17
Global Oceanic heat flow es1mates by Valeria Reyes Ortega November 2nd, 2016 Scripps Ins1tu1on of Oceanography UC San Diego (Wei and Sandwell, 2006)

E global HF reyes - University of California, San Diego

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: E global HF reyes - University of California, San Diego

Global  Oceanic  heat  flow  es1mates                    by  

 Valeria  Reyes  Ortega  

 November  2nd,  2016  

Scripps  Ins1tu1on  of  Oceanography    UC  San  Diego    

 

(Wei  and  Sandwell,  2006)  

Page 2: E global HF reyes - University of California, San Diego

Outline  

•  Introduc1on  •  Objec1ve  •  Theory    •  Examples  •  Limita1ons  

Page 3: E global HF reyes - University of California, San Diego

Introduc1on  

 Total  heat  output  of  the  Earth      

Heat  flow  from  the  core   Radiogenic  heat  

produc1on  in  the  mantle  

Secular  cooling  of  the  Earth  

Radiogenic  heat  produc1on  in  the  con1nental  crust  

•  Total  surface  heat  output  à  42  –  44  TW      (Sclater  et  al.,  1980;  Pollack  et  al.,  1993)  

•  However,  this  es1mate  has  been  ques1oned  by  Hofmeister  and  Criss,  2005.  

•                           Taking  conduc1ve  ocean  heat  flow  measurements  at  face  values                                                  leads  to  a  global  heat  output  of  only  31  TW.                  

Page 4: E global HF reyes - University of California, San Diego

•   The  13  TW  difference  is  related  to  Cenozoic  oceanic  lithosphere  (0-­‐66  Ma)  heat  flow.    

•  Lithospheric  cooling  models  predict  high  heat  flow  values  at  ridges  and  on  young  ridge  flanks    

(Müller,  et  al.,  1997)  

Page 5: E global HF reyes - University of California, San Diego

Objec1ves  

•  Derive  the  local  heat  loss  using  the  depth  d  and  age  A  of  the  seafloor  assuming  conserva1on  of  energy  and  local  isostasy.    

•  Compare  the  solu1on  with  Half-­‐space  cooling  model  and  conduc1ve  heat  flow  measurements.    

 

Page 6: E global HF reyes - University of California, San Diego

Theory  

•  Conserva)on  of  Energy  

 

−∇ ∙ k ∇ T+ ! c!! ∙ ! T+ ! c! ! !! ! = !(1)

−∇ ∙ k ∇ T+ ! c!! ∙ ! T = 0(2)

Assuming  steady  state  spreading  and  no  internal  heat  genera1on:  

! ∙ ! T = !! !!

∇ ∙ ! (3)q  

Page 7: E global HF reyes - University of California, San Diego

1 2

Depth  of  compensa1on  

ρw  

ρm  

ρ=ρm  [1-­‐α(T-­‐Tm)]        

•  Isostacy  balance    

water  

lithosphere  

mantle  

v    

1 2=  

! (!) = ! ! !! (!!! !!)

(! − !!!! )!"(4)

! ∙ ∇!(!) = ! ! !! (!!! !!)

! ∙ ∇ !!! !"(5)

Taking  the  gradient  and  then  the  dot    product  with  the  plate  velocity  

0        

L  

x    

x    

+z    

Page 8: E global HF reyes - University of California, San Diego

By  neglec1ng  lateral  transport    

!"(!)!"!! !" = ! ! − ! ! = !! − !!(7)

Basal  heat  flow   Surface  heat  flow  Subs1tu1ng  Eq.  (7)  into  Eq.  (6):  

! ∙ ∇! ! = ! ! (!!! !!) !!

(!! − !!) (8)Scalar  subsidence  rate  

! ∙ ∇!(!) = ! ! (!!! !!)!!

∇ ∙ !!! !"(6)

Page 9: E global HF reyes - University of California, San Diego

! = ∇!∇!∙∇! (9)

Given  a  grid  of  seafloor  age  A(x)  the  local  fossil  spreading  velocity  is:  

The  final  expression  becomes:  ∇!∙∇! !∇!∙∇! = ! !

(!!! !!) !!(!! − !!) (10)

To  calculate  the  surface  heat  flow:    

!! = !! + ! ! (!!! !!) !!

∇!∙∇! !∇!∙∇! (11)General  assump1ons  

             α  =  3.85  x  10-­‐5  °C-­‐1              Cp  =  1124  kg-­‐1°C-­‐1              ρm  =  3330  kg  m-­‐3  

           ρw  =  1025  kg  m-­‐3    

(Doin  and  Fleitout,  1996)  

Page 10: E global HF reyes - University of California, San Diego

Mid-­‐Atlan1c  Ridge  example  

(Wei  and  Sandwell,  2006)  

!! − !! a)                 Should  not  be  computed  

across  ridges  or  transform  faults    

b)  Omit  <  0.5  Ma  young  seafloor    within  a  20  km  distance  

 c)      Constant  heat  flow  38  mW  m-­‐2  was  added  to  account  for  the  basal  heat  input    

∇!

Surface  heat  flow  (mW  m-­‐2)  

Page 11: E global HF reyes - University of California, San Diego

Reproduced  from  Wei  and  Sandwell  (2006)  

0 10 20 30 40 50 60 70Age (Ma)

-6000

-5000

-4000

-3000

-2000

Dep

th (m

)

Half-space coolingAveraged Seafloor depth

0 10 20 30 40 50 60 70Age (Ma)

0

50

100

150

200

250

300

350

Hea

t flo

w (m

W m

-2) Half-space cooling

Estimation based on subsidence ratePollack et al. data

! = 480/ !

-­‐  Basal  heat  flow  of  38  mW  m-­‐2    

-­‐  3  Ma  age  bins    

! = 2500+ 350/ !

Mid-­‐Atlan1c  Ridge  example  

Page 12: E global HF reyes - University of California, San Diego

Reproduced  from  Wei  and  Sandwell  (2006)  

0 10 20 30 40 50 60 70Age (Ma)

-6000

-5000

-4000

-3000

-2000

Dep

th (m

)

Half-space coolingAveraged Seafloor depth

0 10 20 30 40 50 60 70Age (Ma)

0

50

100

150

200

250

300

350

Hea

t flo

w (m

W m

-2) Half-space cooling

Estimation based on subsidence ratePollack et al. data

Global  Analysis  example  

! = 480/ !

! = 2500+ 350/ !-­‐  Basal  heat  flow  

of  38  mW  m-­‐2    

-­‐  3  Ma  age  bins    

Page 13: E global HF reyes - University of California, San Diego

0 10 20 30 40 50 60 70Age (Ma)

4

6

8

10

Area

(m2 )

#1012 Area varies with age

0 10 20 30 40 50 60 70Age (Ma)

0

2

4

6

Inte

rval

hea

t flo

w (W

)

#1012

0 10 20 30 40 50 60 70Age (Ma)

0

1

2

3

Accu

mul

ated

hea

t flo

w (W

) #1013

20.4  TW    

66  

Cenozoic  Heat  output  

5  TW  contribu1on  (0-­‐3  Ma)      

•  Q  con1nents  and  older  oceans:  23.6  TW  •  QT  is  close  to  the  44  TW  value    

Heat  flow  in  each  age  bin  1mes  the  area  of  the  bin  

Page 14: E global HF reyes - University of California, San Diego

Limita1ons  •  Since  the  age  gradient  is  discon1nuous  across  plate  boundaries,  

the  method  fails  over  very  young  seafloor.    •  The  model  assumes  local  isosta1c  balance,  so  20  km  of  the  

ridge  axis  have  to  be  omined.  

•  The  results  show  excellent  agreement  with  the  cooling  model  if  a  basal  heat  flux  of  38  mW  m-­‐2  is  added.    

•  The  method  relies  on  the  HSC  cooling  model  to  es1mate  5-­‐TW  contribu1on  to  the  heat  flow  over  the  spreading  ridges  

Page 15: E global HF reyes - University of California, San Diego

 Thank  you!  

   

Page 16: E global HF reyes - University of California, San Diego

References  

Doin,  M.P.,  Fleitout,  L.,  1996.  Thermal  evolu1on  of  the  oceanic  lithosphere:  an    alterna1ve  view.  Earth  Planet.  Sci.  Len.  142,  121–136.    

 Hofmeister,  A.M.,  Criss,  R.E.,  2005.  Earth's  heat  flux  revised  and  linked  to  

 chemistry.  Tectonophysics  395,  159–177.    Müller,  R.  D.,  Roest,  W.  R.,  Royer,  J.  Y.,  Gahagan,  L.  M.,  &  Sclater,  J.  G.  (1997).    

 Digital  isochrons  of  the  world's  ocean  floor.  Journal  of  Geophysical  Research:  Solid  Earth,  102(B2),  3211-­‐3214.  

 Wei,  M.,  &  Sandwell,  D.  (2006).  Es1mates  of  heat  flow  from  Cenozoic  seafloor  

 using  global  depth  and  age  data.  Tectonophysics,  417(3),  325-­‐335.    

Page 17: E global HF reyes - University of California, San Diego