32
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes E. Metral, G. Rumolo, B. Salvant, C. Zannini (CERN BE-ABP-LIS) 1

E. Metral , G. Rumolo , B. Salvant, C. Zannini (CERN – BE-ABP-LIS)

  • Upload
    frisco

  • View
    72

  • Download
    2

Embed Size (px)

DESCRIPTION

Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes . E. Metral , G. Rumolo , B. Salvant, C. Zannini (CERN – BE-ABP-LIS). Overview. Objectives Definition of the detuning, driving and general wake First simulations - PowerPoint PPT Presentation

Citation preview

Page 1: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

1

Particle Studio simulations of the resistive wall impedance of copper

cylindrical and rectangular beam pipes

E. Metral, G. Rumolo, B. Salvant, C. Zannini(CERN – BE-ABP-LIS)

Page 2: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

2

Overview• Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 3: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

3

Objectives

• Separation of the dipolar and quadrupolar terms of the rectangular shape with Particle Studio simulations, and comparison with theory.

• Simulation of the wake form factor in a rectangular shape

Page 4: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

4

Overview• Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 5: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

5

)()()( sWsWsW detuningdrivingx

generalx

)()()( sWsWsW detuningdrivingy

generaly

simulated

00

21

21

yyxx

00

21

21

yyxx

00 ,0

21

21

yyxx

0 ,00

21

21

yy

xx

particle test theofposition erse transv,bunch source theofposition erse transv,

22

11

yxyx

Detuning and driving terms of the transverse wake

x

y

x

y

x

y

x

y calculated simulated

simulated calculated simulated

Page 6: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

6

Overview• Context and Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 7: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

7

Simulation Parameters

Geometric parameters Thickness Copper = 0.2cm Length = 1m Vacuum Chamber:Rectangular shape : height=2cm; width= 6cm

Particle Beam Parameters

σbunch = 1cm Charge = 1e-9β=1

Page 8: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

8

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

0.2

W[V/pCm]

t[ns]

driving (calc.) detuning general

Horizontal wake in a rectangular shape

In the horizontal plane, Wgeneral=0, and Wdriving=- Wdetuning

Page 9: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

9

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

W[V/pCm]

t[ns]

nydet nygen nydriv

Vertical wake in a rectangular shape

DetuningGeneralDriving (calc.)

In the vertical plane, Wgeneral=3*Wdetuning, and Wdriving= 2* Wdetuning

Page 10: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

10

-1 0 1 2 3 4 5 6 7

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

W[V/pCm]

t[ns]

Wx driving (calc.) Wx detuning Wy driving (calc.) Wy detuning Wx general Wy general

Summary plot for the rectangular shape: Vertical and horizontal wakes

Wx driving (calc.)Wx detuningWy driving (calc.)Wy generalWx generalWy detuning

Page 11: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

11

)()()( sWsWsW detuningdrivingx

generalx

)()()( sWsWsW detuningdrivingy

generaly

simulated

00

21

21

yyxx

00

21

21

yyxx

00 ,0

21

21

yyxx

0 ,00

21

21

yy

xx

particle test theofposition erse transv,bunch source theofposition erse transv,

22

11

yxyx

Detuning and driving terms of the transverse wake

x

y

x

y

x

y

x

y simulated simulated

simulated simulated simulated

x

y

x

y

Page 12: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

12

Number of mesh ~ Device length = 2.5cmDisplacement =0.0333*b,hBoundary conditions: electric in x and y open in zNormalization at device of 1m

610

2 b

2 h

q=0.5 h=3b

Page 13: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

13

Overview• Context and Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009 and comparison with theory

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 14: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

14

New boundary condition in CST 2009

Modelling a lossy metalwithout the conducting wall

condition in CST 2009

The lossy metal is explicitly modelled

around the vacuum

The lossy metal is only modelled through a boundary condition

Page 15: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

15

Page 16: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

16

0.0 0.4

0

2

Wake[V/pCm]

t[ns]

theory (cylindrical) simulation (cylindrical)*4.44 theory (rectangular) simulation (rectangular)*4.44

Number of mesh ~ 106

Device length = 20 cmb=1cmRms bunch length = 1 cmDisplacement =0.1*b (0.5*b for cylindrical)Boundary conditions: conducting wall in x and y open in zNormalization at device of 1m

Comparison of the simulated wake potential with the theoretical wake potential of a point charge

Theory: from Palumbo, Vaccaro, Zobov, INFN, 1994

But we are comparing the simulated wake of a gaussian bunch with the theoretical wake of a point charge. We need to convolute the theoretical wake with the source bunch

Page 17: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

17

Comparison of the simulated wake potential with the theoretical wake potential of a Gaussian bunch

Theoretical and simulated wake potential are very similar Short range wakes are subject to more noise in simulationsAlso the theory is not valid at high frequencies

Page 18: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

18

Overview• Context and Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 19: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

19

Simulations with MWS 2008

form factor studies

2 b

2 h

bhbhq

Form factor q:

Page 20: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

20

Simulation parameters• Number of mesh

• Device length = 20cm

• b=1cm

• Displacement = 0.1*b,h

• Boundary conditions: electric in x and y open in z

• Normalization at device of 1m

• All wakes (including the driving term) are now simulated

610*3

Page 21: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

21

-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

q=0.5

W[V

/pC

m]

t[ns]

xdet xdriv xgen ydet ydriv ygen

Rectangular shape with form factor q=0.5

2 b

2 h

q=0.5 h=3b

Page 22: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

22

-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

q=0.33

W[V/pCm]

t[ns]

xdet xdriv ydet ydriv ygen xgen

2 b

2 h

q=0.33 h=2b

Rectangular shape with form factor q=0.33

Page 23: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

23

2 b

2 h

q=0.1 h ~ 1.22 b

Rectangular shape with form factor q=0.1

-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

q=0.1

W[V

/pC

m]

t[ns]

xdet xdriv xgen ydet ydriv ygen

Page 24: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

24

Comparison of the theoretical and simulated wake form factor

Theory: from Gluckstern, Ziejts, Zotter, Phys. Rev., 1992

1

__

_

1

__

_

simxdrivrect

theorycilx

simydrivrect

theorycily

WW

F

WW

F

Page 25: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

25

Conclusion

• A factor 4.4 (probably ) is observed between the amplitude of simulated wakes and theoretical wakes.

• This amplitude factor aside, we have separated the dipolar and quadrupolar terms in the rectangular shape, and they agree with the theory.

• The simulated wakes obtained for several rectangular shape form factors also agree with the theoretical curve.

2

Page 26: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

26

Open questions

• Factor 4.4 between theory and simulations

- most likely a difference of convention

• Issues with cylindrical shape

Page 27: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

27

Overview• Context and Objectives

• Definition of the detuning, driving and general wake

• First simulations

• New boundary condition in CST 2009

• Form factor studies

• Conclusions

• Open questions

• Future Plans

Page 28: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

28

In Headtail, the wake is assumed to have linear uncoupled dependance on the source particle and the test particle.

This linear approximation should be valid for small particle amplitudes.

If the amplitude grows, do we have to include higher order terms? At what displacement?

Besides, are there coupled terms between planes?

Future plans: coupling terms and non linear terms

Page 29: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

29

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91E-3

0.01

0.1

1

Wake[V/pCm]

/b

ydriv ygen ydet

bx

δx

Test beam

Source beam

xy

y

y

x

x

bb

the displacement is along the diagonal of the rectangular shapeand the wake is normalized to the displacement

First results of simultaneously moving x and y location of the source beam

These first results are difficult to explain without involving non linear or coupled dependance of the wake on the transverse location.

The threshold for the onset of a nonlinear or coupled dependance seems very low (~0.1 b)

Page 30: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

Displacement in y

3%

10%

Wy=ky1 y

10%

Wy=ky1 y +ky3 y3 + ky4 y4

3%

< 1% of linear term

40%

40%

Wy=ky1 y +ky3 y3 + ky4 y4

80%

80%

+ky5 y5 +ky6 y6

0

Nonlinear uncoupled terms (first qualitative picture)

< 5% of linear term

Wy=ky1 y +ky3 y3 + ky4 y4

< 30% of linear term

2 b

2 hq=0.5 h=3b

30

Displacement in x

x

ytest beam

source beam

Page 31: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

Wx=kx1 x + kxy1 y+ kxy2 y2 kxy3 y3

Nonlinear coupled terms (first qualitative picture)

x

y

3%

10%

10%

3%

<2% of linear term

40%

40%

80%

60%

0

Wx=kx1 x +kxy1 y

< 0.1% of linear uncoupled term

<30% of linear term

Wx=kx1 x + kxy1 y+ kxy2 y2 kxy3 y3

<75% of linear term

Wx=kx1 x + kxy1 y+ kxy2 y2 kxy3 y3

2 b

2 h

q=0.5 h=3b

31x

ytest beam

source beam

Page 32: E.  Metral , G.  Rumolo , B. Salvant, C. Zannini (CERN     –    BE-ABP-LIS)

Thank you for your attention!

32