REF! #REF! #REF! #REF! #REF!4 #REF! #REF! #REF! #REF! #REF! #REF!5 #REF! #REF! #REF! #REF! #REF! #REF!6 #REF! #REF! #REF! #REF! #REF! #REF!

7 8 9 10 11 121 -92382.53 0.00 0.00 0.00 0.00 0.002 0.00 -806.35 -2015.87 0.00 0.00 0.003 0.00 2015.87 3359.79 0.00 0.00 0.004 0.00 0.00 0.00 #REF! #REF! #REF!5 0.00 0.00 0.00 #REF! #REF! #REF!6 0.00 0.00 0.00 #REF! #REF! #REF!

Paso 06

1 #REF! M 7 #REF! TN2 #REF! M 8 #REF! TN3 #REF! RAD 9 #REF! TN-M4 #REF! M 10 #REF! TN5 #REF! M 11 #REF! TN6 #REF! RAD 12 #REF! TN-M

7 #REF! TN8 #REF! TN9 #REF! TN-M

10 #REF! TN11 #REF! TN12 #REF! TN-M

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑸𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑸𝒓}𝐂omplementario =

{𝑫𝒓} =

{𝑲𝒇𝒓} ={𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑹} =

Page 8: E-PORTICO
Page 9: E-PORTICO

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion

d

a

b

Page 10: E-PORTICO

a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Page 11: E-PORTICO

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)

Page 12: E-PORTICO

c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Page 13: E-PORTICO

10

0.000.000.00

#REF!#REF!#REF!

0.000.000.00

#REF!#REF!#REF!

Page 14: E-PORTICO

789

101112

0.0000.0000.000#REF!#REF!#REF!

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 15: E-PORTICO
Page 16: E-PORTICO

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.3

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.25 c(m) 0.3 c(m) 0.30.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.5

0.2125 A(m2) 0.49 A(m2) 0.690.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1770833333333 As 0.25 As 0.375

YC= 0.6 M0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.3

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.25 c(m) 0.3 c(m) 0.30.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.5

0.2125 A(m2) 0.49 A(m2) 0.690.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1770833333333 As 0.25 As 0.375

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 6

c

d

a b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

Page 17: E-PORTICO

0.6 a(m) 0.3 a(m) 0.30.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.25 c(m) 0.3 c(m) 0.30.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.5

0.2125 A(m2) 0.49 A(m2) 0.690.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1770833333333 As 0.25 As 0.375

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.750.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.750.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

a a

a a

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

Page 18: E-PORTICO

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.750.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.750.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.75

a a

a a

b

c

a

d

b

c

a

d

a a

b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

Page 19: E-PORTICO

0.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

1

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.25

0.25 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.750.25 c(m) 0.3 c(m) 0.250.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1

0.2125 A(m2) 0.49 A(m2) 0.81250.0038641237745 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.036876860.1770833333333 As 0.25 As 0.20833333

YC= 0.600 M 0.0640625

0.3014705882353 INERCIA TOTAL 0.0364 m4

a a

a a

b

c

a

d

b

c

a

d

Page 20: E-PORTICO

11 12

0.00 0.000.00 0.000.00 0.00

#REF! #REF!#REF! #REF!#REF! #REF!

0.00 0.000.00 0.000.00 0.00

#REF! #REF!#REF! #REF!#REF! #REF!

Page 21: E-PORTICO

0.000 M0.000 M0.000 RAD0.000 M0.000 M0.000 RAD

COMPROBACION#REF!

0-7.5

-6.25#REF!#REF!#REF!

Datos del MEP CON SU SIGNO

7 0 TN8 0 TN9 0 TN-M

10 0 TN11 0 TN12 0 TN-M

{𝑸𝒇} − {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 22: E-PORTICO

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

L 1ITEM A Y AY I d Ad2

Page 23: E-PORTICO

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

Page 24: E-PORTICO

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

Page 25: E-PORTICO

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

L 1ITEM A Y AY I d Ad2

1 0.25 0.5 0.125 0.020833 -0.161 0.006

2 0.188 0.125 0.0234375 0.000977 0.214 0.009

0.438 0.1484375 0.02181 0.015

YC= 0.339 M

INERCIA TOTAL 0.0368768601 m4

Page 26: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.001978431373 0.003125 0.003125

280 280 280

2509980.079602 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 27: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

TIPO DE FIGURA 1

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.20 r(m) 0.3 r(m) 0.42 175 h(m) 0.30 A(m2) 0.282743339 r(m) 0.23 210 A(m2) 0.06 I(m4) 0.006361725 A(m2) 0.3769911184 280 I 0.00045 As 0.254469 I(m4) 0.0188495565 315 As 0.05 As 0.188495566 420

VIGA 1CO,CA 0 4A (m²) 0.060 4 5 6 1 2 3Inercia (m4) 0.00045 4 45000.00 0.00 0.00 -45000.00 0.00 0.00F´C (Kg/cm2) 280 5 0.00 253.12 506.25 0.00 -253.12 506.25E (Tn/m²) 3000000.00 6 0.00 506.25 1350.00 0.00 -506.25 675.00L (m) 4.00 1 -45000.00 0.00 0.00 45000.00 0.00 0.00Angulo 0 2 0.00 -253.12 -506.25 0.00 253.12 -506.25Radianes 0 3 0.00 506.25 675.00 0.00 -506.25 1350.00COLUMNA 2CO,CA 4 0A (m²) 0.060 7 8 9 1 2 3Inercia (m4) 0.00045 7 253.12 0.00 -506.25 -253.12 0.00 -506.25F´C (Kg/cm2) 280.000 8 0.00 45000.00 0.00 0.00 -45000.00 0.00E (Tn/m²) 3000000.000 9 -506.25 0.00 1350.00 506.25 0.00 675.00L (m) 4.00 1 -253.12 0.00 506.25 253.12 0.00 506.25Angulo 90 2 0.00 -45000.00 0.00 0.00 45000.00 0.00Radianes 1.57 3 -506.25 0.00 675.00 506.25 0.00 1350.00

1 2 3 4 5 6 7 8 91 45253.13 0.00 506.25 -45000.00 0.00 0.00 -253.12 0.00 506.252 0.00 45253.13 -506.25 0.00 -253.12 -506.25 0.00 -45000.00 0.003 506.25 -506.25 2700.00 0.00 506.25 675.00 -506.25 0.00 675.004 -45000.00 0.00 0.00 45000.00 0.00 0.00 0.00 0.00 0.005 0.00 -253.12 506.25 0.00 253.12 506.25 0.00 0.00 0.006 0.00 -506.25 675.00 0.00 506.25 1350.00 0.00 0.00 0.007 -253.12 0.00 -506.25 0.00 0.00 0.00 253.12 0.00 -506.258 0.00 -45000.00 0.00 0.00 0.00 0.00 0.00 45000.00 0.009 506.25 0.00 675.00 0.00 0.00 0.00 -506.25 0.00 1350.00

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

Page 28: E-PORTICO

Paso 04

1 0 TN2 -6 TN3 1.667 TN-M

Paso 05

1 2 3 0 0 01 2.214447E-05 -4.65473E-08 -4.16082E-062 -4.65473E-08 2.214447E-05 4.160816E-063 -4.16082E-06 4.160816E-06 0.000371931

4 5 6 7 8 91 -45000.00 0.00 0.00 -253.12 0.00 506.252 0.00 -253.12 -506.25 0.00 -45000.00 0.003 0.00 506.25 675.00 -506.25 0.00 675.00

Paso 06

1 -6.6568E-06 M 4 0.29955579 TN2 -0.000125931 M 5 0.33311701 TN3 0.000595044 RAD 6 0.46540683 TN-M0 M 7 -0.29955579 TN0 M 8 5.66688299 TN0 RAD 9 0.39828439 TN-M

4 0.299555793 TN5 4.333117011 TN6 3.132406826 TN-M7 -2.299555793 TN8 5.666882989 TN9 2.39828439 TN-M

-253 0 -506.2 -20 -45000 0 0

506.2 0 675 2

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑸𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑸𝒓}𝐂omplementario =

{𝑫𝒓} =

{𝑲𝒇𝒓} ={𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑹} =

Page 29: E-PORTICO
Page 30: E-PORTICO

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

d

a

b

Page 31: E-PORTICO

456789

0.0000.0000.000

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 32: E-PORTICO
Page 33: E-PORTICO

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.30.2 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.2 c(m) 0.3 c(m) 0.3

0.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.50.17 A(m2) 0.49 A(m2) 0.69

0.0019784313725 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1416666666667 As 0.25 As 0.375

YC= 0.6 M0.041

0.2411764705882 INERCIA TOTAL 0.0364 m4

c

d

a b

c

a

d

b

c

a

d

bcad b ca d

Page 34: E-PORTICO

0.000 M0.000 M0.000 RAD0.000 M0.000 M0.000 RAD

COMPROBACION1

0.000-6.0001.667

Datos del MEP CON SU SIGNO

4 0 TN5 4 TN6 2.667 TN-M7 -2 TN8 0 TN9 2 TN-M

{𝑸𝒇} − {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 35: E-PORTICO

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

Page 36: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.001978431373 0.003125 0.003125

280 280 280

2509980.079602 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 37: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

TIPO DE FIGURA 1

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 0.3 r(m) 0.42 175 h(m) 0.60 A(m2) 0.282743339 r(m) 0.23 210 A(m2) 0.24 I(m4) 0.006361725 A(m2) 0.3769911184 280 I 0.0072 As 0.254469 I(m4) 0.0188495565 315 As 0.2 As 0.188495566 420

VIGA 1CO,CA 0 5A (m²) 0.240 1 2 3 4 5 6Inercia (m4) 0.00720 1 120479.04 0.00 0.00 -120479.04 0.00 0.00F´C (Kg/cm2) 280 2 0.00 1734.90 4337.25 0.00 -1734.90 4337.25E (Tn/m²) 2509980.08 3 0.00 4337.25 14457.49 0.00 -4337.25 7228.74L (m) 5.00 4 -120479.04 0.00 0.00 120479.04 0.00 0.00Angulo 0 5 0.00 -1734.90 -4337.25 0.00 1734.90 -4337.25Radianes 0 6 0.00 4337.25 7228.74 0.00 -4337.25 14457.49COS 1SEN 0

TIPO DE FIGURA 1

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.40 r(m) 1 r(m) 42 175 h(m) 0.60 A(m2) 3.141592654 r(m) 23 210 A(m2) 0.24 I(m4) 0.785398163 A(m2) 37.699111844 280 I 0.0072 As 2.82743339 I(m4) 188.49555925 315 As 0.2 As 18.84955596 420

COLUMNA 2CO,CA 3 0A (m²) 0.240 7 8 9 1 2 3Inercia (m4) 0.007 7 8031.94 0.00 -12047.90 -8031.94 0.00 -12047.90F´C (Kg/cm2) 280.000 8 0.00 200798.41 0.00 0.00 -200798.41 0.00E (Tn/m²) 2509980.080 9 -12047.90 0.00 24095.81 12047.90 0.00 12047.90L (m) 3.00 1 -8031.94 0.00 12047.90 8031.94 0.00 12047.90Angulo 90 2 0.00 -200798.41 0.00 0.00 200798.41 0.00Radianes 1.57 3 -12047.90 0.00 12047.90 12047.90 0.00 24095.81COLUMNA 3CO,CA 3 0A (m²) 0.240 10 11 12 4 5 6Inercia (m4) 0.007 10 8031.94 0.00 -12047.90 -8031.94 0.00 -12047.90F´C (Kg/cm2) 280 11 0.00 200798.41 0.00 0.00 -200798.41 0.00E (Tn/m²) 2509980.08 12 -12047.90 0.00 24095.81 12047.90 0.00 12047.90L (m) 3.00 4 -8031.94 0.00 12047.90 8031.94 0.00 12047.90Angulo 90 5 0.00 -200798.41 0.00 0.00 200798.41 0.00Radianes 1.57 6 -12047.90 0.00 12047.90 12047.90 0.00 24095.81

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

Page 38: E-PORTICO

1 2 3 4 5 6 7 8 91 128510.98 0.00 12047.90 -120479.04 0.00 0.00 -8031.94 0.00 12047.902 0.00 202533.30 4337.25 0.00 -1734.90 4337.25 0.00 -200798.41 0.003 12047.90 4337.25 38553.29 0.00 -4337.25 7228.74 -12047.90 0.00 12047.904 -120479.04 0.00 0.00 128510.98 0.00 12047.90 0.00 0.00 0.005 0.00 -1734.90 -4337.25 0.00 202533.30 -4337.25 0.00 0.00 0.006 0.00 4337.25 7228.74 12047.90 -4337.25 38553.29 0.00 0.00 0.007 -8031.94 0.00 -12047.90 0.00 0.00 0.00 8031.94 0.00 -12047.908 0.00 -200798.41 0.00 0.00 0.00 0.00 0.00 200798.41 0.009 12047.90 0.00 12047.90 0.00 0.00 0.00 -12047.90 0.00 24095.81

10 0.00 0.00 0.00 -8031.94 0.00 -12047.90 0.00 0.00 0.0011 0.00 0.00 0.00 0.00 -200798.41 0.00 0.00 0.00 0.0012 0.00 0.00 0.00 12047.90 0.00 12047.90 0.00 0.00 0.00

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

Page 39: E-PORTICO

Paso 04

1 0 TN2 -7.5 TN3 -6.25 TN-M4 0 TN5 -14 TN6 -0.125 TN-M

Paso 05

1 2 3 4 5 61 0.000105443 1.16487E-06 -2.82175E-05 0.000101351 -1.16487E-06 -2.66435E-052 1.16487E-06 4.9708E-06 -7.7658E-07 1.16487E-06 9.318956E-09 -7.7658E-073 -2.82175E-05 -7.7658E-07 3.455163E-05 -2.66435E-05 7.765797E-07 2.022402E-064 0.000101351 1.16487E-06 -2.66435E-05 0.000105443 -1.16487E-06 -2.82175E-055 -1.16487E-06 9.318956E-09 7.765797E-07 -1.16487E-06 4.9708E-06 7.765797E-076 -2.66435E-05 -7.7658E-07 2.022402E-06 -2.82175E-05 7.765797E-07 3.455163E-05

7 8 9 10 11 121 -8031.94 0.00 12047.90 0.00 0.00 0.002 0.00 -200798.41 0.00 0.00 0.00 0.003 -12047.90 0.00 12047.90 0.00 0.00 0.004 0.00 0.00 0.00 -8031.94 0.00 12047.905 0.00 0.00 0.00 0.00 -200798.41 0.006 0.00 0.00 0.00 -12047.90 0.00 12047.90

Paso 06

1 0.000187262 M 7 1.16150442 TN2 -3.24608E-05 M 8 6.51807125 TN3 -0.000221248 RAD 9 -0.4094679 TN-M4 0.000177621 M 10 -1.16150442 TN5 -7.46118E-05 M 11 14.9819288 TN6 -2.20067E-05 RAD 12 1.87482413 TN-M

7 1.161504425 TN8 6.518071245 TN9 -0.409467904 TN-M

10 -1.161504425 TN11 14.98192875 TN12 1.874824131 TN-M

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑸𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑸𝒓}𝐂omplementario =

{𝑫𝒓} =

{𝑲𝒇𝒓} ={𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑹} =

Page 40: E-PORTICO
Page 41: E-PORTICO

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

d

a

b

Page 42: E-PORTICO

10

0.000.000.00

-8031.940.00

-12047.900.000.000.00

8031.940.00

-12047.90

Page 43: E-PORTICO

789

101112

0.0000.0000.0000.0000.0000.000

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 44: E-PORTICO
Page 45: E-PORTICO

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.30.2 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.2 c(m) 0.3 c(m) 0.3

0.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.50.17 A(m2) 0.49 A(m2) 0.69

0.0019784313725 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1416666666667 As 0.25 As 0.375

YC= 0.6 M0.041

0.2411764705882 INERCIA TOTAL 0.0364 m4

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.30.2 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.2 c(m) 0.3 c(m) 0.3

0.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.50.17 A(m2) 0.49 A(m2) 0.69

0.0019784313725 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1416666666667 As 0.25 As 0.375

YC= 0.600 M 0.041

0.2411764705882 INERCIA TOTAL 0.0364 m4

c

d

a b

c

a

d

b

c

a

d

b

c

a

d

b

c

a

d

bcad b ca d

Page 46: E-PORTICO

11 12

0.00 0.000.00 0.000.00 0.000.00 12047.90

-200798.41 0.000.00 12047.900.00 0.000.00 0.000.00 0.000.00 -12047.90

200798.41 0.000.00 24095.81

Page 47: E-PORTICO

0.000 M0.000 M0.000 RAD0.000 M0.000 M0.000 RAD

COMPROBACION1

0-7.5

-6.250

-14-0.125

Datos del MEP CON SU SIGNO

7 0 TN8 0 TN9 0 TN-M

10 0 TN11 0 TN12 0 TN-M

{𝑸𝒇} − {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 48: E-PORTICO

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

Page 49: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.001978431373 0.003125 0.003125

280 280 280

2509980.079602 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 50: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

TIPO DE FIGURA 4

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(m) 0.30 r(m) 0.3 r(m) 0.42 175 h(m) 0.15 A(m2) 0.282743339 r(m) 0.23 210 A(m2) 0.045 I(m4) 0.006361725 A(m2) 0.3769911184 280 I 0.000084375 As 0.254469 I(m4) 0.0188495565 315 As 0.0375 As 0.188495566 420

BARRA 1CO,CA 0 6A (m²) 0.170 1 2 3 4 5 6Inercia (m4) 0.00198 1 71116.10 0.00 0.00 -71116.10 0.00 0.00F´C (Kg/cm2) 280 2 0.00 275.88 827.64 0.00 -275.88 827.64E (Tn/m²) 2509980.08 3 0.00 827.64 3310.55 0.00 -827.64 1655.27L (m) 6.00 4 -71116.10 0.00 0.00 71116.10 0.00 0.00Angulo 0 5 0.00 -275.88 -827.64 0.00 275.88 -827.64Radianes 0 6 0.00 827.64 1655.27 0.00 -827.64 3310.55BARRA 2CO,CA 5 0A (m²) 0.150 7 8 9 1 2 3Inercia (m4) 0.003 7 752.99 0.00 -1882.49 -752.99 0.00 -1882.49F´C (Kg/cm2) 280.000 8 0.00 75299.40 0.00 0.00 -75299.40 0.00E (Tn/m²) 2509980.080 9 -1882.49 0.00 6274.95 1882.49 0.00 3137.48L (m) 5.00 1 -752.99 0.00 1882.49 752.99 0.00 1882.49Angulo 90 2 0.00 -75299.40 0.00 0.00 75299.40 0.00Radianes 1.57 3 -1882.49 0.00 3137.48 1882.49 0.00 6274.95BARRA 3CO,CA 6 2A (m²) 0.150 10 11 12 4 5 6Inercia (m4) 0.003 10 6287.79 -17747.20 -1116.18 -6287.79 17747.20 -1116.18F´C (Kg/cm2) 280 11 -17747.20 53613.67 -372.06 17747.20 -53613.67 -372.06E (Tn/m²) 2509980.08 12 -1116.18 -372.06 4960.78 1116.18 372.06 2480.39L (m) 6.32 4 -6287.79 17747.20 1116.18 6287.79 -17747.20 1116.18Angulo 108 5 17747.20 -53613.67 372.06 -17747.20 53613.67 372.06Radianes 1.89 6 -1116.18 -372.06 2480.39 1116.18 372.06 4960.78

1 2 3 4 5 6 7 8 91 71869.10 0.00 1882.49 -71116.10 0.00 0.00 -752.99 0.00 1882.492 0.00 75575.28 827.64 0.00 -275.88 827.64 0.00 -75299.40 0.003 1882.49 827.64 9585.50 0.00 -827.64 1655.27 -1882.49 0.00 3137.484 -71116.10 0.00 0.00 77403.90 -17747.20 1116.18 0.00 0.00 0.005 0.00 -275.88 -827.64 -17747.20 53889.55 -455.58 0.00 0.00 0.006 0.00 827.64 1655.27 1116.18 -455.58 8271.33 0.00 0.00 0.007 -752.99 0.00 -1882.49 0.00 0.00 0.00 752.99 0.00 -1882.498 0.00 -75299.40 0.00 0.00 0.00 0.00 0.00 75299.40 0.009 1882.49 0.00 3137.48 0.00 0.00 0.00 -1882.49 0.00 6274.95

10 0.00 0.00 0.00 -6287.79 17747.20 -1116.18 0.00 0.00 0.0011 0.00 0.00 0.00 17747.20 -53613.67 -372.06 0.00 0.00 0.0012 0.00 0.00 0.00 1116.18 372.06 2480.39 0.00 0.00 0.00

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

Page 51: E-PORTICO

Paso 04

1 0.000 TN2 0.000 TN3 0.000 TN-M4 0.000 TN5 0.000 TN6 0.000 TN-M

Paso 05

1 2 3 4 5 61 0.001159254 4.416852E-06 -0.000178378 0.001152745 0.00037607 -9.95885E-052 4.416852E-06 1.327166E-05 -1.62291E-06 4.420659E-06 1.486021E-06 -1.51789E-063 -0.000178378 -1.62291E-06 0.000135726 -0.000176674 -5.61598E-05 -6.2514E-064 0.001152745 4.420659E-06 -0.000176674 0.001160274 0.000378565 -0.0001008085 0.00037607 1.486021E-06 -5.61598E-05 0.000378565 0.000142101 -3.21686E-056 -9.95885E-05 -1.51789E-06 -6.2514E-06 -0.000100808 -3.21686E-05 0.000134134

7 8 9 10 11 121 -752.99 0.00 1882.49 0.00 0.00 0.002 0.00 -75299.40 0.00 0.00 0.00 0.003 -1882.49 0.00 3137.48 0.00 0.00 0.004 0.00 0.00 0.00 -6287.79 17747.20 1116.185 0.00 0.00 0.00 17747.20 -53613.67 372.066 0.00 0.00 0.00 -1116.18 -372.06 2480.39

Paso 06

1 0 M 7 0 TN2 0 M 8 0 TN3 0 RAD 9 0 TN-M4 0 M 10 0 TN5 0 M 11 0 TN6 0 RAD 12 0 TN-M

7 0 TN8 0 TN9 0 TN-M

10 0 TN11 0 TN12 0 TN-M

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑸𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑸𝒓}𝐂omplementario =

{𝑫𝒓} =

{𝑲𝒇𝒓} ={𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑹} =

Page 52: E-PORTICO
Page 53: E-PORTICO

Seccion a(m)b(m)c(m)d(m)

A(m2)I(m4)

As

MxYg

10

0.000.000.00

-6287.7917747.20-1116.18

0.000.000.00

6287.79-17747.20

-1116.18

d

a

b

dab

dab

Page 54: E-PORTICO

789

101112

0.0000.0000.0000.0000.0000.000

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 55: E-PORTICO
Page 56: E-PORTICO

4 Seccion 5 ITEM A Y AY I d Ad2 Seccion 60.6 a(m) 0.3 a(m) 0.30.2 b(m) 0.4 1 0.3 0.5 0.15 0.025 0.1 0.003 b(m) 0.40.2 c(m) 0.3 c(m) 0.3

0.25 d(m) 1 2 0.12 0.85 0.102 0.0009 -0.25 0.0075 d(m) 1.50.17 A(m2) 0.49 A(m2) 0.69

0.0019784313725 I(m4) 0.0364 0.42 0.252 0.0259 0.0105 I(m4) 0.119380260.1416666666667 As 0.25 As 0.375

YC= 0.6 M0.041

0.2411764705882 INERCIA TOTAL 0.0364 m4

11 12

0.00 0.000.00 0.000.00 0.00

17747.20 1116.18-53613.67 372.06

-372.06 2480.390.00 0.000.00 0.000.00 0.00

-17747.20 -1116.1853613.67 -372.06

-372.06 4960.78

c

d

a b

c

a

d

b

c

a

d

cda bcad b ca d

cda bcad b ca d

Page 57: E-PORTICO

0.000 M0.000 M0.000 RAD0.000 M0.000 M0.000 RAD

COMPROBACION1

0.0000.0000.0000.0000.0000.000

Datos del MEP CON SIGNO CAMBIADO

7 0 TN8 0 TN9 0 TN-M

10 0 TN11 0 TN12 0 TN-M

{𝑸𝒇} − {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒓}𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒐 =

Page 58: E-PORTICO

L 1ITEM A Y AY I d Ad2

1 0.45 0.75 0.3375 0.084375 -0.126 0.007

2 0.12 0.15 0.018 0.0009 0.474 0.027

0.57 0.3555 0.085275 0.034

YC= 0.624 M

INERCIA TOTAL 0.1193802632 m4

Page 59: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.0019784314 0.003125 0.003125

280 280 280

2509980.0796 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 60: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

TIPO DE FIGURA 4

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(cm) 0.30 r(cm) 0.3 R(cm) 0.42 175 h(cm) 0.15 A(cm2) 0.282743339 r(cm) 0.23 210 A(cm2) 0.045 I(cm4) 0.006361725 A(cm2) 0.3769911184 280 I 0.000084375 As 0.254469 I(cm4) 0.0188495565 315 As 0.0375 As 0.188495566 420

BARRA 1CO,CA 0 6A (m²) 0.170 1 2 3 4 5 6Inercia (m4) 0.00198 1 71116.10 0.00 -827.64 -71116.10 0.00 0.00F´C (Kg/cm2) 280 2 0.00 275.88 827.64 0.00 -275.88 827.64E (Tn/m²) 2509980.08 3 -827.64 827.64 3310.55 0.00 -827.64 1655.27L (m) 6.00 4 -71116.10 0.00 0.00 71116.10 -275.88 0.00Angulo 0 5 0.00 -275.88 -827.64 -275.88 275.88 -827.64Radianes 0 6 0.00 827.64 1655.27 0.00 -827.64 3310.55COS 1SEN 0

TIPO DE FIGURA 1

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(cm) 0.30 r(cm) 1 R(cm) 42 175 h(cm) 0.50 A(cm2) 3.141592654 r(cm) 23 210 A(cm2) 0.15 I(cm4) 0.785398163 A(cm2) 37.699111844 280 I 0.003125 As 2.82743339 I(cm4) 188.49555925 315 As 0.125 As 18.84955596 420

BARRA 2CO,CA 5 0A (m²) 0.150 1 2 3 7 8 9Inercia (m4) 0.003 1 0.000 0.000 -1882.485 -752.994 0.000 -1882.485F´C (Kg/cm2) 280.000 2 0.000 75299.402 0.000 0.000 -75299.402 0.000E (Tn/m²) 2509980.080 3 -1882.485 0.000 6274.950 1882.485 0.000 3137.475L (m) 5.00 7 -752.994 0.000 1882.485 752.994 0.000 1882.485Angulo 90 8 0.000 -75299.402 0.000 0.000 75299.402 0.000Radianes 1.57 9 -1882.485 0.000 3137.475 1882.485 0.000 6274.950COS 0SEN 1

TIPO DE FIGURA 1

F`c 4 Rectangulo 1 Circulo 2 S. Tubular 31 140 b(cm) 0.30 r(cm) 1 R(cm) 4

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

Page 61: E-PORTICO

2 175 h(cm) 0.50 A(cm2) 3.141592654 r(cm) 23 210 A(cm2) 0.15 I(cm4) 0.785398163 A(cm2) 37.699111844 280 I 0.003125 As 2.82743339 I(cm4) 188.49555925 315 As 0.125 As 18.84955596 420

BARRA 3CO,CA 6 2A (m²) 0.150 4 5 6 10 11 12Inercia (m4) 0.003 4 5952.940 -17858.821 -1176.553 -6287.793 17747.204 -1116.176F´C (Kg/cm2) 280 5 -17858.821 53613.670 -372.059 17747.204 -53613.670 -372.059E (Tn/m²) 2509980.08 6 -1176.553 -372.059 4960.784 1116.176 372.059 2480.392L (m) 6.32 10 -6287.793 17747.204 1116.176 6287.793 -17741.166 1116.176Angulo 108 11 17747.204 -53613.670 372.059 -17741.166 53613.670 372.059Radianes 1.89 12 -1116.176 -372.059 2480.392 1116.176 372.059 4960.784COS 0SEN 1

1 2 3 4 5 6 7 8 9 10 11 121 71116.102 0.000 -2710.122 -71116.102 0.000 0.000 -752.994 0.000 -1882.485 0.000 0.000 0.0002 0.000 75575.281 827.637 0.000 -275.879 827.637 0.000 -75299.402 0.000 0.000 0.000 0.0003 -2710.122 827.637 9585.499 0.000 -827.637 1655.274 1882.485 0.000 3137.475 0.000 0.000 0.0004 -71116.102 0.000 0.000 77069.043 -18134.700 -1176.553 0.000 0.000 0.000 -6287.793 17747.204 -1116.1765 0.000 -275.879 -827.637 -18134.700 53889.549 -1199.696 0.000 0.000 0.000 17747.204 -53613.670 -372.0596 0.000 827.637 1655.274 -1176.553 -1199.696 8271.333 0.000 0.000 0.000 1116.176 372.059 2480.3927 -752.994 0.000 0.000 0.000 0.000 0.000 752.994 0.000 1882.485 0.000 0.000 0.0008 0.000 -75299.402 0.000 0.000 0.000 0.000 0.000 75299.402 0.000 0.000 0.000 0.0009 -1882.485 0.000 0.000 0.000 0.000 0.000 1882.485 0.000 6274.950 0.000 0.000 0.00010 0.000 0.000 -6287.793 -6287.793 17747.204 1116.176 0.000 0.000 0.000 6287.793 -17741.166 1116.17611 0.000 0.000 17747.204 17747.204 -53613.670 372.059 0.000 0.000 0.000 -17741.166 53613.670 372.05912 0.000 0.000 0.000 -1116.176 -372.059 2480.392 0.000 0.000 0.000 1116.176 372.059 4960.784

Page 62: E-PORTICO

Paso 04

1 2 3 4 5 6 9 7 8 10 11123456978101112

1 2.000 Tn 7 2.000 Tn2 -4.020 Tn 8 0.000 Tn3 -1.560 Tn 10 0.000 Tn4 0.000 Tn 11 0.000 Tn5 -10.980 Tn 12 0.000 Tn6 -0.020 Tn9 -2.000 Tn

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇} {𝒌𝒇𝒓}{𝒌𝒓𝒇} {𝒌𝒓𝒓}

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

{𝑸𝒇} =

{𝑫𝒓} =

Page 63: E-PORTICO

1 2 3 4 5 6 91 71116.102 0.000 -2710.122 -71116.102 0.000 0.000 -1882.4852 0.000 75575.281 827.637 0.000 -275.879 827.637 0.0003 -2710.122 827.637 9585.499 0.000 -827.637 1655.274 3137.4754 -71116.102 0.000 0.000 77069.043 -18134.700 -1176.553 0.0005 0.000 -275.879 -827.637 -18134.700 53889.549 -1199.696 0.0006 0.000 827.637 1655.274 -1176.553 -1199.696 8271.333 0.0009 -1882.485 0.000 0.000 0.000 0.000 0.000 6274.950

Paso 05

1 2 3 4 5 6 91 -0.000656942 2.229142E-06 -0.000190162 -0.000661057 -0.000227351 -8.91749E-05 -0.0001022 1.643969E-06 1.324914E-05 -4.70486E-07 1.642617E-06 5.930674E-07 -9.11893E-07 7.28434E-073 -0.000123256 -5.28124E-07 7.252313E-05 -0.000124081 -4.1493E-05 -3.81288E-05 -7.3238E-054 -0.00066109 2.231566E-06 -0.000191415 -0.000651079 -0.000223964 -8.70138E-05 -0.000102625 -0.000226632 7.931409E-07 -6.44392E-05 -0.000223229 -5.81587E-05 -2.73723E-05 -3.577E-056 -0.000102406 -7.87565E-07 -5.10406E-05 -0.000100323 -3.20489E-05 0.000112274 -5.2015E-069 -0.000197083 6.687426E-07 -5.70485E-05 -0.000198317 -6.82052E-05 -2.67525E-05 0.00012876

7 8 10 11 121 -752.994 0.000 0.000 0.000 0.0002 0.000 -75299.402 0.000 0.000 0.0003 1882.485 0.000 0.000 0.000 0.0004 0.000 0.000 -6287.793 17747.204 -1116.1765 0.000 0.000 17747.204 -53613.670 -372.0596 0.000 0.000 1116.176 372.059 2480.3929 1882.485 0.000 0.000 0.000 0.000

Paso 06

1 0.112315436 m2 0.001447443 m3 -0.182683952 m4 0.113071512 m5 0.036334364 m6 0.057765656 m9 -0.566624097 m

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑲𝒇𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑲𝒇𝒓} = {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒇} - {𝑲𝒇𝒓}∗{𝑫𝒓}=

Page 64: E-PORTICO

7 #VALUE! Tn8 #VALUE! Tn10 #VALUE! Tn11 #VALUE! Tn12 #VALUE! Tn

7 #VALUE! Tn8 #VALUE! Tn10 #VALUE! Tn11 #VALUE! Tn12 #VALUE! Tn

{𝑸𝒓}complemtario =

{𝑹} =

Page 65: E-PORTICO
Page 66: E-PORTICO

Seccion a(cm)b(cm)c(cm)d(cm)

A(cm2)I(cm4)

As

MxYg

Seccion a(cm)b(cm)c(cm)d(cm)

A(cm2)I(cm4)

As

MxYg

Seccion a(cm)

d

a

b

d

a

b

d

a

b

Page 67: E-PORTICO

b(cm)c(cm)d(cm)

A(cm2)I(cm4)

As

MxYg

Page 68: E-PORTICO

12

Page 69: E-PORTICO

-1505.9880.000

3764.9700.0000.0000.000

3764.970

1507.988-4.020

-3766.5300.000

-10.980-0.020

-3766.970

{𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒇} - {𝑲𝒇𝒓}∗{𝑫𝒓}=

Page 70: E-PORTICO
Page 71: E-PORTICO

4 Seccion 5 ITEM A Y AY I d Ad20.6 a(cm) 300.2 b(cm) 40 1 3000 50 150000 2500000 10 3000000.2 c(cm) 30

0.25 d(cm) 100 2 1200 85 102000 90000 -25 750000

0.17 A(cm2) 49000.0019784313725 I(cm4) 3640000 4200 252000 2590000 10500000.1416666666667 As 2500

YC= 60 cm0.041

0.2411764705882 INERCIA TOTAL 3640000 cm4

4 Seccion 5 ITEM A Y AY I d Ad20.6 a(cm) 300.2 b(cm) 40 1 3000 50 150000 2500000 10 3000000.2 c(cm) 30

0.25 d(cm) 100 2 1200 85 102000 90000 -25 750000

0.17 A(cm2) 49000.0019784313725 I(cm4) 3640000 4200 252000 2590000 10500000.1416666666667 As 2500

YC= 60 cm0.041

0.2411764705882 INERCIA TOTAL 3640000 cm4

4 Seccion 5 ITEM A Y AY I d Ad20.6 a(cm) 30

c

d

a b

c

a

d

c

d

a b

c

a

d

c

d

a b

c

a

d

Page 72: E-PORTICO

0.2 b(cm) 40 1 3000 50 150000 2500000 10 3000000.2 c(cm) 30

0.25 d(cm) 100 2 1200 85 102000 90000 -25 750000

0.17 A(cm2) 49000.0019784313725 I(cm4) 3640000 4200 252000 2590000 10500000.1416666666667 As 2500

YC= 60 cm0.041

0.2411764705882 INERCIA TOTAL 3640000 cm4

Page 73: E-PORTICO
Page 74: E-PORTICO
Page 75: E-PORTICO

L 100Seccion 6 ITEM A Y AY I d Ad2

a(cm) 30b(cm) 40 1 4500 75 337500 8437500 -12.632 718005.540c(cm) 30d(cm) 150 2 1200 15 18000 90000 47.368 ###

A(cm2) 6900I(cm4) 11938026.3 5700 355500 8527500 ###

As 3750YC= 62.3684211 cm

INERCIA TOTAL 11938026.3 cm4

L 100Seccion 6 ITEM A Y AY I d Ad2

a(cm) 30b(cm) 40 1 4500 75 337500 8437500 -12.632 718005.540c(cm) 30d(cm) 150 2 1200 15 18000 90000 47.368 ###

A(cm2) 6900I(cm4) 11938026.3 5700 355500 8527500 ###

As 3750YC= 62.3684211 cm

INERCIA TOTAL 11938026.3 cm4

L 100Seccion 6 ITEM A Y AY I d Ad2

a(cm) 30

b

c

a

d

b

c

a

d

b

c

a

d

Page 76: E-PORTICO

b(cm) 40 1 4500 75 337500 8437500 -12.632 718005.540c(cm) 30d(cm) 150 2 1200 15 18000 90000 47.368 ###

A(cm2) 6900I(cm4) 11938026.3 5700 355500 8527500 ###

As 3750YC= 62.3684211 cm

INERCIA TOTAL 11938026.3 cm4

Page 77: E-PORTICO
Page 78: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.240 0.071 0.126

0.368 0.000398 0.001257

210 210 210

2173706.5119 2173706.5119 2173706.5119

L (m) 6.00 4.00 7.00

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

4 Tn

3 Tn/m

2m

2m

3m

6m 2m2m

4m

Ø= 0.30m

Ø= 0.40m

1

3

2

2m

2m

3m

6m 2m2m

4m

4

5

1

2

7

8

10

11

3 6

9

12

0.20m

0.40m

0.30m

0.60m

Ø= 0.30m

Ø= 0.40m

0.20m

0.40m

0.30m

0.60m

Page 79: E-PORTICO

Angulo (grados) 0 270 270

Grados (Rad) 0.00000000 4.71238898 4.71238898

Page 80: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

BARRA 1A (m²) 0.240 1 2 3 4 5 6Inercia (m4) 0.368 1 86948.260 0.000 -133320.666 -86948.260 0.000 0.000F´C (Kg/cm2) 210.000 2 0.000 44440.222 133320.666 0.000 -44440.222 133320.666E (Tn/m²) 2173706.512 Tn/m² 3 -133320.666 133320.666 533282.664 0.000 -133320.666 266641.332L (m) 6.00 m 4 -86948.260 0.000 0.000 86948.260 -44440.222 0.000Angulo 0 5 0.000 -44440.222 -133320.666 -44440.222 44440.222 -133320.666Radianes 0 6 0.000 133320.666 266641.332 0.000 -133320.666 533282.664COS 1SEN 0

BARRA 2A (m²) 0.071 1 2 3 7 8 9Inercia (m4) 0.000 1 0.000 0.000 -324.106 -162.053 0.000 324.106F´C (Kg/cm2) 210.000 2 0.000 38412.565 0.000 0.000 -38412.565 0.000E (Tn/m²) 2173706.512 Tn/m² 3 -324.106 0.000 864.283 -324.106 0.000 432.141L (m) 4.00 m 7 -162.053 0.000 -324.106 162.053 0.000 -324.106Angulo 270 8 0.000 -38412.565 0.000 0.000 38412.565 0.000Radianes 4.71 9 324.106 0.000 432.141 -324.106 0.000 864.283COS 0SEN -1

BARRA 3A (m²) 0.126 4 5 6 10 11 12Inercia (m4) 0.001 4 0.000 0.000 -334.477 -95.565 0.000 334.477

F´C (Kg/cm2) 210.000 5 0.000 39022.288 0.000 0.000 -39022.288 0.000E (Tn/m²) 2173706.512 Tn/m² 6 -334.477 0.000 1560.892 -334.477 0.000 780.446L (m) 7.00 m 10 -95.565 0.000 -334.477 95.565 0.000 -334.477Angulo 270 11 0.000 -39022.288 0.000 0.000 39022.288 0.000Radianes 4.71 12 334.477 0.000 780.446 -334.477 0.000 1560.892COS 0SEN -1

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

cm²cm4

Kg/cm²

cm²cm4

Kg/cm²

cm²cm4

Kg/cm²

Page 81: E-PORTICO

1 2 3 4 5 6 9 7 8 10 11 121 86948.260 0.000 -133644.772 -86948.260 0.000 0.000 324.106 -162.053 0.000 0.000 0.000 0.0002 0.000 82852.787 133320.666 0.000 -44440.222 133320.666 0.000 0.000 -38412.565 0.000 0.000 0.0003 -133644.772 133320.666 534146.947 0.000 -133320.666 266641.332 432.141 -324.106 0.000 0.000 0.000 0.0004 -86948.260 0.000 0.000 86948.260 -44440.222 -334.477 0.000 0.000 0.000 -95.565 0.000 334.4775 0.000 -44440.222 -133320.666 -44440.222 83462.510 -133320.666 0.000 0.000 0.000 0.000 -39022.288 0.0006 0.000 133320.666 266641.332 -334.477 -133320.666 534843.556 0.000 0.000 0.000 -334.477 0.000 780.4469 324.106 0.000 0.000 0.000 0.000 0.000 864.283 -324.106 0.000 0.000 0.000 0.0007 -162.053 0.000 0.000 0.000 0.000 0.000 -324.106 162.053 0.000 0.000 0.000 0.0008 0.000 -38412.565 0.000 0.000 0.000 0.000 0.000 0.000 38412.565 0.000 0.000 0.00010 0.000 0.000 -95.565 -95.565 0.000 -334.477 0.000 0.000 0.000 95.565 0.000 -334.47711 0.000 0.000 0.000 0.000 -39022.288 0.000 0.000 0.000 0.000 0.000 39022.288 0.00012 0.000 0.000 334.477 334.477 0.000 780.446 -334.477 0.000 0.000 -334.477 0.000 1560.892

Paso 04

1 2 3 4 5 6 9 7 8 10 11 12123456978101112

1 2.000 Tn 7 2.000 Tn2 -4.020 Tn 8 0.000 Tn3 -1.560 Tn 10 0.000 Tn4 0.000 Tn 11 0.000 Tn5 -10.980 Tn 12 0.000 Tn6 -0.020 Tn9 -2.000 Tn

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇} {𝒌𝒇𝒓}{𝒌𝒓𝒇} {𝒌𝒓𝒓}

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

{𝑸𝒇} =

{𝑫𝒓} =

Page 82: E-PORTICO

1 2 3 4 5 6 91 86948.260 0.000 -133644.772 -86948.260 0.000 0.000 324.1062 0.000 82852.787 133320.666 0.000 -44440.222 133320.666 0.0003 -133644.772 133320.666 534146.947 0.000 -133320.666 266641.332 432.1414 -86948.260 0.000 0.000 86948.260 -44440.222 -334.477 0.0005 0.000 -44440.222 -133320.666 -44440.222 83462.510 -133320.666 0.0006 0.000 133320.666 266641.332 -334.477 -133320.666 534843.556 0.0009 324.106 0.000 0.000 0.000 0.000 0.000 864.283

Paso 05

1 2 3 4 5 6 91 -3.02661E-06 1.743479E-06 -3.35659E-06 -9.35793E-06 -1.23734E-05 -1.85139E-06 2.81327E-062 1.745598E-06 2.498219E-05 -2.38416E-06 5.412197E-06 7.198174E-06 -3.24104E-06 5.37479E-073 -3.35899E-06 -2.38512E-06 1.182493E-06 -5.17407E-06 -3.54459E-06 -8.81779E-07 6.68377E-074 -9.36049E-06 5.407118E-06 -5.16946E-06 -1.39199E-06 -6.90789E-06 -4.93452E-07 6.09491E-065 -1.23784E-05 7.19239E-06 -3.54029E-06 -6.91289E-06 1.067368E-05 2.62844E-06 6.41206E-066 -1.85196E-06 -3.24201E-06 -8.80944E-07 -4.93667E-07 2.629144E-06 3.772088E-06 1.13496E-069 1.134977E-06 -6.53805E-07 1.25872E-06 3.509224E-06 4.640041E-06 6.942702E-07 0.00115597

7 8 10 11 121 -162.053 0.000 0.000 0.000 0.000 -324.1062 0.000 -38412.565 0.000 0.000 0.000 0.0003 -324.106 0.000 0.000 0.000 0.000 -648.2124 0.000 0.000 -95.565 0.000 334.477 0.0005 0.000 0.000 0.000 -39022.288 0.000 0.0006 0.000 0.000 -334.477 0.000 780.446 0.0009 -324.106 0.000 0.000 0.000 0.000 -648.212

326.106-4.020

646.6520.000

-10.980-0.020

646.212

Paso 06

1 -0.00121068 m2 -0.00080454 m3 0.000149712 m4 -0.00240263 m5 -0.00232863 m6 -0.00045609 m9 0.748139947 m

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑲𝒇𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑲𝒇𝒓} = {𝑲𝒇𝒓}∗{𝑫𝒓}=

{𝑸𝒇} - {𝑲𝒇𝒓}∗{𝑫𝒓}=

Page 83: E-PORTICO

7 81.83 Tn8 30.90 Tn10 0.37 Tn11 90.87 Tn12 -251.34 Tn

7 83.826 Tn8 30.905 Tn10 0.368 Tn11 90.869 Tn12 -251.345 Tn

{𝑸𝒓}complemtario =

{𝑹} =

Page 84: E-PORTICO

Paso 01

Barra Und. 1 2 3 4 5E 2.00E+06 2.00E+06 2.00E+06 2.00E+06 2.00E+06

A M² 0.05 0.05 0.05 0.05 0.05

L M 10 10 10.00 10.00 14.14

Angulo GRADOS 0 0 90.00 90.00 45.00

Grados RADIANES 0.00000000 0.00000000 1.57079633 1.57079633 0.78539816

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

KN/M²

10m

10m

3

4

1

2

6

5

7

8

1

3 4

65

2

Page 85: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra de Armadura )

BARRA 1E 2.00E+06 KN/M² 1A 0.05 M² 1 1L 10.00 M k1 = 10000.00 2 0Angulo 0 6 -1Radianes 0 5 0COS 1SEN 0

BARRA 2E 2.00E+06 KN/M² 3A 0.05 M² 3 1L 10.00 M k1 = 10000.00 4 0Angulo 0 7 -1Radianes 0 8 0COS 1SEN 0

BARRA 3E 2.00E+06 KN/M² 1A 0.05 M² 1 3.752472E-33L 10.00 M k1 = 10000.00 2 6.125742E-17Angulo 90.00 3 -3.75247E-33Radianes 1.570796327 4 -6.12574E-17COS 0.000000000SEN 1.000000000

BARRA 4E 2.00E+06 KN/M² 6A 0.05 M² 6 3.752472E-33L 10.00 M k1 = 10000.00 5 6.125742E-17Angulo 90.00 7 -3.75247E-33

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de una armadura

Podemos encontrar esta matriz para todas las barras de la armadura de la sgte manera:

Page 86: E-PORTICO

Radianes 1.570796327 8 -6.12574E-17COS 0.00000000SEN 1.000000000

BARRA 5E 2.00E+06 KN/M² 1A 0.05 M² 1 0.5L 14.14 M k1 = 7071.07 2 0.5Angulo 45.00 7 -0.5Radianes 0.785398163 8 -0.5COS 0.70710678SEN 0.707106781

BARRA 6 6E 2.00E+06 KN/M² 6A 0.05 M² 6 0.5L 14.14 M k1 = 7071.07 5 -0.5Angulo 135.00 3 -0.5Radianes 2.356194490 4 0.5COS -0.70710678SEN 0.707106781

1 2 31 13535.53 3535.53 0.002 3535.53 13535.53 0.003 0.00 0.00 13535.534 0.00 -10000.00 -3535.535 0.00 -10000.00 3535.536 0.00 0.00 -3535.537 -3535.53 -3535.53 -10000.008 -3535.53 -3535.53 0.00

Paso 04

1 2 312345678

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇}{𝒌𝒓𝒇}

[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

Page 87: E-PORTICO

1 0.00 KN2 0.00 KN3 2.00 KN4 -4.00 KN5 0.00 KN

Paso 05

1 2 31 0.000100 -0.000100 -0.0000172 -0.000100 0.000383 0.0000663 0.000000 0.000000 0.0000834 -0.000100 0.000383 0.0000835 -0.000100 0.000383 0.000049

6 0.00 M

Paso 06

1 0.000297056 M2 -0.00113726 M3 9.70563E-05 M4 -0.00143431 M5 -0.0012402 M

Para invertir la matriz (kff) seleccionamos las celdas (E170:H173) la funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

{𝑸𝒇} =

{𝑲𝒇𝒇}¯¹ =

{𝑫𝒇} =

{𝑫𝒓} =

Page 88: E-PORTICO

6 -1.03 KN7 2.00 KN8 2.97 KN

{𝑸𝒓} =

Page 89: E-PORTICO

RELACION S - R - CS R C

180 PI 200

62.00E+06

0.05

14.14

135.00

2.35619449

libres y restringidos de la estructura

Page 90: E-PORTICO

1 23 45 67 8

2 6 5 1 20 -1 0 1 10000 00 0 0 = 2 0 00 1 0 6 -10000 00 0 0 5 0 0

4 7 8 3 40 -1 0 3 10000 00 0 0 = 4 0 00 1 0 7 -10000 00 0 0 8 0 0

2 3 4 1 26.125742E-17 -3.75247E-33 -6.12574E-17 1 0.00 0.00

1 -6.12574E-17 -1 = 2 0.00 10000.00-6.12574E-17 3.752472E-33 6.125742E-17 3 0.00 0.00

-1 6.125742E-17 1 4 0.00 -10000.00

5 7 8 6 56.125742E-17 -3.75247E-33 -6.12574E-17 6 0.00 0.00

1 -6.12574E-17 -1 = 5 0.00 10000.00-6.12574E-17 3.752472E-33 6.125742E-17 7 0.00 0.00

para la barra de una armadura

matriz para todas las barras de la armadura de la sgte manera:

Page 91: E-PORTICO

-1 6.125742E-17 1 8 0.00 -10000.00

2 7 8 1 20.5 -0.5 -0.5 1 3535.53 3535.530.5 -0.5 -0.5 = 2 3535.53 3535.53-0.5 0.5 0.5 7 -3535.53 -3535.53-0.5 0.5 0.5 8 -3535.53 -3535.53

5 3 4 6 5-0.5 -0.5 0.5 6 3535.53 -3535.530.5 0.5 -0.5 = 5 -3535.53 3535.530.5 0.5 -0.5 3 -3535.53 3535.53-0.5 -0.5 0.5 4 3535.53 -3535.53

4 5 6 7 8

0.00 0.00 -10000.00 -3535.53 -3535.53-10000.00 0.00 0.00 -3535.53 -3535.53

-3535.53 3535.53 -3535.53 -10000.00 0.0013535.53 -3535.53 3535.53 0.00 0.00-3535.53 13535.53 -3535.53 0.00 -10000.003535.53 -3535.53 13535.53 0.00 0.00

0.00 0.00 -10000.00 13535.53 3535.530.00 0.00 0.00 3535.53 13535.53

4 5 6 7 8

matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇} {𝒌𝒇𝒓}{𝒌𝒓𝒇} {𝒌𝒓𝒓}

10m

3

4

1

2

1

3

5

2

Page 92: E-PORTICO

4 5

-0.000083 -0.0000170.000317 0.0000660.000017 -0.0000170.000400 0.0000830.000334 0.000149

funcion es =MINVERSA(E161:H164) y sin soltar presionamos "CTROL" + "SHIFT", sin soltar damos enter

Para Multiplicar una matriz con el vector de cargas nodales seleccionamos las celdas (E187:E190) la funcion es =MMULT(E170:H173,E149:E152) y sin CTROL" + "SHIFT", sin soltar damos enter

3

4

2

Page 93: E-PORTICO

10m

1

2

1

3

65

Page 94: E-PORTICO

6 5-10000 0

0 010000 0

0 0

7 8-10000 0

0 010000 0

0 0

3 40.00 0.000.00 -10000.000.00 0.000.00 10000.00

7 80.00 0.000.00 -10000.000.00 0.00

Page 95: E-PORTICO

0.00 10000.00

7 8-3535.53 -3535.53-3535.53 -3535.533535.53 3535.533535.53 3535.53

3 4-3535.53 3535.533535.53 -3535.533535.53 -3535.53-3535.53 3535.53

10m

10m

6

5

7

8

1

4

6

2

Page 96: E-PORTICO

7

8

Page 97: E-PORTICO

10m

6

5

4

Page 98: E-PORTICO

CURSO: ANALISIS ESTRUCTURAL II

EJERCICIO PRACTICO DE MUROS DE CORTE

Paso 01

10000

425

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

10

3

21

5

3

5

1

2 4

7

Page 99: E-PORTICO

500

150 150

75 75 75 75

Paso 03

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 150.003 210 A(cm2) 45004 280 I 84375005 315 As 37506 420

PLACA 13750

G 86948.2605 6 7

ø 0.373702422 6 208706.745

210 7 2301571.601

217370.6512 8 -44350183.2

4500 5 -208706.745

8437500 1 -2301571.601H de placa (cm) 425 2 -44350183.2

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Inercia (cm4)

9

10

116

7

8

Page 100: E-PORTICO

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 150.003 210 A(cm2) 45004 280 I 84375005 315 As 37506 420

PLACA 23750

G 86948.2605 9 10

ø 0.373702422 9 208706.745

210 10 2301571.601

217370.6512 11 -44350183.2

4500 5 -208706.745

8437500 3 -2301571.601H de placa (cm) 425 4 -44350183.2

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 50.003 210 A(cm2) 15004 280 I 3125005 315 As 12506 420

VIGA 31250

G 86948.2605 1 2

ø 0.030000000 1 6521.12 2119363.85210 2 2119363.85 824649907.96

217370.6512 3 -6521.12 -2119363.85

1500 4 2119363.85 552936593.97

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Inercia (cm4)

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Page 101: E-PORTICO

312500Long de viga (cm) 500

a 75b 75

1 2 3 41 2308093 2119364 -6521 21193642 2119364 14564510598 -2119364 5529365943 -6521 -2119364 2308093 -21193644 2119364 552936594 -2119364 145645105985 0 44350183 0 443501836 0 -44350183 0 07 -2301572 0 0 08 0 5108967187 0 09 0 0 0 -4435018310 0 0 -2301572 011 0 0 0 5108967187

Paso 04

1 2 3 41234569781011

Inercia (cm4)

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇}{𝒌𝒓𝒇}[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

[𝑴𝒂𝒕𝒓𝒊𝒛 𝒊𝒏𝒗𝒆𝒓𝒔𝒂 𝒅𝒆 𝑲𝒇𝒇−𝟏]

Page 102: E-PORTICO

1 2 3 41 4.33557E-07 -1.6105559E-10 9.2916688E-10 -1.6105559E-102 -1.61056E-10 1.23631341E-10 1.6105559E-10 5.22617719E-113 9.29167E-10 1.61055593E-10 4.3355656E-07 1.61055593E-104 -1.61056E-10 5.22617719E-11 1.6105559E-10 1.23631341E-105 3.42243E-08 -1.8688643E-08 -3.4224314E-08 -1.8688643E-08

1 02 03 04 05 10000

6 7 8 96 0.00 -44350183.24 0.00 0.007 -2301571.60 0.00 0.00 0.008 0.00 5108967187.06 0.00 0.009 0.00 0.00 0.00 -44350183.2410 0.00 0.00 -2301571.60 0.0011 0.00 0.00 0.00 5108967187.06

6 -5000 kg7 -787.697082 kg8 1868998.449 kg9 -5000 kg10 787.6970815 kg11 1868998.449 kg

{𝑸𝒇} =

[𝑴𝒂𝒕𝒓𝒊𝒛 𝒊𝒏𝒗𝒆𝒓𝒔𝒂 𝒅𝒆 𝑲𝒇𝒇−𝟏]

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝑸𝒇] [𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔 𝑳𝒊𝒃𝒓𝒆𝒔]

[𝑴𝒂𝒕𝒓𝒊𝒛 𝑲𝒓𝒇]

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝒍𝒂𝒔 𝒓𝒆𝒂𝒄𝒄𝒊𝒐𝒏𝒆𝒔 𝒅𝒆𝒍 𝒆𝒔𝒕𝒂𝒅𝒐 𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒊𝒐 𝒚 𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒂]

{𝑲𝒓𝒇} =

{𝑹 𝒄𝒐𝒎} =

{𝑹 𝒑𝒓𝒊𝒎} =

Page 103: E-PORTICO

6 -5000 kg7 -787.697082 kg8 1868998.449 kg.cm9 -5000 kg10 787.6970815 kg11 1868998.449 kg.cm

{𝑹 𝒇𝒊𝒏𝒂𝒍} =

Page 104: E-PORTICO

EJERCICIO PRACTICO DE MUROS DE CORTERELACION S - R - C

S R180 PI

50

150

barras libres y restringidos de la estructura

Page 105: E-PORTICO

TIPO DE FIGURA 1

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

8 5 1 2

-44350183.2 -208706.745 -44350183.2

-2301571.601

13739860690 44350183.24 5108967187

44350183.24 208706.7447 44350183.24

2301571.6015108967187 44350183.24 13739860690

TIPO DE FIGURA 1

matriz para todas las barras del portico de la sgte manera:

Page 106: E-PORTICO

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

11 5 3 4

-44350183.2 -208706.745 -44350183.2

-2301571.601

13739860690 44350183.24 5108967187

44350183.24 208706.7447 44350183.24

2301571.6015108967187 44350183.24 13739860690

TIPO DE FIGURA 1

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

3 4

-6521.12 2119363.85

-2119363.85 552936593.97

6521.12 -2119363.85

-2119363.85 824649907.96

Page 107: E-PORTICO

5 6 7 8 9 10 11

0 0 -2301572 0 0 0 044350183 -44350183 0 5108967187 0 0 0

0 0 0 0 0 -2301572 044350183 0 0 0 -44350183 0 5108967187

417413 -208707 0 44350183 -208707 0 44350183-208707 208707 0 -44350183 0 0 0

0 0 2301572 0 0 0 044350183 -44350183 0 13739860690 0 0 0

-208707 0 0 0 208707 0 -443501830 0 0 0 0 2301572 0

44350183 0 0 0 -44350183 0 13739860690

5 6 9 7 8 10 11

matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇} {𝒌𝒇𝒓}{𝒌𝒓𝒇} {𝒌𝒓𝒓}

Page 108: E-PORTICO

5

3.4224314E-08-1.868864E-08-3.422431E-08-1.868864E-086.3670427E-06

FUERZADESPLZAMIENTO

1 0.0003422431 cm2 -0.000186886 cm K LATERAL DEL PORTICO3 -0.000342243 cm4 -0.000186886 cm5 0.0636704269 cm

10

-208706.740.00

44350183.24-208706.74

0.0044350183.24

6 0 kg7 0 kg8 0 kg9 0 kg10 0 kg11 0 kg

[𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔 𝑳𝒊𝒃𝒓𝒆𝒔]

{𝑫𝒇} =

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝒍𝒂𝒔 𝒓𝒆𝒂𝒄𝒄𝒊𝒐𝒏𝒆𝒔 𝒅𝒆𝒍 𝒆𝒔𝒕𝒂𝒅𝒐 𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒊𝒐 𝒚 𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒂]

{𝑹 𝒑𝒓𝒊𝒎} =

Page 109: E-PORTICO

6 -5 Tn7 -0.78769708152 Tn8 18.6899844851 Tn.m9 -5 Tn10 0.78769708152 Tn11 18.6899844851 Tn.m

Page 110: E-PORTICO

RELACION S - R - CC

200

Page 111: E-PORTICO

Seccion 4a(cm) 0.6b(cm) 0.2c(cm) 0.4d(cm) 0.3

A(cm2) 0.24I(cm4) 0.0074

As 0.2

Mx 0.084Yg 0.35

c

d

a

b

cd

a

b

Page 112: E-PORTICO

Seccion 4a(cm) 0.6b(cm) 0.2c(cm) 0.4d(cm) 0.3

A(cm2) 0.24I(cm4) 0.0074

As 0.2

Mx 0.084Yg 0.35

Seccion 4a(cm) 0.6b(cm) 0.2c(cm) 0.4d(cm) 0.3

A(cm2) 0.24I(cm4) 0.0074

As 0.2

Mx 0.084Yg 0.35

cd

a

b

Page 113: E-PORTICO
Page 114: E-PORTICO

10000 kgDESPLZAMIENTO 0.063670426908 cm

K LATERAL DEL PORTICO 157058.78671825 kg/cm1570587.8671825 Tn/m

Page 115: E-PORTICO

CURSO: ANALISIS ESTRUCTURAL II

EJERCICIO PRACTICO DE MUROS DE CORTE

Paso 01

10000

425

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

10

3

21

5

3

5

1

2 4

7

Page 116: E-PORTICO

500

150 150

75 75 75 75Paso 03

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 150.003 210 A(cm2) 45004 280 I 84375005 315 As 37506 420

PLACA 12500

G 86948.2605 6 7

ø 0.161217993 6 106513.091

210 7 2506155.743

217370.6512 8 -22634031.9

4900 5 -106513.091

3640000 1 -2506155.743H de placa (cm) 425 2 -22634031.9

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Inercia (cm4)

9

10

116

7

8

Page 117: E-PORTICO

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 150.003 210 A(cm2) 45004 280 I 84375005 315 As 37506 420

PLACA 218.84955592154

G 86948.2605 9 10

ø 0.000008349 9 6.405

210 10 19281.601

217370.6512 11 -1361.0

38 5 -6.405

188 3 -19281.601H de placa (cm) 425 4 -1361.0

F`c 3 Rectangulo 11 140 b(cm) 30.002 175 h(cm) 50.003 210 A(cm2) 15004 280 I 3125005 315 As 12506 420

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Inercia (cm4)

Page 118: E-PORTICO

VIGA 3

Page 119: E-PORTICO

1250G 86948.2605 1 2

ø 0.030000000 1 6521.12 2119363.85210 2 2119363.85 824649907.96

217370.6512 3 -6521.12 -2119363.85

1500 4 2119363.85 552936593.97

312500Long de viga (cm) 500

a 75b 75

1 2 3 41 2512677 2119364 -6521 21193642 2119364 7496097383 -2119364 5529365943 -6521 -2119364 25803 -21193644 2119364 552936594 -2119364 8250355385 0 22634032 0 13616 0 -22634032 0 07 -2506156 0 0 08 0 2948016085 0 09 0 0 0 -136110 0 0 -19282 011 0 0 0 192814

Paso 04

1 2 3 412345

As (cm2)

f´c (Kg/cm2)

E (Kg/cm2)

Area (cm2)

Inercia (cm4)

A partir de las matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇}

Page 120: E-PORTICO

69781011

1 2 3 41 3.98886E-07 -1.1531185E-10 1.7135904E-08 -9.0340334E-102 -1.15312E-10 4.36254196E-10 1.4987835E-08 -2.5342628E-103 1.71359E-08 1.49878351E-08 4.9635647E-05 1.17421237E-074 -9.03403E-10 -2.5342628E-10 1.1742124E-07 1.68577995E-095 2.45138E-08 -9.2695204E-08 -3.1862238E-06 5.38283055E-08

1 02 03 04 05 10000

6 7 8 96 0.00 -22634031.91 0.00 0.007 -2506155.74 0.00 0.00 0.008 0.00 2948016085.03 0.00 0.009 0.00 0.00 0.00 -1361.0410 0.00 0.00 -19281.60 0.0011 0.00 0.00 0.00 192813.60

6 -9997.40458 kg

{𝒌𝒓𝒇}[𝑲𝒈𝒍𝒐𝒃𝒂𝒍] =

{𝑸𝒇} =

[𝑴𝒂𝒕𝒓𝒊𝒛 𝒊𝒏𝒗𝒆𝒓𝒔𝒂 𝒅𝒆 𝑲𝒇𝒇−𝟏]

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝑸𝒇] [𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔 𝑳𝒊𝒃𝒓𝒆𝒔]

[𝑴𝒂𝒕𝒓𝒊𝒛 𝑲𝒓𝒇]

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝒍𝒂𝒔 𝒓𝒆𝒂𝒄𝒄𝒊𝒐𝒏𝒆𝒔 𝒅𝒆𝒍 𝒆𝒔𝒕𝒂𝒅𝒐 𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒊𝒐 𝒚 𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒂]

{𝑲𝒓𝒇} =

Page 121: E-PORTICO

7 -614.354964 kg8 3850169.642 kg9 -2.59541751 kg10 614.354964 kg11 499.6314252 kg

6 -9997.40458 kg7 -614.354964 kg8 3850169.642 kg.cm9 -2.59541751 kg10 614.354964 kg11 499.6314252 kg.cm

{𝑹 𝒄𝒐𝒎} =

{𝑹 𝒇𝒊𝒏𝒂𝒍} =

{𝑹 𝒑𝒓𝒊𝒎} =

Page 122: E-PORTICO

EJERCICIO PRACTICO DE MUROS DE CORTERELACION S - R - C

S R180 PI

50

150

barras libres y restringidos de la estructura

Page 123: E-PORTICO

TIPO DE FIGURA 5

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

8 5 1 2

-22634031.9 -106513.091 -22634031.9

-2506155.743

6671447475 22634031.91 2948016085

22634031.91 106513.0913 22634031.91

2506155.7432948016085 22634031.91 6671447475

matriz para todas las barras del portico de la sgte manera:

Page 124: E-PORTICO

TIPO DE FIGURA 3

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

11 5 3 4

-1361.0 -6.405 -1361.0

-19281.601

385630 1361.04 192814

1361.04 6.4049 1361.04

19281.601192814 1361.04 385630

TIPO DE FIGURA 1

Circulo 2 S. Tubular 3r(cm) 1 R(cm) 4

A(cm2) 3.1415926536 r(cm) 2I(cm4) 0.7853981634 A(cm2) 37.69911184

As 2.827433388 I(cm4) 188.4955592As 18.8495559

Page 125: E-PORTICO

3 4

-6521.12 2119363.85

-2119363.85 552936593.97

6521.12 -2119363.85

-2119363.85 824649907.96

5 6 7 8 9 10 11

0 0 -2506156 0 0 0 022634032 -22634032 0 2948016085 0 0 0

0 0 0 0 0 -19282 01361 0 0 0 -1361 0 192814

106519 -106513 0 22634032 -6 0 1361-106513 106513 0 -22634032 0 0 0

0 0 2506156 0 0 0 022634032 -22634032 0 6671447475 0 0 0

-6 0 0 0 6 0 -13610 0 0 0 0 19282 0

1361 0 0 0 -1361 0 385630

5 6 9 7 8 10 11

matrices de todas las barras se obtiene esta matriz de toda la estructura sumando las componentes de cada matriz en función de sus grados de libertad con lo cual tenemos una matriz de 8x8 que luego particionamos como se indica

{𝒌𝒇𝒇} {𝒌𝒇𝒓}

Page 126: E-PORTICO

5

2.4513838E-08-9.26952E-08

-3.186224E-065.3828306E-082.9083812E-05

FUERZADESPLZAMIENTO

1 0.0002451384 cm2 -0.000926952 cm K LATERAL DEL PORTICO3 -0.031862238 cm4 0.0005382831 cm5 0.2908381151 cm

10

-106513.090.00

22634031.91-6.400.00

1361.04

6 0 kg

{𝒌𝒓𝒇} {𝒌𝒓𝒓}

[𝑫𝒆𝒔𝒑𝒍𝒂𝒛𝒂𝒎𝒊𝒆𝒏𝒕𝒐𝒔 𝑳𝒊𝒃𝒓𝒆𝒔]

{𝑫𝒇} =

[𝑪𝒂𝒍𝒄𝒖𝒍𝒐 𝒅𝒆 𝒍𝒂𝒔 𝒓𝒆𝒂𝒄𝒄𝒊𝒐𝒏𝒆𝒔 𝒅𝒆𝒍 𝒆𝒔𝒕𝒂𝒅𝒐 𝑪𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒓𝒊𝒐 𝒚 𝑷𝒓𝒊𝒎𝒂𝒓𝒊𝒂]

Page 127: E-PORTICO

7 0 kg8 0 kg9 0 kg10 0 kg11 0 kg

6 -9.99740458249 Tn7 -0.61435496399 Tn8 38.5016964198 Tn.m9 -0.00259541751 Tn10 0.61435496399 Tn11 0.00499631425 Tn.m

{𝑹 𝒑𝒓𝒊𝒎} =

Page 128: E-PORTICO

RELACION S - R - CC

200

Page 129: E-PORTICO

Seccion 4 Seccion 5 ITEM A Ya(cm) 0.6 a(cm) 30b(cm) 0.2 b(cm) 40 1 3000 50c(cm) 0.2 c(cm) 30d(cm) 0.25 d(cm) 100 2 1200 85

A(cm2) 0.17 A(cm2) 4900I(cm4) 0.0019784313725 I(cm4) 3640000 4200

As 0.1416666666667 As 2500YC= 60

Mx 0.041Yg 0.2411764705882 INERCIA TOTAL

c

d

a

b

a

b

c

a

d

Page 130: E-PORTICO

Seccion 4a(cm) 0.6b(cm) 0.2c(cm) 0.4d(cm) 0.3

A(cm2) 0.24I(cm4) 0.0074

As 0.2

Mx 0.084Yg 0.35

Seccion 4a(cm) 0.6b(cm) 0.2c(cm) 0.4d(cm) 0.3

A(cm2) 0.24I(cm4) 0.0074

As 0.2

Mx 0.084Yg 0.35

cd

b

cd

a

b

Page 131: E-PORTICO
Page 132: E-PORTICO

10000 kgDESPLZAMIENTO 0.2908381151137 cm

K LATERAL DEL PORTICO 34383.388835029 kg/cm343833.88835029 Tn/m

Page 133: E-PORTICO
Page 134: E-PORTICO

L 100AY I d Ad2 Seccion 6 ITEM A Y

a(cm) 30150000 2500000 10 300000 b(cm) 40 1 4500 75

c(cm) 30102000 90000 -25 750000 d(cm) 150 2 1200 15

A(cm2) 6900252000 2590000 1050000 I(cm4) 11938026.3 5700

As 3750cm YC= 62.368421053

3640000 cm4 INERCIA TOTAL

b

c

a

d

Page 135: E-PORTICO

AY I d Ad2

337500 8437500 -12.632 718005.540

18000 90000 47.368 2692520.776

355500 8527500 3410526.316

cm

11938026.316 cm4

Page 136: E-PORTICO

UNIVERSIDAD ALAS PERUANASCARRERA: INGENIERIA CIVILCURSO: ANALISIS ESTRUCTURAL IIALUMNO: GARCIA CONDORCALLO, ALAN

EJERCICIO PRACTICO DE PORTICO POR EL METODO DE RIGIDEZ

RELACION S - R - CS R C

180 PI 200

Paso 01

Barra 1 2 30.170 0.150 0.150

0.0019784314 0.003125 0.003125

280 280 280

2509980.0796 2509980.0796 2509980.0796

L (m) 6.00 5.00 6.32

Angulo (grados) 0 90 108.43

Grados (Rad) 0.00000000 1.57079633 1.89254688

Numeramos las barras Numeramos los Grados de Libertad ( DOF ) libres y restringidos de la estructura

A (m²)Inercia (m4)F´C (Kg/cm2)

E (Tn/m²)

1m

6m 2m

0.50m

5m

1

3

2

4

5

1

2

3 6

7

8

9

10

11

12

0.20m

0.20m

0.25m

0.60m

0.30m

Page 137: E-PORTICO

Paso 02

Paso 03

Coordenadas Globales ( Barra del Portico )

BARRA 1A (m²) 0.170 1 2 3 4 5 6Inercia (m4) 0.002 1 71116.102 0.000 -827.637 -71116.102 0.000 0.000F´C (Kg/cm2) 280.000 2 0.000 275.879 827.637 0.000 -275.879 827.637E (Tn/m²) 2509980.080 Tn/m² 3 -827.637 827.637 3310.549 0.000 -827.637 1655.274L (m) 6.00 m 4 -71116.102 0.000 0.000 71116.102 -275.879 0.000Angulo 0 5 0.000 -275.879 -827.637 -275.879 275.879 -827.637Radianes 0 6 0.000 827.637 1655.274 0.000 -827.637 3310.549COS 1SEN 0

BARRA 2A (m²) 0.150 1 2 3 7 8 9Inercia (m4) 0.003 1 0.000 0.000 -1882.485 -752.994 0.000 -1882.485F´C (Kg/cm2) 280.000 2 0.000 75299.402 0.000 0.000 -75299.402 0.000E (Tn/m²) 2509980.080 Tn/m² 3 -1882.485 0.000 6274.950 1882.485 0.000 3137.475L (m) 5.00 m 7 -752.994 0.000 1882.485 752.994 0.000 1882.485Angulo 90 8 0.000 -75299.402 0.000 0.000 75299.402 0.000Radianes 1.57 9 -1882.485 0.000 3137.475 1882.485 0.000 6274.950COS 0SEN 1

BARRA 3A (m²) 0.150 4 5 6 10 11 12Inercia (m4) 0.003 4 5952.940 -17858.821 -1176.553 -6287.793 17747.204 -1116.176

F´C (Kg/cm2) 280.000 5 -17858.821 53613.670 -372.059 17747.204 -53613.670 -372.059E (Tn/m²) 2509980.080 Tn/m² 6 -1176.553 -372.059 4960.784 1116.176 372.059 2480.392L (m) 6.32 m 10 -6287.793 17747.204 1116.176 6287.793 -17741.166 1116.176Angulo 108 11 17747.204 -53613.670 372.059 -17741.166 53613.670 372.059Radianes 1.89 12 -1116.176 -372.059 2480.392 1116.176 372.059 4960.784COS 0SEN 1

1 2 3 4 5 6 7 8 9 10 11 121 71116.102 0.000 -2710.122 -71116.102 0.000 0.000 -752.994 0.000 -1882.485 0.000 0.000 0.0002 0.000 75575.281 827.637 0.000 -275.879 827.637 0.000 -75299.402 0.000 0.000 0.000 0.0003 -2710.122 827.637 9585.499 0.000 -827.637 1655.274 1882.485 0.000 3137.475 0.000 0.000 0.0004 -71116.102 0.000 0.000 77069.043 -18134.700 -1176.553 0.000 0.000 0.000 -6287.793 17747.204 -1116.1765 0.000 -275.879 -827.637 -18134.700 53889.549 -1199.696 0.000 0.000 0.000 17747.204 -53613.670 -372.0596 0.000 827.637 1655.274 -1176.553 -1199.696 8271.333 0.000 0.000 0.000 1116.176 372.059 2480.3927 -752.994 0.000 0.000 0.000 0.000 0.000 752.994 0.000 1882.485 0.000 0.000 0.0008 0.000 -75299.402 0.000 0.000 0.000 0.000 0.000 75299.402 0.000 0.000 0.000 0.0009 -1882.485 0.000 0.000 0.000 0.000 0.000 1882.485 0.000 6274.950 0.000 0.000 0.00010 0.000 0.000 -6287.793 -6287.793 17747.204 1116.176 0.000 0.000 0.000 6287.793 -17741.166 1116.17611 0.000 0.000 17747.204 17747.204 -53613.670 372.059 0.000 0.000 0.000 -17741.166 53613.670 372.059

Esta es la matriz de RIGIDEZ en coordenadas globales para la barra de un portico

Podemos encontrar esta matriz para todas las barras del portico de la sgte manera:

cm²cm4

Kg/cm²

cm²cm4

Kg/cm²

cm²cm4

Kg/cm²