99
E-Mobility in Germany: Challenges & Opportunities University of Applied Sciences Darmstadt Department of Electrical Engineering and Information Technology Prof. Dr. Christian Weiner

E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

E-Mobility in Germany: Challenges & Opportunities

University of Applied Sciences DarmstadtDepartment of

Electrical Engineering and Information Technology

Prof. Dr. Christian Weiner

Page 2: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Topics

IntroductionMotivation Challenges & Opportunities

Electric & Hybrid Cars Drivetrain Architecture & Components Electric & Hybrid Concepts

HV-System High Voltage Power Supply Batteries Charging Modes Charging Stations

Folie 2

Page 3: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Automotive Industry in Germany:Worldwide Standing

Folie 3

Biggest Car Makers(according to revenue 2013)

Biggest Automotive Supplier(according to revenue 2013)

revenue in billion €

revenue in billion €

Page 4: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Revenue 384 billion Euro

Employees 775.000 ≙ 2 % of the employees in Germany

Car-Production(inland)

5,6 million units ≙ 7,2 % of the worldwide production

Truck-Production(inland)

300.000 units ≙ 1,4 % of the worldwide production

includes: car makers, automotive suppliersand manufacturer of trailer and platforms

1) http://www.bmwi.de/DE/Themen/Wirtschaft/branchenfokus,did=195924.html

Basic Data 2014 1)

The vehicle production requires the acquisition of parts, components and raw materials, so that sectors that have ostensibly little to do with the automotive industry, are involved in the production of motor vehicles. These include capital goods, materials and parts supplies i.a. from the chemical industry, textile industry, mechanical engineering, the electrical industry and the steel and aluminum industries. Moreover, consultants, dealers, garages and service stations, as well as other services related to the car are directly or indirectly dependent on the automotive industry.

Folie 4

Automotive Industry in Germany:Economic Relevance

Page 5: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 5

Registered Vehicles: 41 million passenger carsAverage Mileage: 40 km/day

≙ 14.000 km/year

Kilometres Travelled 580 billion km/year(all passenger cars): thereof 360 billion km petrol-kilometre

220 billion km diesel-kilometre

Average Fuel Consumption 5,8 l / 100km (petrol)of newly register cars: 5,2 l / 100km (diesel)

Quelle: Studie Mobilität in Deutschland 2008; BM Verkehr, Bau und StadtentwicklungAuto Mobilität; DIW Wochenbericht 47/2012

Mobility in Germany:Basic Data

Page 6: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 6Distance Travelled per Day in Germany (Passenger Cars)Vieweg Handbuch Kraftfahrzeugtechnik; H.H. Braess (Hrsg.), U. Seiffert (Hrsg.)

The average mileage is 40 km/day.

80 % auf the distance travelled per day is less than 50 km. 90 % auf the daily drive is less than 100 km. Ca. 70 % of the trips are to the workplace and back.

Mobility in Germany:Basic Data

Page 7: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 7

E-Mobility

- Electro-Mobility (E-Mobility) is the transport of persons and goods by vehicles which are fully or partly powered by electric energy.

- Electric vehicles use at least one electric energy storage element and one electro-mechanical energy converter for traction. Aside that, electric vehicles can have other distinct types of energy storage elements and energy converters (hybrid vehicles).

- Commonly the term electric vehicles comprises passenger cars, trucks, busses, motorbikes, motor scooters but also electric bicycles and personal transporter (Segway).

- The strict interpretation of the term electric vehicle also comprises electric rail vehicles (trains, trams, underground railways) but also trolley busses.

- Electric powered special vehicles (forklift trucks, cleaning machines, golf carts etc.) are usually not considered under the term electro-mobility. Technically, however, these vehicles have several similarities to the above mentioned road vehicles.

- Besides the electro-technical aspects the subject e-mobility contains many topics from various engineering, economic and social disciplines.

Page 8: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Electric Vehicles(Examples)

Folie 8

Page 9: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 9

Reduction of the CO2 Emissions

CO2 is the main contributor to the greenhouse effect and the resulting global warming.

In Germany the individual traffic is responsible for 12% and the other traffic for 7% of the total CO2 emissions.

Motivation

CO2 Emissions and polluters

2010

ca. 850 Mio t

ca. 125 Mio. t

2020 2050

Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level.

Targets of the German Government: Reduction of greenhouse gases by

at least 40% by 2020 and at least 80% by 2050

compared to the levels of 1990.

350 Mio. t

150 Mio. t

150 Mio. t

750 Mio t

250 Mio t

Page 10: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Mobilität in Deutschland:CO2 Emissionen

Personenverkehr

Güterverkehr

RestCO2 Emissionen Deutschland 2010

Total: ca. 850 Mio. tPersonenverkehr: ca. 150 Mio. t davon 125 Mio. t StraßenverkehrGüterverkehr: ca. 50 Mio. t davon 45 Mio. t Straßenverkehr

Straßenverkehr

anderer Verkehr

RestCO2 Emissionen Welt 2010

Total: ca. 32 Mrd. t17%

6%

Folie 10

Page 11: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 11

EU regulation for the reduction of the CO2 emissions from new passenger cars.

Target: to reduce the fleet average of all newly registered passenger cars in the EU to 96 g/km CO2.

Motivation

CO2 Fleet Average

2010 2020 2050

Note: CO2 and fuel consumption are closely linked. The carbon content of the fuel defines how much CO2 is produced by the combustion of the fuel.

- the combustion of 1 l petrol produces about 2,3 kg CO2- the combustion of 1 l diesel produces about 2,6 kg CO2

The average fuel consumption can be derived thereof by considering the drivetrain (engine) efficiency:

∼4.1 l/100 km petrol95 g/km CO2 ≙

∼3,6 l/100 km diesel152 g/km

95 g/km

20 g/km

?

Reduction of the CO2 Emissions

Page 12: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 12

Reduction of Harmful Emissions

The European emission standards, define the emission classes for new automobiles.

Target: to reduce the local emissions of noxious gases and harmful substances HCNOx

PM

etc.

CO2 CO

CO2: carbon dioxide; greenhouse gas, suffocation hazard

CO: carbon monoxide; noxiousHC: carbon hydrides; carcinogenic NOx: nitrogen oxide; noxious, acid falloutPM: particles; air quality, smog

Evolution of the European emission standards for passenger cars source: EU, Bundesumweltministerium

Page 13: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 13

Motivation

Reduction of the Consumption of Fossil Fuels

Gtoe

- limited availability of fossil fuels, in particular oil- non-conventional production technics not environmental sound

1) BGR (2013): Energiestudie 2013 -Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen

1)

1)

- Germany (Europe) dependent on oil imports- oil production in increasingly political unstable regions

gain independence from oil imports

Page 14: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 14

Well-To-Wheel (WTW)

The conversion of primary energy into traction energy takes places, in parts, outside the vehicle. The Well-to-wheel approach considers the complete chain from the mining of the raw materials to the generation of the traction energy.

Environmental Impact

SunWindWater

CoolOilGasNuclear

OilGas

Transport Refining/ Generation

Distribution ConsumptionPrimaryEnergy Mining

Page 15: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 15

Um

weltbetrachtungen

Environmental Impact

The energy for electric vehicles is generated from various primary energy sources.

The environmental soundness of electric vehiclesis therefore strongly dependent on the energy mix.

Well-to-Wheel Balance of different Drive SystemsH. Tschöke (Hrsg.): Die Elektrifizierung des Antriebsstranges: Basiswissen

In Germany, due to the renunciation of nuclear power, a reduction of the CO2emissions, is closely coupled to the increase of renewable energies.

Page 16: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 16

National Development Plan for Electric Mobility

from August 2009

Describes the goals and the general conditions to develop Germany to a leadmarket for electric mobility in order to maintain its cutting edge in science and in the automotive sector and related supplier industries.

• Reduction of the dependence on fossil fuels, in particular oil.• Minimisation of CO2- and local noxious emission as well as particulates and

noise. • Optimisation of the interaction between electric vehicles and the electrical

power grid, with focus on renewable energies. • Better integration of vehicle in a multimodal traffic system.• Reduction of the costs of future electric vehicles in order to increase the price

competitiveness and buyers acceptance:=> speed-up of the market introduction of electric vehicles

National D

evelopment P

lanfor Electric M

obility

Goal: 2020 – 1 Million Electric Cars

Page 17: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 17

Target: 1 Million Electric Cars until 2020

Comprises cars, which are powered by electrical energy only, as well as cars which, in addition to a petrol engine, contain a traction battery which can be charged from the grid (plug-in electric vehicle).

National D

evelopment P

lanfor Electric M

obility

?

Page 18: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 18

Support Program

Buyer’s Premium total budget: 1.2 Billion Euro(since Mai 2016): 4.000 € for electric cars

3.000 € for plug-in hybrids

Tax Incentives: exemption from motor vehicle tax

reduction of the monetary benefit for the use of company car

Credit Programs: companies are supported for the purchase of electric and hybrid carsand the installation of charging stations

Charging Infrastructure: planned for 2017100 m Euro for AC charging stations200 m Euro for DC quick charging stations

Various research funding programs on regional, national and European level.

National D

evelopment P

lanfor Electric M

obility

Page 19: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 19

Einführung

VolkswagenGolf TSI

Volkswagene Golf

Performance in kWPerformance in Nm

85 kW200 Nm

85 kW270 Nm

Top Speed [km/h]Acceleration from 0 to 100 km/h

204 km/h9,7 s

140 km/h10,4 s

Type of BatterySize of Battery

LiIon24,2 kWh

Price (including battery) 22.150 € (manual gearbox)24.025 € (DSG) 34.900 €

Problems Set:Costs of Purchase

Due to the high cost of the traction battery and the limited quantities produced, the purchasing costs of electric cars are much higher than those of a comparable petrol car.

Page 20: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 20

Problems Set: Range

Comparisonof Volume

Li-Ion / diesel

Comparison of WeightLi-Ion / diesel

The range of a vehicle depends of the stored energy, the weight of the vehicle, the topology of the terrain and the driving behavior.

The energy density of a battery falls far short of the energy density of gasoline.

For an energy equivalent of 50 liters of diesel fuel: · 9.600 ⁄ · 50 480

a Li-Ion battery would need to have a weight of: 2.400

and a volume of: 960

Energy Density

Wh/kg Wh/lDiesel 12.000 10.000Petrol 12.000 9.000Lead-Acid 20 - 40 50 - 100Li-Ion 100 - 200 150 - 500

Page 21: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 21

Einführung

Consumption[kWh/100km]

Range[km]

Vehicle Weightw/o Battery [kg] 487

98

6,1

6,3

100 (11) ECE-15

910

200

16

12,5

160 (22) NEFZ

965

230

18,8

12,9

190 (2

1493

540

90

17,5

528 (3

3) NEFZ (estimation)

Microcar(Twizy)

Upper Clas(Tesla S 85D)

Small Car(Mitsubishi i-MiEV)

Compact Car(BMW i3)

Size of Battery[kWh]

Weight of Battery[kg]

Energy Density[Wh/kg] 62 80 82 166

Problems Set: Charging Time

Page 22: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 22

3 – 8 kW (standard)50 – 86 kW (fast)

10 – 15 MW (car)Bis zu 90 MW (truck)

Electric cars are predominantly charged at the low voltage level

(230V/400V). The charging time depends on the rating of the power supply. The charging time is considerably longer then the refuelling time. In addition, frequent charging is required, as the range of the electric vehicle is limited by the energy content of the batteries.

Problems Set: Charging TimeC

harg

ing

Tim

e in

min

Power Supply Rating in kW

Page 23: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 23

Einführung

6,1 16 18,8 90

StandardCharging to 100 %

2,3 kW3,5 h

2,3 kW8 h

2,7 kW7,5 h

11 kW9 h

FastCharging to 80 %

50 kW30 min

50 kW30 min

120 kW40 min

Microcar(Twizy)

Upper Clas(Tesla S 85D)

Small Car(Mitsubishi i-MiEV)

Compact Car(BMW i3)

Size of Battery[kWh]

Problems Set: Charging Time

Page 24: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 24

630 TWh2013 1) 2020 2)

150 TWh

200 TWh

regenerative

regenerativeconventional

Gross Power Generation vs. Net Energy Consumption in Germany1) BMWi2) Prognose des elektrischen Lastverhaltens; Forschungsstelle für Energiewirtschaft

2.1 TWhEnergy Requirement for1 million electric cars

2030 2)

regenerativeconventional

250 TWh

12.6 TWhEnergy Requirement for6 million electric cars

net energy consumption

export

own consumption& distribution

losses

530 TWh

conventional

The average annual mileage in Germany is 14.000 km / year. With an

assumed average consumption of 15 kWh / 100 km, the annual energy consumption for the electric car fleet is estimated to 2.1 for 1 million electric cars and 12.6 TWh for 6 million electric cars..

Problem Set: Grid Connection

That additional electricity demand can be covered by existing or planned power plants. In the medium term energy savings due to the increase of energy efficiency and the decrease of the population decrease can be diverted to mobility.

Page 25: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 25

The energy consumption is not constant but varies in the

course of the day and year. The actual consumption must be backed by the a guaranteed power plant capacity.

Currently the surplus of guaranteed power allows the uncontrolled charging of electric vehicles at all times. With an increasing number of electric vehicles a controlled charging via smart meters is becoming necessary in order to balance the load on the energy supply network and for optimal use of the energy supply from regenerative energy sources.

Regenerativ

Guaranteed Power 2013

BMWi; W. Beckmeyer

50 GW

90 GW

0:00 06:00 12:00 18:00 24:00

80 GW

6 GWh ≙ 1 GW for 6hEnergy requirement for over-night charging of 1 million electric cars. Each car is charged with a total energy of 6 kWh, which corresponds to a daily millage of 40 km.

Principle Characteristic of a Load Curve with reference values.

conventional

regenerative

Problem Set: Grid Connection

Page 26: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 26

Installed Power

regenerativeconventional

80 GW

20131)

1) BMWi; W. Beckmeyer 2) Energiereferenzprognose; ewi, gws, prognos i.A. des BMWi3) eigen Schätzung basierend auf 2) und Verfügbarkeit aus 4)

4) Kurzanalyse Kraftwerksplanung Deutschland; dena

180 GW

200 GW

225 GW

110 GW

140 GW

Guaranteed Power

2020(2 2030(2

90 GW20131) 2020(3 2030(3

Future Scenario for Installed / Guaranteed Power0:00 06:00 12:00 18:00 24:00

The power generation from renewable energy sources is highly fluctuating due to their high dependence on weather condition. Therefore, only a small portion of the installed power of wind and PV systems can be guaranteed (in PV about 1%, wind 5 - 10%, conventional power plants 42-93% of installed capacity 4)).

While the installed power is increasing with the prospective increase of renewable energies in the electricity mix, the guaranteed power is decreasing due to the shut-down of conventional power plants.

The gap must be bridged by energy storage solutions.

Pow

er R

equi

rem

ent

+ E-Mobility

With rising numbers of electric vehicles comes the necessity of load or supply controlled charging.

Problem Set: Grid Connection

Page 27: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

The traction batteries could serve aslarge decentralised energy storage in

order to buffer the fluctuating power generation by renewable energy sources.

Bi-directional charging would allow that the stored energy is returned to the grid, giving the option for various use cases.

Folie 27

Reserve

0:00 06:00 12:00 18:00 24:00

Peak Power

45 GWhEnergy requirement for over-night charging of 6 million electric cars. Each car is charged with a total energy of 7.5 kWh, which corresponds to a daily millage of 50 km.

Recovery of20 % Charge

Possible Contribution of Traction Batteries to Grid Stability

Guaranteed Power2030

conventional

regenerative

Problem Set: Grid Connection

Page 28: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Topics

IntroductionMotivation Challenges & Opportunities

Electric & Hybrid Cars Drivetrain Architecture & Components Electric & Hybrid Concepts

HV-System High Voltage Power Supply Batteries Charging Modes Charging Stations

Folie 28

Page 29: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

From Conventional to Electric

Folie 29

Components & Systems of Hybrid Electric Cars

Exhaust

Fuel Tank

Combustion Engine

Gear

Chassis / Body

Braking SystemSteering System

Cockpit and HMI

Traction Battery

12 V Battery HV-System

Energy Management & Drive Control

Electric Motor

On-Board Charger

Frequency Inverter

Heating and Air Conditioning

Page 30: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 30

The drivetrain of a vehicle must overpower the kinematic resistances in order to keep the vehicle in motion. The traction resistance can be divided into various route and vehicle depend components.

The vehicle resistance always occurs when the vehicle is moving. The energy associated with the vehicle resistance is converted into heat and lost. The energies associated with slope and acceleration however, are stored in the vehicle and can in parts be recovered during regenerative braking.

Tractional Resistance

Acceleration Resistance

Slope ResistanceVehicle Resistance

Rolling Resistance

+

Driving Resistance

+

Air Drag+

Tractive Effort

Page 31: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 31

Tractive Effort

The maximum speed defines the power requirement of the motor. At lower speeds, where the vehicle resistance is lower, the surplus power can be used for acceleration and slope climbing. At low speeds the tractive force which can be transferred from the wheels to the road is limited by friction.

Forward Motoring

Forward Braking

BackwardMotoring

Backward Braking

vx

F

Ideal Tractive Power

Ideal Tractive Torque

speed

speed

Trac

tive

pow

ertr

activ

e fo

rce

3.point of

maxim

um pow

er2.

constant power range

1.frictional power limitation

3.m

aximum

power point

surplus power

surplus torque

Page 32: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 32

The engine characteristic of an internal combustion engine, however, must be adapted to the ideal tractive curves via a multiple speed gear.

Antriebstrang

The characteristic of a speed controlled electrical machine corresponds very well with the ideal tractive power and torque curves. An electric motor is therefore ideally suited for traction applications. For brief periods the rated power of an electric motor can be exceeded, such providing extra power for acceleration and overtaking. An electric motor can be easily operated in 4-quadrants.

Tractive Effort

gear

The efficiency of the electric motor far exceeds the efficiency of the ICE throughout the operation range. An electric drivetrain has, therefore, a much higher overall efficiency than the drivetrain of an ICE.

Page 33: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Antriebstrang

Electrical DrivetrainAn electrical drivetrain consists of:

- An electrical machine for the conversion of the electrical energy into mechanical energy - A frequency converter, for providing an alternating current to the motor, with a frequency largely

proportional to the traction speed. - A controller for controlling the motor according to the drivers demand at the best operating point - The required sensors (current sensor, speed sensor, temperature sensor etc.)

Folie 33

Frequency Converter

1-Speed Reduction Gear

Differential

Wheel

AC

DCμC

Controller

Battery

Electric Motor

Page 34: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 34

Antriebstrang

Electric MachinesElectrical machines have a fixed part (stator) and a rotating part (rotor). Stator and rotor are separated by an air gap. The windings on the stator carry the stator currents, whereas the magnetic field of the rotor can be generated by rotor currents or permanent magnets.

stator

rotorwinding

bearing shaft

end-cap end-cap

housing

active length

3-phase power supply cables

Torque is produced in the active part due to the interaction of the current and the magnetic field:

·

Page 35: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 35

Antriebstrang

Electrical MachinesElectrical machines have a fixed part (stator) and a rotating part (rotor). Stator and rotor are separated by an air gap. The windings on the stator carry the stator currents, whereas the magnetic field of the rotor can be generated by rotor currents or permanent magnets.

stator

rotorwinding

bearing shaft

end-cap end-cap

housing

active length

3-phase power supply cables

Torque is produced in the active part due to the interaction of the current and the magnetic field:

·

Whereas the magnetic loading is limited by the iron to values of about 1.2 – 1.8 T, the electric loading (current) can be increased by providing adequate cooling to the machine. For a high torque density most machines in traction application are therefore water cooled. Water Cooled Permanent Magnet

Machinee-Golf; Volkswagen AG

connections to cooling circuit

water duct

Page 36: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Antriebstrang

Electrical Machines for Traction Applications

Various types of electrical machines exist. In comparison to direct current machine, alternating current machines have a higher efficiency, better robustness, lower maintenance and compact design. Today ac machine are exclusively used for high performance traction drives. The final choice of motor is determined by many factors, with the focus on safety, efficiency and the costs of the overall system (motor, frequency converter, cooling and integration effort).

Folie 36

AC-Machines

Induction Machine Synchronous Machines

Separately excited

Permanent Magnet

Transversal-Flux Machines

Reluctance Machines

Specials

Page 37: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

The speed of ac machines is proportional to the frequency of the current, the torque of the machine is proportional to the amplitude of the current. The direct current of the battery is converted to an alternating current of variable amplitude and variable frequency by the frequency inverter. As with the motor, the frequency inverter must support the 4-quadrant operation.

Frequency Inverter

Folie 37

DC

AC

u

t

Ubat

u

t

Emotoring

Egenerating

For reasons of electromagnetic compatibility, compact-ness and costs the frequency inverter is often mounted in close proximity or on the electric motor. As the maximum operating temperature of the inverter is lower than that of the motor, it must be thermally decouple from the motor.

Motor-Inverter UnitNissan

Page 38: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 38

ElektrischerA

ntriebstrang

Frequency Inverter

The conversion of the dc voltage into an ac voltage is done by means of switching. Controlling the switching time allows the control of the average output voltage. Fast switching times (3 – 20 kHz) are necessary for a good approximation of a sinus.

The switching devices play a key role in the development of the frequency converter. Dependent on the voltage range two types of semiconductor switching devices find application in frequency converters:

- MOSFETMetal-Oxide-Semiconductor

Field-Effect-Transistor

- IGBTInsulated-Gate Bipolar Transistor

Semiconductor Switching Devices for Electric MobilityInfineon

G

D

S

iD

UG

S

G

C

E

iC

UG

E

Page 39: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 39

ElektrischerA

ntriebstrang

Frequency InverterThe structure of the frequency converter can be divided into different functional groups:

- Logicfor control

- Driverfor switching and protection of the semiconductor switching devices

- Semiconductor Switches for energy conversion

- DC-Link Capacitors as energy buffer

- EMC-Filter for limiting electro-magnetic emissions

- Sensors for measuring temperature, current and voltage

- Heatsink for heat extraction

- Internal Structure for current conduction and electrical isolation

- Housing for environmental and damage protection

- Connectors for signal and power

The logic traction controller is connected the low voltage power supply, the semiconductor switches to the high voltage power supply. Due to the electrical safety concept the low voltage side must be separated from the high voltage side. Some form of galvanic isolation must be implemented in the frequency converter.

Page 40: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 40

Hybridfahrzeuge

TeslaModels S 85

MercedesB 250 e

Type of Motor water cooled3-Phase, 4-Pole IM

Water cooledIM

Rated VoltageRated Current

375 V

Rated Power / SpeedMaximum Power / Speed 285 kW / 16.000 rpm

132 kW

Rated TorqueMaximum Torque 440 Nm @ 0 – 5.900 rpm 340 Nm

Max. Motor Efficiency

GearGear Ratio

1-Speed Reduction Gear 9,73:1

1-Speed Reduction Gear

Induction Machine

Page 41: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 41

Hybridfahrzeuge

Separately Excited Permanent Magnet Machine

RenaultZOE

(R240)

Type of Motor Air-cooledSeparately excited PM machine

Rated VoltageRated Current

250 V – 400 V400 A

Rated Power / SpeedMaximum Power / Speed

43 kW/ 11.300 rpm65 kW / 11.300 rpm

Rated TorqueMaximum Torque 220 Nm between 250 – 2.500 rpm

Max. Motor Efficiency

GearGear Ratio

1-Speed Reduction Gear9,5:1

Page 42: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 42

Antriebstrang

VW e-up! Permanent Magnet Synchronous MachineVolkswagen AG

Permanent Magnet Synchronous Machine

Page 43: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 43

Hybridfahrzeuge

VWe-up!

VWe-Golf

Type of Motor water cooledPMBAC-Motor

Water cooledPMBAC-Motor

Rated VoltageRated Current

Rated Power / SpeedMaximum Power / Speed 60 kW / 12.000 rpm 85 kW / 12.000 rpm

Rated TorqueMaximum Torque 210 Nm between 0 – 2.800 rpm 270 Nm between 0 – 3.000 rpm

Max. Motor Efficiency

GearGear Ratio

1-Speed Reduction Gear9,73:1

1-Speed Reduction Gear

Permanent Magnet Synchronous Machine

Page 44: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 44

Hybridfahrzeuge

Hybrid Motor

BMWi3

Type of Motor water cooled 6-poliger Hybrid-

Synchronous-Motor

Rated VoltageRated Current

250 V – 400 V400 A

Rated Power / SpeedMaximum Power / Speed

105 kW/ 11.400 rpm125 kW / 4.800 rpm

Rated TorqueMaximum Torque 250 Nm between 0 – 4.800 rpm

Max. Motor Efficiency 97 %

GearGear Ratio

1-Speed Reduction Gear9,7:1

Page 45: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 45

Battery Electric Vehicles - BEV

1 E-Maschine2 Leistungselektronik3 Traktionsbatterie

1

2

3

Battery electric vehicles have a simpler mechanical structure than vehicles with a combustion engine or hybrid drives. Due to the characteristic of the electric motor, which is well adapted to the tractive requirements of a vehicle, the gear box can be omitted in most cases. The differential can be omitted, if the left and right wheels of an axle are driven by separate electric motors.

Because of the limited energy storage capability of the traction battery, economic driving is of particular importance. This can be achieved by lightweight construction, good aerodynamics (low drag coefficient, small frontal area) and low friction (low-resistance tires).

Structure of an Battery Electric VehicleDie Elektrifizierung des Antriebsstrangs; H. Tschöke (Hrsg.)

Energy saving technologies are also required for the auxiliary units, as they too draw energy from the traction battery. In particular, the energy consumption for the air conditioning of the vehicle interior and the temperature management of the battery can greatly reduce the range of the vehicle. Here good heat management is necessary. Possibly is the use of fuel-powered auxiliary heaters.

Battery Electric Vehicles

Page 46: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 46

Two fundamentally different designapproaches exist for Battery Electric Vehicles:

Conversion-Design

A Conversion-Design uses the basic structureof a conventional vehicle and replaces the conventional drive train by an electric drive train.

Purpose-Design

A purpose-design is a complete new vehicle development based on the specific requirements of electric vehicles. This may result in the use of new technologies and / or a completely new arrangement of the vehicle components. For example, the position of the battery in the vehicle, regardless of existing structures.

Design Approaches

Battery Electric Vehicles

Conversion Design: VW e-Golf

Purpose Design: BMW i3

Page 47: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 47

Elektrofahrzeuge

Design ApproachesBMW

i3Mercedes-Benz

B 250 e

Chassis and Body Alu ChassisCarbon Body

modular chassis conceptSteel Frame

Drive Train 125 kW, PMBAC1-Speed Reduction Gear

Rear Wheel Drive

135 kW, ASM1-Speed Reduction Gear

Front Wheel Drive

Traction Battery 18,8 kWh, LiIonFloor Pan

28 kWh, LiIonFloor Pan

Weight of Vehicle (w/o Battery) 965 kg 1.450 kg

Power/Weight Ratio 98 W/kg 77 W/kg

Consumption 12,9 kWh / 100 km 16,6 kWh / 100 km

Page 48: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 48

Battery Arrangements

Because of its overall volume and weight, the structure of a battery electric vehicles will be greatly affected by the traction battery. The chassis/body has to support the high weight of the battery but also needs to compensate for the weight gain through lightweight structures.

The battery need to be placed crashproof but also easily accessible forservice. This is usually achieved bya modular design.

Usually a battery charger needs to beIntegrated with the battery.

Possible

Arrangements for

theB

atteryElektrom

obilität: Grundlagen einer Zukunftstechnologie;

A. Kam

pkeret al.

Battery Electric Vehicles

Page 49: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 49

Motor ArrangementsA

CD

C

ACDC

AC

AC

DC

AC

AC

DC

AC

In-Wheel Motor(Schäffler)

Electric motors are smaller than internal combustion engines of the same rating. The torque-speed characteristic of electric motors fits well to the traction requirement of cars. In most cases only a simple and compact 1-speed reduction is placed between the electric motor and the wheels. This opens the possibility to place the motors in close distance to the wheels are even to integrate the motor / gear directly in the wheel.

Page 50: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 50

Motor Arrangements

Tesla SSingle Motor

and Differential

Tesla SDual Motor

and Differential

Mercedes Benz SLS AMG Electric Drivewith geared In-Wheel Motor

Page 51: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 51

Hybrid Electric Vehicles - HEV

A hybrid electric vehicle is classified as a vehicle in which different forms of energy are converted into tractive effort. Accordingly a hybrid vehicle has at least

- two different energy storage systems- two different energy converters

In principle, a hybrid vehicle can be set-up by every possible combination of different forms of energy and their appropriate converters. In practice, the hybridisation of the conventional drive train is usually accomplished by the combination of combustion engine and electric machine.

The second energy storage device / power converter increases the complexity of the drive train. In comparison to a conventional vehicle a hybrid electric vehicle has the following advantages:

- reduced of fuel consumptionThe reduction of fuel consumption is essentially achieved by

- the recuperation of braking energy- the reduction of no-load losses (start-stop)- increasing the average efficiency of the ICE by shifting of the load point

- reduced pollutant and noise emissions- higher drive dynamics and increased drive comfort

In comparison to an battery electric vehicle, a hybrid electric vehicle has an increased range.

Hybrid Electric Vehicles

Page 52: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 52

Electrical Drive onlyelectric Motoring

Charging

Recuperative BrakingGenerating

Images from: Elektrische Maschinen für Hybridantriebe, Company Brochure ZF

Hybrid Electric Vehicles: Operation Mode

Dependent on the operation mode and power requirement, the combustion engine and the electric motor provide different proportions of the required tractive power. The percentage of the power split between the two drive systems is determined by the drivetrain architecture and the operation strategy.

Combustion Engine only

- Motoring- Start-Stop

Hybrid Drive

- Boost- Shifting of the Load Point

Coasting

Page 53: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Hybrid Electric Vehicles: Operation Strategy

Folie 53Operation Strategy of a Full Hybrid with Parallel Drivetrain ArchitectureKraftfahrzeug-Hybridantriebe; K. Reif et al.

Discharging Maintaining Charge Charging via shifting of the load point

Hybrid Electric Vehicles

Spee

d (in

km

/h)

Stat

e of

Cha

rge

(in %

)P

ower

(in

kW)

Combustion Engine

Electric Motor

Page 54: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 54

Hybrid Electric Vehicles can be classified according to two main criteria:

according to drivetrain structure (1

Classification of Hybrid Electric Vehicles

by the arrangement of the components

according to the degree of electrification /

hybridisation (2

- Micro hybrid

- Mild hybrid- Full hybrid- Plug-in-Hybrid

- EV with Range-Extender

by the electric traction power respectively

the size of the traction battery

- Start-Stop Systems

(1 i.e. according to the power flow (2 i.e. according to functions

- Serial Hybrid- Parallel Hybrid- Power-Split Hybrid

- Combinations therof

Hybrid Electric Vehicles - Classifications

Hybrid Electric Vehicles

Page 55: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 55

Hybrid Electric Vehicles: Classification according to the Drivetrain Structure

Folie 55

The components of the drivetrain can be arranged in different combinations, so that a wide range of hybrid concepts realized. The classification is based on the power flow from tank/battery via engine/electric motor to the wheels.

Three basic types can be identified:

- Serial hybrid - Parallel hybrid- Power split hybrid

Trac

tion

El-M

otor

Engi

ne

Engi

ne

Engi

neEl

-Mot

or

El-M

otor

Trak

tion

Trac

tionBat

tery

Trac

tive

Pow

er

Power Flow

SerialPower Flow

ParallelPower Flow

Power Split

Bat

tery

Page 56: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 56

Hybrid Electric Vehicles: Classification according to the Drivetrain Structure

Folie 56Drivetrain Sturctures of Hybrid Electric VehiclesDie Elektrifizierung des Antriebsstrangs; H. Tschöke (Hrsg.)

SerialHybrid

ParallelHybrid

Power SplitHybrid

Page 57: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 57

Hybrid Electric Vehicles: Classification according to the Drivetrain Structure

Folie 57Parallel Sturctures for Hybrid Electric VehiclesDie Elektrifizierung des Antriebsstrangs; H. Tschöke (Hrsg.)

ParallelHybrid

Page 58: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 58

Hybrid Electric Vehicles: Classification according to the Degree of Electrification

Start-Stop

Re-cuperation

Boost Shifting of Load Point

Electric Traction

Coasting Charging

Start-Stop

Micro-Hybrid

Mild-Hybrid

Full-Hybrid

Plug-In Hybrid

Page 59: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 59

Hybridfahrzeuge

Elektrische Motorleistung und Speichergröße bei MittelklassefahrzeugenKraftfahrzeug-Hybridantriebe; K. Reif et al.

System Voltagelow voltage - LV high voltage - HV

Mikro / Mild-Hybrid

1kWh≪ 1kWh 5kWh 15kWh 20kWh 10kWh10kWh

3kW 20kW 20kW 40kW 40kW20kW

Battery TechnologyPbPb Pb / LiIon LiIon LiIonLiIonLiIon

Hybrid Electric Vehicles: Classification according to the Degree of Electrification

Page 60: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 60

Hybridfahrzeuge

VolkswagenGTI BlueMotion

VolkswagenGTE

Degree of Hybridisation Micro-Hybrid Plug-In Hybrid

Drivetrain Configuration Parallel Hybrid Parallel Hybrid

System (Total) Power 162 kW 150 kW

System Voltage 14 V 14 V / 352 V

(Traction) Battery 12 V / 70 Ah, Lead Acid 8,7 kWh, LiIon

Electrical Reach 50 km, 130 km/h

Specific Consumption (for 1oo km) 6,0 l Petrol 1,7 l Petrol / 12,4 kWh Electricity

Hybrid Electric Vehicles

Page 61: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 61

Hybridfahrzeuge

BMWi8

Degree of Hybridisation Plug-In Hybrid

Drivetrain Configuration Parallel Hybrid

System (Total) Power 266 kW

System Voltage 14 V / 355 V

Traction Battery 5,2 kWh, LiIon

Electrical Reach 37 km, 65 km/h

Specific Consumption (for 1oo km) 2,1 l Petrol / 11,9 kWh Electricity

96 kW PMBAC Motor

170 kW 3-Zylinder Benzinmotor

5,2 kWh Hochvoltbatterie

15 kWStarter-Generator

HEVs

Page 62: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 62

Hybridfahrzeuge

ToyotaPrius

ToyotaPrius Plug-in Hybrid

Degree of Hybridisation Full Hybrid Plug-In Hybrid

Drivetrain Configuration Power Split Power Split

System (Total) Power 100 kW 100 kW

System Voltage 14 V / 201,6 V 14 V / 207,2 V

(Traction) Battery 1,3 kWh, NiMH 4,4 kWh, LiIon

Electrical Reach 3 km, 45 km/h 25 km, 85 km/h

Specific Consumption (for 1oo km) 3,9 l 2,1 l Petrol / 5,2 kWh Electricity

Hybrid Electric Vehicles

Page 63: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 63

Hybridfahrzeuge

Hybrid Electric Vehicles

Mercedes-BenzCitaro G BueTec Hybrid

Degree of Hybridisation Plug-In Hybrid

Drivetrain Configuration Serial Hybrid

Combustion EngineElectric MotorSystem (Total) Power

160 kW, Diesel4x 80 kW In-Wheel Motor (IM)

320 kW

System Voltage 24 V / 650 V

(Traction) Battery 27 kWh, LiIon

Electrical Reach 10 km, 80 km/h

Specific Consumption (for 1oo km) 26 – 30 %

Page 64: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Topics

IntroductionMotivation Challenges & Opportunities

Electric & Hybrid Cars Drivetrain Architecture & Components Electric & Hybrid Concepts

HV-System High Voltage Power Supply Batteries Charging Modes Charging Stations

Folie 64

Page 65: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 65

The Electrical Network

Electrical Networktransmits

electrical energyand

signals

The electrical network consists of cables, wires,

connectors, relays etc.

ECU

μC

ECU

μC

Controller

StarterBosch

GeneratorBosch

other loads

Page 66: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 66

As more and more functions in an car a released by electrical motors and actuators, the demand for electrical power is constantly increasing. For a fixed voltage, a higher load power results in a higher load current. Higher currents, however, require larger wire diameter to limit the transmission loss (I2R) and the temperature increase.

The Electrical Energy Network

Cur

rent

Power

The power of the traditional 14 V low voltage power supply is limited to about 5 kW. For traction application a higher power is required. In order to provide that power, it became necessary to introduce another voltage level.

Practice has shown that an automotive low-volt systems can be realized, with reasonable technical (and financial) effort for steady-state currents up to 200 A - 300 A. Current values of 200 A are considered borderline and values of 300 A critical.

Page 67: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 67

The High Voltage Power Supply Network

With the increase in voltage comes the increased risk of electrical shock. Voltages of above 60 V dc and 30 V ac are considered dangerous. Special measures need to be applied to prevent dangerous touch voltages during normal operation, maintenance and accidents.

The implementation of these safety measures requires a strict separation of the high voltage (HV) side from the low voltage (LV) side.

The cost of implementing the safety measures is related to the systems voltage. Whereas the low voltage side has defined voltage levels of 14 V (passenger cars), 24 V (trucks) and 48 V, the automotive high voltage is defined more generally:

60 V dc to 1.500 V dcrespectively

30 V ac to 1.000 V ac

LVHV

The final voltage level is chosen by the supplier, taking the following considerations into account:- technical necessity (efficiency, losses, heat)- costs of providing isolation and ensuring safety

As the standard components for the low voltage side are already available at low cost, an electric or hybrid vehicle usually operates with two system voltages.

Page 68: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 68

HV-Power Supply LV-Power Supply

HV-Batterie

Fahrzeugfunktionen: CAN, TTCAN, FlexRay

Infotainment, MM,

Car-to-Car, Car-to

Chassis

NV-BatterieDC-DC Wandlermit

Galvanischer Trennung

BM

S

Kommunikation

AC

Motorsteuerung

NV-BordnetzNV-Bordnetz

FahrsteuerungTraktionsmotor

Kommunikation

The High Voltage Power Supply Network

Structure of a Multi-Voltage Power Supply Network

Page 69: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 69

E/E-A

rchitektur

Start-Stop Systems

Micro Hybrid Mild-Hybrid Full-Hybrid / Plug-In Hybrid

Battery Electric

max. Power < 3 kW < 4 kW < 10 kW < 14 kW < 20 kW 100 kW 200 kW

System Voltage (1 14 V 14 V 48 V 48 V 150 V 350 V 600 V

max. Current < 250 A < 350 A < 250 A < 400 A < 200 A < 350 A < 350 A

14 V48 V

120 V

1 kV

1 kWh

200 V

3 kW12 kW

> 14 kW

> 100 kW> 50 kW

5 kWh >20 kWh

battery electricvehicles

Pra

ctic

al C

urre

nt L

imit

200A

–30

0A

The High Voltage Power Supply Network

Page 70: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 70

Antriebstrang

The Components of the High Voltage Network

In addition to the traction motor and the frequency converter, an electric vehicle requires further (power electronic) equipment for operation. Power can be transmitted from the HV to the LV-side via a DC / DC converter. The battery is charged via the integrated charger. And of the power flow to and from the low voltage side is controlled. Additional converters are required for high-load appliances such as air conditioning / heating, x-by-wire, etc.

Page 71: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 71

ElektrischeEnergiespeicher

Traction BatteryIn electric cars it is not practical to continuously supply the traction energy by a cable and a pantograph (as with electric trains). Therefore the energy required for travelling must be storred carried by the vehicle. In electric and hybrid vehicles the energy is stored electro-chemical in batteries.

Different battery technologies are available. The various technologies differ, sometimes considerably with respect to their energy and power density, as well as cost, efficiency, safety, availability of materials and the number ofsuppliers of commercial products.

In electric vehicles the energy and power density are of special importance, since the former determines the range and the later determines maximum speed. Therefore, modern battery-electric vehicles use Li-ion batteries for traction.

Rag

one-

Dia

gram

for

Elec

tric

al E

nerg

y St

orag

e Sy

stem

sEl

ektr

ifizi

erun

gde

s An

trie

bsst

rang

es; H

. Tsc

höke

Spec

ific

Pow

er (W

/kg)

Specific Energy (Wh/kg)

Page 72: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 72

ElektrischeEnergiespeicher

Lithium-Ion-BatteriesThe term lithium-ion battery is used generally for battery technologies based on lithium, which are operating on the same principle but differ (mainly) in the material composition of the electrodes. The choice of material of the electrodes results in different lithium-ion batteries with type specific cell voltages and capacities.

Cat

hode

Anod

e

Voltages Levels ofLiIon Battery-SystemsKraftfahrzeug-Hybridantriebe; K. Reif et. al.

LiIon Electrode Materials

Cathode

Lithium-Mangan-Oxide LMO LiMn2O4

Lithium-Kobalt-Oxid LCO LiCoO2

Lithium-Nickel-Mangan-Kobalt-Oxide NMC LiNi0,33Mn0,33Co0,33O2

Lithium-Nickel-Kobalt-Aluminium-Oxide NCA LiNiCo0,85Al0,15O2

Lithium-Eisen-Phosphat LFP LiFePO4

Lithium-Eisen-Mangan-Phosphat-Oxid LFMP LiFeE0,15Mn0,85PO4

Anode

Lithium-Titanat LTO Li4Ti5O12

Silizium Legierung, Aluminium Legierungen LiSi, A Li22Si5, LiAl

Graphit C LiC6

Lithium-Metall Li-Metall Li

Page 73: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 73

ElektrischeEnergiespeicher

Lithium-Ion-BatteriesThe term lithium-ion battery is used generally for battery technologies based on lithium, which are operating on the same principle but differ (mainly) in the material composition of the electrodes. The choice of material of the electrodes results in different lithium-ion batteries with type specific cell voltages and capacities.

Cat

hode

Anod

e

Voltages Levels ofLiIon Battery-SystemsKraftfahrzeug-Hybridantriebe; K. Reif et. al.

Discharge Curves of LiIon Battery SystemsEnergiespeicher; M. Sterner, I. Stadler

Page 74: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 74

ElektrischeEnergiespeicher

Cell Voltage Levels and save Operation Area for different Combinations of Electrode Materials green – no safety riskRed – safety riskElektrifizierung des Antriebsstranges; H. Tschöke

Lithium-Ion-BatteriesThe choice of material, however, also defines costs, lifetime and safety. In some combinations are considered critical if certain voltage limits are exceeded. Electronic protection circuits must monitor cell voltage and prevent, even in case of failure, a safety hazard.

Page 75: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 75

ElektrischeEnergiespeicher

Akkumulatoren: Lithium-Ionen-Batterien

HV-Batteries: Material Combinations & Cell TypesRoadmap Batterie-Produktionsmittel; VDMA

Lithium-Ion-Batteries

Quelle: Saft Quelle: Lithium Energy Japan

Quelle: AESCZylindrisch

Zylindrisch

Prismatisch

Pouch

Page 76: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 76

Hybridfahrzeuge

Battery SystemsThe basic building block of a battery is a cell. The cell voltage usually is between 1.2 V and 5 V. In order to reach higher system voltages, cells the same type and nominal data can be connected in series. In order to reach higher system capacity, cells the same type and nominal data can be connected in parallel.

The cells are packed in cell stacks with a maximum voltage of usually below the safety critical 60 V. This allows the handling of the battery pack without special safety measures.

The cell stacks are connected together to form a battery system.

Different electric / electronic safety and monitoring systems are implemented on stack and systems level.

Cell Cell Stack Battery

Cell-Supervisory-CircuitCell-Balancing-Circuit

Battery-Management SystemFusesContactor for disconnecting the battery from the power network

Current and Temperature Sensor for supervision

Isolation Monitoring for providing safety

Page 77: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 77

Hybridfahrzeuge

VW e-Golf

Battery TypeCathode Material

Li-IonLithium-Nickel-Mangan-Kobalt-Oxide - NMC

Rated CapacityRated Voltage

24,2 kWh323 V

Connection: pack

cell

17 stacks with 4s3p+ 10 stacks with 2s3p

Panasonic prismatic cells with 3,7 V / 25 Ah

Battery Weight 318 kg

Energy Density 160 Wh/kg

Battery Systems

Page 78: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Battery Systems

Folie 78

4s3pUmodul_1 = 14,8 VCmodul_1 = 75 Ah

2s3pUmodul_2 = 7,4 VCmodul_2 = 75 Ah

17x 4s3pUsystem_1 = 251,6 VCsystem_1 = 75 Ah

10x 2s3pUsystem_2 = 74 VCsystem_2 = 75 Ah

17x 4s3p + 10x 2s3pUsystem = 325,6 VCsystem = 75 Ah Esystem = 24,4 kWh

Page 79: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 79

Hybridfahrzeuge

Tesla S

Battery TypeCathode Material

Li-IonLithium-Nickel-Kobalt-Aluminium-Oxid - NCA

Rated CapacityRated PowerRated Voltage

85 kWh

400 V

Setup: SystemPackCell

16 Module in Serie6 Gruppen in Serie mit je 74 Zellen parallel

Panasonic Rundzellen (Typ: 18640) mit 4,35 V / 3,25 Ah

Battery WeightBattery Volume

544 kg

Power DensityEnergy Density 160 Wh/kg

Warranty 8 Jahre mit unbegrenzter Laufleistung (1(1 auf Funktionsfähigkeit

(nicht Kapazität)

Battery Systems

Page 80: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 80

Hybridfahrzeuge

NissanLeaf

Battery TypeCathode Material

Li-IonLithium-Manganoxid - LMO

Rated CapacityRated PowerRated Voltage

(24 kWh) / 21,3 kWh90 kW360 V

Setup: SystemPackCell

48 Module in Reihe2 Gruppen in Serie mit je 2 parallele Zellen

AESC Pouch Zellen mit 3,8 V / 33 Ah

Battery WeightBattery Volume

218 kg

Power DensityEnergy Density

410 W/kg110 Wh/kg

Warranty 5 Jahre oder 100.000 km

Battery Systems

Page 81: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 81

Hybridfahrzeuge

BMWi3

Battery TypeCathode Material

Li-IonLithium-Manganoxid - LMO

Rated CapacityRated PowerRated Voltage

(21,6 kWh) / 18,8 kWh

360 V

Setup: SystemPackCell

8 Module in Reihe12 Zellen in Reihe

Samsung SDI prismatische Zellen mit 3,7 V / 60 Ah

Battery WeightBattery Volume

230 kg

Power DensityEnergy Density 95 Wh/kg

Warranty 8 Jahre oder 100.000 km

Battery Systems

Page 82: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 82

Hybridfahrzeuge

BMWC Evolution

Battery TypeCathode Material

Li-IonLithium-Manganoxid - LMO

Rated CapacityRated PowerRated Voltage

(8 kWh) / 7 kWh

133 V

Setup: SystemPackCell

3 Module in Reihe12 Zellen in Reihe

Samsung SDI prismatische Zellen mit 3,7 V / 60 Ah

Battery WeightBattery Volume

65 kg30 l

Power DensityEnergy Density 123 Wh/kg (auf Zellebene)

Warranty 5 Jahre oder 50.000 km

Battery Systems

Page 83: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 83

Hybridfahrzeuge

KiaSoul EV

Battery TypeCathode Material

Li-IonLithium-Nickel-Kobalt-Mangan - NMC

Rated CapacityRated PowerRated Voltage

(30,5 kWh) / 27 kWh90 kW360 V

Setup: SystemPackCell

8 Module 192 Zellen

SK Innovation Pouch Zellen mit 3,7 V / (43 Ah) 38 Ah

Battery WeightBattery Volume

277 kg

Power DensityEnergy Density (110 Wh/kg) / 98 Wh/kg

Warranty 7 Jahre oder 150.000 km

Battery Systems

Page 84: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Folie 84

Today, electric cars are charged via conductive systems.Inductive charging systems are in development.Charging

Conductive AC charging uses the on-board charging unit of the vehicle. In this case, the vehicle is connected by means of a suitable supply device (charger, wall box) with the one or three phases AC voltage grid

The on-board charge converts the alternating supply current into the direct current required for charging the battery. in the vehicle.

,

With conductive DC charging, the charger unit is outside the vehicle. The battery is charged directly from the DC charger, with the charging being controlled by the battery.

,.

DC-Schnellladetechnologie; ABB

Page 85: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Charging Modes4 charging modes for wired charging are defined in standard DIN EN 61851-1. Modes 1 to 3 are related to AC charging with the on-board charger, charging mode 4 describes the DC charging by an "off-board charger".

Apart from the basic distinction between AC charging and DC charging, the charging modes differ mainly with respect to the max. charging power and the communication and security interface to the vehicle.

3.7 kW (16 A)11 kW (16 A)

Maximum Power:Single Phase:Three Phase:

7.4 kW (32 A)22 kW (32 A)

14.5 kW (63 A)43.5 kW (63A)

DC low: 38 kWDC high: 170 kW

Communicationand Safety:

nonevia domestic installations

via in-cablecontrol box

viacharging station

viacharging station

Page 86: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Currently three systems are competing for dc-charging:- compatible with Type 2 and

preferred in Germany, the Combined-Charging System

- originating in Japan and with currently the most installations worldwide, CHAdeMO

- and the property Supercharger system from Tesla.

Folie 86

Connector Types

Pinning Connector Typ 2Mennekes

Connector types for charging are described in standard IEC 62196-2 (AC) and IEC 62196-3 (DC). Regional preference has lead to the definition of different connector types.

From 2017 the connector type 2 is mandatory for AC charging in Europe.

Phoenix Contact

Page 87: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Charging Systems

Private Sector(private garage, carport, parking space)

Only small to medium power requirements, due to long parking times.

Charging Time: 120 minutes … 8 h

Power Requirements: 3,7 kW … 7,4 kW

Capacity: 1 vehicle / day

Folie 87

Half-Private Sector(company parking space)

Medium power requirements, due to long parking times.

Charging Time: 120 minutes … 8 h

Power Requirements: 3,7 kW … 11 kW

Capacity: 2 - 3 vehicles / day

Page 88: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Charging Systems

Half Public Sector(car park, shopping centre, …)

Intermediate top-up only sensible with high charging power.

Charging Time: 30 minutes … 1 h

Power Requirement: 22 kW

Capacity: 5 - 12 vehicles / day

Public Sector(public charging stations at public roads / motorways, …)

Highest power required for fastest charging at low battery levels.

Charging Time: 15 minutes … 30 minutes

Power Requirement: > 50 kW

Capacity: 12 - 20 vehicles / day

Folie 88

Terr

a SC

Com

mer

cial

Cha

rger

, AB

B

Page 89: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

All New???

Folie 89

Page 90: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Following the steam engine, electrical machines were used as engines for traction applications well before the arrival of the combustion engine.

The Beginning of Motorisation

1712Erfindung

der DampfmaschineThomas Newcomen

1821erste konstante Rotation

durch ElektromagnetismusMichael Faraday

1860erster 4-Takt Motor

Christian Reithmann

1859erster (2-Takt) Gasmotor

Étienne Lenoir

1830er Jahreerste praxistaugliche

Elektromotoren Sturgeon, Davenport, Jacobi etc.

1800Erfindung der

elektrischen BatterieAlesandro Volta

1804erste

EisenbahndampflokomotiveRichard Trevithick

1769erster Straßendampfwagen

der Fardier (Lastenschlepper)Nicholas Cugnot

1776erstes Dampfschiff

Claude François d’Abbans

1886Benz Patent-Motorwagen

Carl Benz

1863erstes Straßenfahrzeug

mit GasmotorÉtienne Lenoir

1839erster Elektrokarren

Robert Anderson

1843erste Elektrolokomotive

Robert Davidson

1881erstes elektrisches Fahrrad

GustaveTrouvé

1882erstes Elektroauto

W. Ayrton & J. Perry

1750 1800 1850 1900

1854Erfindung Bleiakku

Wilhelm J. Sinsteden

Page 91: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Tricycles

1881 präsentierte Gustave Trouvé auf der internationalen Elektrizitätsausstellung in Paris ein mit einem elektrischen Antrieb modifiziertes dreirädriges Fahrrad. Der Motor des Tricycle hatte eine effektive Leistung von 700 W. Die Stromversorgung erfolgte über einen hinter dem Fahrer montierten 12 V Bleiakku. Über einen Schalter am Bremshebel wurde der Elektroantrieb zugeschaltet. Das Fahrrad erreichte eine Geschwindigkeit von 12 km/h.

1881: Erstes E-BikeG. Trouvéwikipedia.de

1875 1900 1925

1881erstes elektrisches

FahrradGustaveTrouvé

Page 92: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

1882 präsentierten die Engländer William Edward Ayrton und John Perry ein elektrisches Dreirad, das Ayrton & Perry Electric Tricycle. Im Gegensatz zu TrouvésFahrzeug besaß dieses Tricycle keine Pedale mehr und war somit vollständig auf den Elektroantrieb angewiesen.

Der Motor leistete 370 W und die unter der Sitzbank ange-ordneten Bleiakkumulatoren hatten eine Kapazität von 1½ kWh und eine Spannung von 20 V. Damit erreichte dasFahrzeug eine Geschwindigkeit von 14 km/h und hatte eineReichweite von bis zu 40 km.

Die Geschwindigkeit wurde über einen Batteriezellen-Schalter, durch Zu- und Abschalten der 10 Akkumulator-zellen, gesteuert.

Das Ayrton & Perry Tricycle ist das erste Fahrzeug mit elektrischem Licht. 1881: Ayrton & Perry Electric Tricycle

wikipedia.de

1875 1900 1925

1882erstes straßentaugliche

ElektroautoW. Ayrton und J. Perry

1881erstes elektrisches

FahrradGustaveTrouvé

Tricycle

Page 93: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

ElektroautoAls erstes vierrädriges Elektroauto gilt der Flocken Elektrowagen aus Coburg, erbaut im Jahre 1888.

Bei diesem Fahrzeug handelte es sich, ähnlich wie später bei G. Daimler, um eine umgebaute Kutsche. Das Fahrzeug wurde von einem 700 W Elektromotor angetrieben und hatte als Energiespeicher einen etwa 100kg schweren Bleiakku. Das Fahrzeug fuhr in einer ersten Fahrt in 2½h Stunden etwa 30 km weit.

Die elektrische Energie zum Aufladen der Akkus wurde regenerativ über einen von Wasser angetriebenen Generator erzeugt.

1888: Flocken Elektrowagen (Rekunstruktion)wikipedia.de

1875 1900 1925

1882erstes straßentaugliche

ElektroautoW. Ayrton und J. Perry

1881erstes elektrisches

FahrradGustaveTrouvé

1888erster

Elektro-PKWFlocken Elektrowagen

Page 94: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Elektroauto

1899 wurde vom Belgier Camille Jenatzi mit seinemElektroauto „La Jamais Contente“ erstmalig für ein Straßenfahrzeug eine Geschwindigkeit von mehr als 100 km/h, nämlich 105 km/h, erreicht.

Die Bauweise in Form eines Torpedos war eine der ersten, die nach aerodynamischen Gesichtspunktenentwickelt wurde. Das Fahrzeug wurde von zwei25 kW Gleichstrommotoren angetrieben und hatte als Energiespeicher eine etwa 850 kg schwere Batterie mit einer Kapazität von 135 Ah und einer Spannung von 200 V.

Dies war sogleich der letzte von einem elektromotorisch betriebenen Straßenfahrzeug aufgestellte Geschwindigkeitsrekord. 1902 wurde dieser Rekord von einem verbrennungs-motorisch angetriebenen Fahrzeug mit einer Geschwindigkeit von 122 km/h gebrochen.

1899: La Jamais Contentewikipedia.de

1875 1900 1925

1899Geschwindigkeitsrekord

La Jamais Contente

1882erstes straßentaugliche

ElektroautoW. Ayrton und J. Perry

1881erstes elektrisches

FahrradGustaveTrouvé

1888erster

Elektro-PKWFlocken Elektrowagen

Page 95: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Elektroauto

1900 wurde auf der Weltausstellung von Paris daserste Allradfahrzeug präsentiert. In dem von Ferdinand von Porsche für die Wiener Lohner Werke konstruierte Wagen kamen 4 Radnaben-Motoren mit jeweils 7 PS zum Einsatz. Damiterreichte das Fahrzeug eine Geschwindigkeit von ca. 60 km/h und hatte einen Wirkungsgrad von 83 %.

Die Batterien hatten ein Gewicht von 1800 kg undeine Spannung von 80V.

1900: Lohner-Porsche mit Allradantriebwikipedia.de

1875 1900 1925

1899Geschwindigkeitsrekord

La Jamais Contente

1882erstes straßentaugliche

ElektroautoW. Ayrton und J. Perry

1881erstes elektrisches

FahrradGustaveTrouvé

1888erster

Elektro-PKWFlocken Elektrowagen

1900Erster Allradantrieb

Lohner-Porsche

Page 96: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Elektroauto

Das erste Hybridauto wurde in Spanien gebaut.Die „la Cuadra“ hatte einen 3 kW Elektromotor undeinen zusätzlichen 5 PS Verbrennungsmotor, der einen Dynamo antrieb um die Batterien des Fahrzeuges aufzuladen.

Auch F. v. Porsche präsentierte 1901 auf dem Automobilsalon von Paris einen Hybrid-Antrieb, den Semper Vivus. Zur Stromerzeugung in-stallierte er in der Fahrzeugmitte zwei wasser-gekühlte 3,5 PS Benzinmotoren, die zwei Generatoren mit je 2,5 PS antrieben. Beide Motoren arbeiteten getrennt voneinander und lieferten jeweils 20 A bei einer Spannung von 90 V an zwei je 2 kW starke Radnabenmotoren, wobei die Überschussleistung an die Batterien weitergeleitet wurde. Das Fahrzeug erreichte so eine Höchstgeschwindigkeit von 35 km/h und eine Reichweite von 200 km. Leicht verändert wurde das Auto ab 1902 als „Mixte“ in Serie gefertigt.

1901: Semper Vivus (später Mixte)Porsche AG

1875 1900 1925

1899Geschwindigkeitsrekord

La Jamais Contente

1882erstes straßentaugliche

ElektroautoW. Ayrton und J. Perry

1881erstes elektrisches

FahrradGustaveTrouvé

1888erster

Elektro-PKWFlocken Elektrowagen

1900Erster Allradantrieb

Lohner-Porsche1899erstes Hybridauto

La Cuadra, Spanien

1902Erste Serienfertigung

eines HybridautosLohner-Porsche Mixte

Page 97: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

1900 - 1925(Beispiel USA)

Um die Jahrhundertwende waren Dampfantrieb, verbrennungsmotorischer Antrieb und elektrischer Antrieb gleichermaßen vertreten. Aufgrund des begrenzten Minimierungspotenzials verlor der Dampfantrieb schnell an Bedeutung. Aber auch Elektroautos verloren trotz steigender Produktionsstückzahlen in einem wachsenden Markt stetig an Bedeutung. 1912 waren in den USA ca. 900.000 Autos registriert, darunter 33.842 Elektroautos. Schon 1921 wurden von insgesamt 9 Mio. zugelassenen PKWs nur noch 18.200 elektrisch betrieben.

1900 1950 2000

Elektro Verbrenner Dampf Total

1899 1.575 (38%) 936 1.681 4.192

1904 1.495 (7%) 18.699 1.568 21.762

1909 3.826 (3%) 120.393 2.375 126.594

1912 ca. 10.000

1914 4.669 (1%) 564.385 569.054

1924 391 (0,01%) 3.185.490 3.185.881

Neuzulassungsstatistik U

SAA

utomotive Electricity: Electric

Drive; J. B

erettaThe Electric

Car; M

. H. W

estbrook

1912Production Peak

10.000 units

1924Marginal Production

391 units

1900Open Contest

201463.325 newly registered

Battery Powered EV

201110.046 newly registered

Battery Powered EV

Page 98: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

Als Reaktion auf den Zero-Emission-Act führte GM 1996 den EV1 als erstes modernes, von einem großen Automobilhersteller ausschließlich für den Elektroantrieb entwickeltes Serienfahrzeug ein. Zwischen 1993 und 1996 wurden 1.117 Fahrzeuge verleast, aber 2003 wieder eingezogen.

1997 brachte Toyota mit dem Prius das erste Großserienmodell mit eingebautem Hybridmotor auf den Markt. Der Prius wird inzwischen in 3ter Generation gebaut. Seit der Serieneinführung wurden bis Mitte 2013 über 3 Mio. Fahrzeuge verkauft.

2006 stellte Tesla Motors den Tesla Roadster vor. Zwischen 2008 und 2012 wurden ca. 2.500 Einheiten verkauft.

2013 startete die Produktion des BMW i3, der erste in Deutschland für die Großserie als reines Elektrofahrzeug konzipierte PKW.

Marktreifeprozess

1990 2020

1997Prius

Toyota

1990Zero-Emission-ActCalifornia

2008 - 2012Produktion des Tesla Roadster

Tesla Motors

2013BWM i3

BMW

1996 - 1999Produktion des EV1

GM

2011 - 2016AmperaOpel

2000 2010

Page 99: E-Mobility in Germany: Challenges & Opportunities · 2020 2050 Kyoto-Protocol: Aim to limit global warming to below 2oC relative to the pre-industrial temperature level. Targets of

2010 2020

2013BWM i3

BMW

2013E-up!VW

2014Soul EVKia

2009i-MiEV

Mitsubishi

2011TwizyRenault

2012Focus ElectricFord

2012Model S

Tesla Motors

2016Model XTesla Motors

2016IoniqHyundai

2008 - 2012RoadsterTesla Motors

2010Leaf

Nissan

2012smart evsmart

2014e-GolfVW

2016CitroenE-Mehari

2014B 205 eMercedes-Benz

2016R8 e-tronAudi

2017Model 3Tesla

2018E-BaureihePorsche

2020ELA

Mercedes-Benz

2018Q6 e-tronAudi

2017Chevi Volt EuropaOpel

2018E-BulliVW

2018Model YTesla Motors

2018ELCMercedes-Benz

2020i5

BMW

2013ZoeRenault

Elektroautos der Gegenwart