17
Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa ppazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlb ²Università di Firenze ³Laboratory for Computationa Physics & Fluid Dynamics, NRL, Washington, DC

Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

  • View
    217

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Dynamics of the Magnetized Wake andthe Acceleration of the Slow solar Wind

¹Università di Pisa

F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³

²Università di Firenze

³Laboratory for Computational Physics & Fluid Dynamics, NRL, Washington, DC

Page 2: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Acceleration of the slow solar wind above helmet streamers

The solar wind has two distinct components: the fast wind originates in the polar coronal holes, and the slow wind originates from the region above helmet streamers.

Page 3: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Observations of plasmoids detaching above helmet streamers by the LASCO coronagraph onboard SOHO

The formation and outward movement of a coronal density enhancement on 1996 May 24, as seen in running differenceimages obtained with the C2 (left) and C3 (right) coronagraphs.

From Sheeley N.R. Jr. et al., Astrophys. J., 484, 472, 1997

Page 4: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

We model the region above the cusp of a helmet streamer as a current sheet embedded in a broader wake flow

Page 5: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

In our simulations we use compressible, dissipative MHD equations

Page 6: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università
Page 7: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

xAxB y tanh0 xhAxB z sec0

xhxu y sec10

1 21

MT

Equilibrium fields

1sc

uM5.1

u

cA A5

B

V

a

a

Page 8: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Both Kelvin-Helmoltz and tearinginstabilities have varicose modes, that have the same spatial parity.

Page 9: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Expanding Box Model

Page 10: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università
Page 11: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Melon seed force

Page 12: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Time evolution of magnetic islands

Page 13: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Density enhancement of magnetic islands

Page 14: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Fast wind

Fast wind

Neutral line

Page 15: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

Mass density lowers because of radial expansion.

Page 16: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

The melon seed force results in the initial rapid acceleration,while fluid instability shapes the global acceleration.

Page 17: Dynamics of the Magnetized Wake and the Acceleration of the Slow solar Wind ¹Università di Pisa F. Rappazzo¹, M. Velli², G. Einaudi¹, R. B. Dahlburg³ ²Università

• Resistive instability allows the development of a

Kelvin-Helmoltz instability in the nonlinear regime.

Conclusions

• Moving plasmoids accelerating outward are observed.

• The fast wind accelerates and modulates the slow wind.