68
Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015 Lea F. Santos Department of Physics, Yeshiva University, New York, NY, USA collaborators Dynamics of Interacting Quantum Systems Marco Távora (Yeshiva University) E. Jonathan Torres-Herrera (Puebla, Mexico) Isolated quantum systems with interacting particles. Analysis of quench dynamics. Experiments: NMR, optical lattices, trapped ions

Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Lea F. Santos

Department of Physics, Yeshiva University, New York, NY, USA co

llabo

rato

rs

Dynamics of Interacting Quantum Systems

Marco Távora (Yeshiva University) E. Jonathan Torres-Herrera (Puebla, Mexico)

Ø  Isolated quantum systems with interacting particles.

Ø  Analysis of quench dynamics. Experiments: NMR, optical lattices, trapped ions

Page 2: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Coherent Evolution in Experiments

Optical Lattices Crystals formed by interfering laser beams Ultracold atoms play the role of electrons in solid crystal

Ø  highly controllable systems – interactions, level of disorder, 1,2,3D

(simple models) Ø  quasi-isolated -- study evolution for very long time

Greiner (Harvard) Weiss (Penn Sate)

Bloch (Max Planck) Esslinger (ETH)

Page 3: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Coherent Evolution in Experiments

NMR Optical Lattices Crystals formed by interfering laser beams Ultracold atoms play the role of electrons in solid crystal

Ø  highly controllable systems – interactions, level of disorder, 1,2,3D

(simple models) Ø  quasi-isolated -- study evolution for very long time

Greiner (Harvard) Weiss (Penn Sate)

Bloch (Max Planck) Esslinger (ETH)

Solid state NMR: nuclear positions are fixed; They are collectively addressed with magnetic pulses; Very slow relaxation

Cappellaro (MIT) Ramanathan (Dartmouth)

Page 4: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Coherent Evolution in Experiments

NMR Optical Lattices Crystals formed by interfering laser beams Ultracold atoms play the role of electrons in solid crystal

Ø  highly controllable systems – interactions, level of disorder, 1,2,3D

(simple models) Ø  quasi-isolated -- study evolution for very long time

Greiner (Harvard) Weiss (Penn Sate)

Bloch (Max Planck) Esslinger (ETH)

Solid state NMR: nuclear positions are fixed; They are collectively addressed with magnetic pulses; Very slow relaxation

Cappellaro (MIT) Ramanathan (Dartmouth)

Ions trapped via electric and magnetic fields. Laser used to induce couplings. Isolated from an external environment.

Monroe (Maryland)

Blatt (Innsbrück)

Ion Traps

Page 5: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

1D spin-1/2 SYSTEMS

Page 6: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Flip-flop = hopping

H =J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

#

J4(!1

x! 2x +!1

y! 2y ) |!">= J

2|"!>

bn+bn+1 + h.c.( )

Holstein-Primakoff

Jordan-Wigner

Integrable systems:

XXZ and XX models (1D)

Page 7: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Ising interaction

H =J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

#

Two-body interaction

H = V bn+bn !

12

"

#$

%

&' bn+1

+ bn+1 !12

"

#$

%

&'! t bn

+bn+1 + h.c.( )(

)*

+

,-

n=1

L

.

Map into hardcore bosons or spinless fermions:

|!!>, |""># +J$ / 4

|!">, |"!>#%J$ / 4

(bn+bn )(bn+1

+ bn+1)

Holstein-Primakoff

Jordan-Wigner

Integrable systems:

XXZ and XX models (1D)

Page 8: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

H =J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

#Integrable systems:

XXZ and XX models (1D)

Chaotic systems:

NNN model +++Δ=+ +++

=∑ )(4 111

1

1

yn

yn

xn

xn

zn

zn

L

nNNNNN

JHH σσσσσσ

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Chaotic Spin-1/2 Systems

Page 9: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

H =J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

#Integrable systems:

XXZ and XX models (1D)

Chaotic systems:

NNN model +++Δ=+ +++

=∑ )(4 111

1

1

yn

yn

xn

xn

zn

zn

L

nNNNNN

JHH σσσσσσ

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Chaotic Spin-1/2 Systems

H = !n" nz

n=1

L

! +J4("" n

z" n+1z +" n

x" n+1x +" n

y" n+1y )

n=1

L#1

!Disordered or Impurity models

Page 10: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Level Repulsion & Rigid Spectrum

Bohigas and

Giannoni (1984)

and also Mehta’s

Book

Average spacing

= 1

Page 11: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Quantum Chaos: Level Repulsion

121 EEs −=

232 EEs −=

343 EEs −=

454 EEs −=

1E

2E3E4E5E

Wigner-Dyson distribution (time reversal symmetry)

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

4exp

2)(

2sssPWDππ

Level repulsion

Level spacing distribution

(i)  Time-reversal invariant systems with rotational symmetry : Hamiltonians are real and symmetric Gaussian Orthogonal Ensemble (GOE)

(ii)  Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian) Gaussian Unitary Ensemble (GUE)

(iii) Time-reversal invariant systems, half-integer spin, broken rotational symmetry Gaussian Sympletic Ensemble (GSE)

Level repulsion = quantum chaos

Page 12: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Quantum Chaos: Level Repulsion

121 EEs −=

232 EEs −=

343 EEs −=

454 EEs −=

1E

2E3E4E5E

Level spacing distribution Hardcore bosons with NNN couplings

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

Spinless fermions with NNN couplings

LFS & Rigol PRE 80 036206 (2010)

H = t bn+bn !

12

"

#$

%

&' bn+1

+ bn+1 !12

"

#$

%

&'! t bn

+bn+1 + h.c.( )(

)*

+

,-

n=1

L

.

t ' bn+bn !

12

"

#$

%

&' bn+2

+ bn+2 !12

"

#$

%

&'! t ' bn

+bn+2 + h.c.( )(

)*

+

,-

n=1

L

.

Page 13: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Quantum Chaos: Rigidity

121 EEs −=

232 EEs −=

343 EEs −=

454 EEs −=

1E

2E3E4E5E

Level spacing distribution Hardcore bosons with NNN couplings

0 2 4 s

0 2 4 s

0 2 4 s

0 2 4 s

LFS & Rigol PRE 80 036206 (2010)

Level Number Variance

0.64

0.32 0.16 0.64

0.32

0.16

Page 14: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Two-Body Interaction vs Full Random Matrices

Density of States (Energy Distribution)

E!

!

French & Wong, PLB (1970)

Two-body interactions: Gaussian

E  E!Wigner (1957)

Full random matrices: semicircular

!

Full random matrices: Matrices filled with random numbers and respecting the symmetries of the system. Wigner in the 1950’s used random matrices to study the spectrum of heavy nuclei (atoms, molecules, quantum dots)

Page 15: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Density of States (Energy Distribution)

E!

!

French & Wong, PLB (1970)

Two-body interactions: Gaussian

E!

Basis dependent

Participation Ratio

PR(! ) ! 1

| ci(! ) |4

i=1

D

"

! (" ) = ci(" )#i

i=1

D

!

E  E!Wigner (1957)

Full random matrices: semicircular

!

PR

Two-Body Interaction vs Full Random Matrices

Page 16: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Thermalization

Time evolution of a generic observable:

Infinite time average: (generic system with nondegenerate and incommensurate spectrum)

!O(t)" = limt#$

1t

O(! )d!0

t

% = |C"ini

"

& |2 O"" =Odiag

(diagonal ensemble)

!O(t)" = !#(t) |O |#(t)" = |C!ini

!

$ |2 O!! + C!ini*

!%"

$ C"iniei(E!&E" )tO!"

〉〈= βααβ ψψ || OO

|!(0)" = C!ini

!

# |"! "Initial state:

Page 17: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Thermalization

Will the system thermalize? Will the predictions from the infinite time average coincide with the predictions of the microcanonical ensemble?

Odiag ! |C!ini

!

" |2 O!!=?# $% Omicro !

1NE0 ,&E

O!!!

|E0'E! |<&E

"

depends on the initial conditions depends only on the energy

Infinite time average: !O(t)" = |C!ini

!

# |2 O!! =Odiag

O!! = !"! |O |"! "Eigenstate Expectation Value:

Page 18: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Thermalization

Will the system thermalize? Will the predictions from the infinite time average coincide with the predictions of the microcanonical ensemble?

Odiag ! |C!ini

!

" |2 O!!=?# $% Omicro !

1NE0 ,&E

O!!!

|E0'E! |<&E

"

depends on the initial conditions depends only on the energy Equation holds for all initial states that are narrow in energy when…

ETH: the expectation values of few-body observables do not fluctuate for eigenstates close in energy

ααO Deutsch, PRA 43, 2046 (1991) Srednicki, PRE 50, 888 (1994) Rigol et al, Nature 452, 854 (2008)

Full random matrices: chaotic eigenstates = (pseudo)random vectors

! (" ) = ci(" )#i

i=1

D

!

Infinite time average: !O(t)" = |C!ini

!

# |2 O!! =Odiag

O!! = !"! |O |"! "Eigenstate Expectation Value:

Zelevinsky, (1990’s) Flambaum, Izrailev Casati, Borgonovi Von Neumann (1929)

Page 19: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

QUENCH DYNAMICS

Page 20: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Quench

|!(0)" =| ini" |!(t)" = C!ini

!

# e$iE! t |! "Initial state

Hinitial

| n!H final

! , E!quench

Page 21: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Overlap between the initial state and the evolved state

Survival Probability (Fidelity)

This is not the Loschmidt Echo: FLE (t) = !(0) | eiH2te"iH1t |!(0)#2

F(t) = !(0) |!(t)"2= !(0) | e#iH finalt |!(0)"

22

Page 22: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Overlap between the initial state and the evolved state

Survival Probability (Fidelity)

|!(0)" = ini = C!ini

!

# |! " |!(t)" = C!ini

!

# e$iE! t |! "

Eigenvalues and eigenstates of the final Hamiltonian

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

Page 23: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Overlap between the initial state and the evolved state

Survival Probability (Fidelity)

Eigenvalues and eigenstates of the final Hamiltonian

Fourier transform of the weighted energy distribution of the initial state of the LDOS (local density of states), strength function

-6 -4 -2 0 2 4E

0

0.1

0.2

0.3

0.4

|C |2

0

0.1

0.2

0.3

0.4

|C |2

|!(0)" = ini = C!ini

!

# |! " |!(t)" = C!ini

!

# e$iE! t |! "

E!

C!ini 2

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

Page 24: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Quench Dynamics

Chaotic

NNN model

H final =J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

# +Hini =

J4(!! n

z! n+1z +! n

x! n+1x +! n

y! n+1y )

n=1

L"1

#

XXZ model

Integrable

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )|!(0)" =| ini"

quench parameter

Page 25: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Perturbation increases Fidelity decays faster

Hinitial = HXXZquench! "!! H final = HXXZ +!HNNN

-6 -4 -2 0 2 4

J-1

E!

0

1

2

3

4

5

P!

0 1 2 3 4

Jt

10-4

10-3

10-2

10-1

100

F

" = 0.2

delta function

Slow decay

L=16, 8 up spins, T=7.1 ! = 0.5

F(t) = Cini (E)2e!iEt dE

!"

"

#2

LDOS: C!ini

"E

2

Page 26: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Exponential decay

-6 -4 -2 0 2 4

J-1

E!

0

0.2

0.4

0.6

0.8

1

P!

0 1 2 3 4

Jt

10-4

10-3

10-2

10-1

100

F

" = 0.4512!

!ini

(Eini "E)2 +!2ini / 4

Lorentzian

L=16, 8 up spins, T=7.1 ! = 0.5

Hinitial = HXXZquench! "!! H final = HXXZ +!HNNN

LDOS:

F(t) = exp(!"init)

C!ini

"E

2

Page 27: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Exponential decay

-6 -4 -2 0 2 4

J-1

E!

0

0.2

0.4

0.6

0.8

1

P!

0 1 2 3 4

Jt

10-4

10-3

10-2

10-1

100

F

" = 0.45

F(t) = exp(!"init)12!

!ini

(Eini "E)2 +!2ini / 4

Lorentzian

L=16, 8 up spins, T=7.1 ! = 0.5

Hinitial = HXXZquench! "!! H final = HXXZ +!HNNN

LDOS: F(t) = !(0) |!(t)"2

= C!ini

!

#2e$iE!t

2

~1$" ini2 t2

C!ini

"E

2

Page 28: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Faster than exponential: Gaussian

-6 -4 -2 0 2 4

J-1

E!

0

0.1

0.2

0.3

0.4

0.5

P!

0 1 2 3 4

Jt

10-4

10-3

10-2

10-1

100

F

" = 1

Strong perturbation regime (global quench)

Gaussian

12!" ini

2e!(E!Eini )

2

2" ini2

F(t) = exp(!! 2init

2 )

L=16, 8 up spins, T=7.1 ! = 0.5

Hinitial = HXXZquench! "!! H final = HXXZ +!HNNN

LDOS:

C!ini

"E

2

Page 29: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Gaussian decay Gaussian DOS & LDOS

-6 -4 -2 0 2 4

J-1

E!

0

0.1

0.2

0.3

0.4

0.5

P!

0 1 2 3 4

Jt

10-4

10-3

10-2

10-1

100

F

" = 1

Strong perturbation regime (global quench)

12!" ini

2e!(E!Eini )

2

2" ini2

L=16, 8 up spins, T=7.1 ! = 0.5

Hinitial = HXXZquench! "!! H final = HXXZ +!HNNN

E!

!

Density of States

Gaussian

LDOS: F(t) = exp(!! 2

init2 )

C!ini

"E

2

Page 30: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Decay slows down away from the middle of the spectrum

E!

!

French & Wong, PLB (1970)

DENSITY OF STATES of systems with 2-body interactions

-6 -4 -2 0 2E

0

0.2

0.4

0.6

Pini

0 1 2 3 4 5t

10-3

10-2

10-1

100

F

-3.5 -3 -2.5 -2 -1.5Eini

0

1

2

3

1

-3.5 -3 -2.5 -2 -1.5Eini

0

1

2

2

(a) (b)

(c) (d)

LDOS: skewed Gaussian

L=18, 6 up spins

HXXZ!! "! HXXZ +!HNNN

! =1

Torres & LFS PRA 90 (2014)

C!ini 2

Page 31: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

0 2 4 6 8 10

0.2

0.40.60.81

F

0 2 4 6 8 10

0 3 6 9 1210-3

10-2

10-1

100

F

0 3 6 9 12

0 1 2 3Jt

10-4

10-2

100

F

0 1 2 3Jt

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

0 2 4 6 8 10

0.2

0.40.60.81

F

0 2 4 6 8 10

0 3 6 9 1210-3

10-2

10-1

100

F

0 3 6 9 12

0 1 2 3Jt

10-4

10-2

100

F

0 1 2 3Jt

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

Exponential and Gaussian F(t) Hfinal: Chaotic or Integrable

HXXZ!! "! HXXZ +!HNNN

Integrable to

chaotic

L=18, 6 up spins

Torres, Manan, LFS NJP 16 (2014)

Torres & LFS PRA 89 (2014)

Torres & LFS PRA 90 (2014)

Page 32: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

0 2 4 6 8 10

0.2

0.40.60.81

F

0 2 4 6 8 10

0 3 6 9 1210-3

10-2

10-1

100

F

0 3 6 9 12

0 1 2 3Jt

10-4

10-2

100

F

0 1 2 3Jt

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

0 2 4 6 8 10

0.2

0.40.60.81

F

0 2 4 6 8 10

0 3 6 9 1210-3

10-2

10-1

100

F

0 3 6 9 12

0 1 2 3Jt

10-4

10-2

100

F

0 1 2 3Jt

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

Exponential and Gaussian F(t) Hfinal: Chaotic or Integrable

HXXZ!! "! HXXZ +!HNNN

Integrable to

chaotic

L=18, 6 up spins

Torres, Manan, LFS NJP 16 (2014)

Torres & LFS PRA 89 (2014)

Torres & LFS PRA 90 (2014)

0 2 4 6 8 10

0.2

0.40.60.81

F

0 2 4 6 8 10

0 3 6 9 1210-3

10-2

10-1

100

F

0 3 6 9 12

0 1 2 3Jt

10-4

10-2

100

F

0 1 2 3Jt

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

HXX!" #" HXXZ

J(SnxSn+1

x + SnySn+1

y )n=1

L!1

"#$

J(SnxSn+1

x + SnySn+1

y +$SnzSn+1

z )n=1

L!1

"

Integrable to

integrable

! = 0.4

! = 0.2

! =1.5

Page 33: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

-1 -0.5 00246

8

P

-1 -0.5 0

-2 -1 0 10

1

2

P

-2 -1 0 1

-4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

P

-4 -2 0 2 4

J-1E

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

Exponential and Gaussian F(t) Hfinal: Chaotic or Integrable

HXXZ!! "! HXXZ +!HNNN HXX

!" #" HXXZ

Integrable to

integrable

Integrable to

chaotic

L=18, 6 up spins

Torres, Manan, LFS NJP 16 (2014)

Torres & LFS PRA 89 (2014)

Torres & LFS PRA 90 (2014)

-1 -0.5 00246

8

P

-1 -0.5 0

-2 -1 0 10

1

2

P

-2 -1 0 1

-4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

P

-4 -2 0 2 4

J-1E

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

-1 -0.5 00246

8

P

-1 -0.5 0

-2 -1 0 10

1

2

P

-2 -1 0 1

-4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

P

-4 -2 0 2 4

J-1E

µ = 0.2 = 0.2

µ = 0.4 = 0.4

= 1µ = 1.5

! = 0.4

! = 0.2

! =1.5

Page 34: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: Strong perturbation and E~0

!(0) ="#"#"#"#

Néel state

! = 0.5,! =1

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Hinitial (!"#) $ H final = HNN +HNNN

Very strong perturbation

E ! (0) = Neel H final Neel =J"4[#(L #1)+ !(L # 2)] ~ 0

Page 35: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: Gaussian LDOS

!(0) ="#"#"#"#

Néel state

! = 0.5,! =1

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Hinitial (!"#) $ H final = HNN +HNNN

Strong perturbation

E ! (0) ~ 0

-8 -4 0 4 80

0.1

0.2

0.3

0.4

0 2 40

0.6

1.2

2 4 6

J-1

E!

0

0.3

0.6

0.9

1.2

0 2 4 6

J-1

E!

0

0.2

0.4

0.6

0.8-8 -4 0 4 8

0

0.2

0.4

0.6

PN

S

-8 -4 0 4 80

0.1

0.2

0.3

0 2 4 6

J-1

E!

0

0.5

1

1.5

2

2.5

PD

W

(a) (c)

(d) (e) (f)

(b)C!ini 2

E!L =16,Sz = 0

PR! (0) "1

|C!(! (0)) |4

!=1

Dim

#~ Dim

6

This is a chaotic initial state

Page 36: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: short-time Gaussian decay

!(0) ="#"#"#"#

Néel state

! = 0.5,! =1

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Hinitial (!"#) $ H final = HNN +HNNN

-8 -4 0 4 80

0.1

0.2

0.3

0.4

0 2 40

0.6

1.2

2 4 6

J-1

E!

0

0.3

0.6

0.9

1.2

0 2 4 6

J-1

E!

0

0.2

0.4

0.6

0.8-8 -4 0 4 8

0

0.2

0.4

0.6

PN

S

-8 -4 0 4 80

0.1

0.2

0.3

0 2 4 6

J-1

E!

0

0.5

1

1.5

2

2.5

PD

W

(a) (c)

(d) (e) (f)

(b)C!ini 2

E!L =16,Sz = 0

IPR! (0) = C!ini 4 =

1PR! (0)

~ 6Dim

0 5 10 15 20Jt

10-6

10-4

10-2

100

F

! ini =J2

L !1

The decay is Gaussian There is no transition to exponential

Open boundaries

Page 37: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: short-time Gaussian decay

The decay is Gaussian There is no transition to exponential

! = 0.5,! =1Sz = 0

L=10 L=20 L=30 L=40

Hinitial (!"#) $ H final = HNN +HNNN

! ini =J2

L !1

Jt

F

Jt=2 Hopping: J/2

Page 38: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: long-time powerlaw decay

!(0) ="#"#"#"#

Néel state

! = 0.5,! =1

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

L = 24,Sz = 0

Long-time decay is powerlaw

0.1 1 10 100 1000

10�9

10�7

10�5

0.001

0.1

t

F�t�

Jt

F t!2

exp(!! 2init

2 )

-8 -4 0 4 80

0.1

0.2

0.3

0.4

0 2 40

0.6

1.2

2 4 6

J-1

E!

0

0.3

0.6

0.9

1.2

0 2 4 6

J-1

E!

0

0.2

0.4

0.6

0.8-8 -4 0 4 8

0

0.2

0.4

0.6

PN

S

-8 -4 0 4 80

0.1

0.2

0.3

0 2 4 6

J-1

E!

0

0.5

1

1.5

2

2.5

PD

W

(a) (c)

(d) (e) (f)

(b)C!ini 2

E!

L =16,Sz = 0

Page 39: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Néel state: long-time powerlaw decay

!(0) ="#"#"#"#

Néel state

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

Long-time decay is powerlaw

0.1 1 10 100 1000

10�9

10�7

10�5

0.001

0.1

t

F�t�

Jt

F t!2

exp(!! 2init

2 )

0 5 10 15 20Jt

0

0.4

0.8

1.2

f(t)

! = 0.5,! =1

f (t) = ! 1LlnF(t)

! ln(t!2 ) / L L=24 L=22

-8 -4 0 4 80

0.1

0.2

0.3

0.4

0 2 40

0.6

1.2

2 4 6

J-1

E!

0

0.3

0.6

0.9

1.2

0 2 4 6

J-1

E!

0

0.2

0.4

0.6

0.8-8 -4 0 4 8

0

0.2

0.4

0.6

PN

S-8 -4 0 4 8

0

0.1

0.2

0.3

0 2 4 6

J-1

E!

0

0.5

1

1.5

2

2.5P

DW

(a) (c)

(d) (e) (f)

(b)

C!ini 2

E!

L =16

L = 24,Sz = 0Kehrein, Fagotti

Page 40: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Brody et al Rev. Mod. Phys (1981)

As the number of particles interacting simultaneously increases, the DENSITY OF STATES changes from Gaussian to semicircle.

DENSITY OF STATES of full random matrices is semicircle and so is the LDOS.

Page 41: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Dynamics under full random matrices

Distribution of for initial state projected into random matrices: semicircular

C!ini 2

0 1 2 3 4 5 610-6

10-4

10-2

100

FSC

-2 -1 0 1 20

0.1

0.2

0.3

0.4

PiniSC

0 5 10 15 20 2510-3

10-2

10-1

100

FBW

-3 -2 -1 0 10

1

2

3

PiniBW

0 1 2 3 4 5 6Jt

10-4

10-2

100

FG

-6 -4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

0.5

PiniG

(a)

(c)

(e)

(b)

(d)

(f)

E   E  time E!

C!ini 2

Torres, Manan, LFS NJP 16 (2014)

Torres & LFS PRA 89 (2014)

Torres & LFS PRA 90 (2014)

LDOS

J1(2! init)2

! 2init

2

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

Page 42: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Dynamics under full random matrices

Distribution of for initial state projected into random matrices: semicircular

C!ini 2

0 1 2 3 4 5 610-6

10-4

10-2

100

FSC

-2 -1 0 1 20

0.1

0.2

0.3

0.4

PiniSC

0 5 10 15 20 2510-3

10-2

10-1

100

FBW

-3 -2 -1 0 10

1

2

3

PiniBW

0 1 2 3 4 5 6Jt

10-4

10-2

100

FG

-6 -4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

0.5

PiniG

(a)

(c)

(e)

(b)

(d)

(f)

E   E  time E!

C!ini 2

LDOS

F(t) =J1(2! init)

2

! 2init

2F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

t!3

Long-time decay is powerlaw

Torres & LFS PRA 90 (2014)

Page 43: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

LONG-TIME BEHAVIOR

Page 44: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Long-time: Powerlaw Decay

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957)

0 < q <1

Ersak (1969) Fleming (1973) Fonda et (1978) Knight (1977) Sluis & Gislason PRA (1991) Muga, del Campo (2009) Del Campo, arXiv 1504.0120 (CS model)

Page 45: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957)

Asymptotic Expansions:

*)limE!EcutPini (E)> 0" F(t)# t$2

0 < q <1

Powerlaw Decay: Gaussian LDOS

Pini (E)dE =1!"

"

# , F(t)$t$" 0

Page 46: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957)

Asymptotic Expansions:

F(t) = 12!" ini

2e!(E!Eini )

2 /2" ini2

e!iEt dE0

"

#2

$t$"

12!" ini

2e!Eini

2 /2" ini2

e!iEt dE0

"

#2

%1t2

-8 -4 0 4 80

0.1

0.2

0.3

0.4

0 2 40

0.6

1.2

2 4 6

J-1

E!

0

0.3

0.6

0.9

1.2

0 2 4 6

J-1

E!

0

0.2

0.4

0.6

0.8-8 -4 0 4 8

0

0.2

0.4

0.6

PN

S

-8 -4 0 4 80

0.1

0.2

0.3

0 2 4 6

J-1

E!

0

0.5

1

1.5

2

2.5

PD

W

(a) (c)

(d) (e) (f)

(b)C!ini 2

E!

0 < q <1 LDOS

Powerlaw Decay: Gaussian LDOS

Pini (E)dE =1!"

"

# , F(t)$t$" 0

*)limE!EcutPini (E)> 0" F(t)# t$2

Page 47: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw Decay: Gaussian LDOS

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957)

Asymptotic Expansions

0.1 1 10 100 1000

10�9

10�7

10�5

0.001

0.1

t

F�t�

Jt

F t!2

exp(!! 2init

2 )

Chaotic model with NNN couplings

0 < q <1

*)limE!EcutPini (E)> 0" F(t)# t$2

Page 48: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957)

Asymptotic Expansions

! t"2

*)Pini (E) = (E !Emin )! g(E)" F(t)# t!2(1+! )

0 1 2 3 4 5 610-6

10-4

10-2

100

FSC

-2 -1 0 1 20

0.1

0.2

0.3

0.4

PiniSC

0 5 10 15 20 2510-3

10-2

10-1

100

FBW

-3 -2 -1 0 10

1

2

3

PiniBW

0 1 2 3 4 5 6Jt

10-4

10-2

100

FG

-6 -4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

0.5

PiniG

(a)

(c)

(e)

(b)

(d)

(f)

E  E!

C!ini 2

LDOS

0 < q <1

Powerlaw Decay: Semicircle LDOS

*)limE!EcutPini (E)> 0" F(t)# t$2

Page 49: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw Decay: Semicircle LDOS

F(t) = !(0) |!(t)"2= C!

ini

!

#2e$iE! t

2

% Pini (E)e$iEt dE

$&

&

'2

F(t) = Pini (E)e!iEt dE

Ecut

"

#2

$ Aexp(!btq )

Khalfin (JETP, 1957) 0 < q <1

Asymptotic Expansions

Pini (E) =1

! ini1! E

2! ini

"

#

$$

%

&

''

2

( (E ! 2! ini )1/2 (E + 2! ini )

1/2

0 1 2 3 4 5 610-6

10-4

10-2

100

FSC

-2 -1 0 1 20

0.1

0.2

0.3

0.4

PiniSC

0 5 10 15 20 2510-3

10-2

10-1

100

FBW

-3 -2 -1 0 10

1

2

3

PiniBW

0 1 2 3 4 5 6Jt

10-4

10-2

100

FG

-6 -4 -2 0 2 4

J-1E

0

0.1

0.2

0.3

0.4

0.5

PiniG

(a)

(c)

(e)

(b)

(d)

(f)

E  time

t!3

*)Pini (E) = (E !Emin )! g(E)" F(t)# t!2(1+! )

*)limE!EcutPini (E)> 0" F(t)# t$2

Page 50: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

!(0) ="#"#"#"#Néel state J

4n=1

L

! (! nx! n+1

x +! ny! n+1

y ) [XX model]

t!1/2It suggest that the LDOS Pini(E) is not well behaved. (not Gaussian)

Jt

F

Powerlaw decay for the XX model: sparse and fractal LDOS

Zanardi, Sirker, Haque

F(t) = limL!"

eL2! dk lncos2(Jt cosk)

#! /2

! /2

$

Page 51: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

L=16, 8 up spins

100 102 104t

10-4

10-3

10-2

10-1

100

<F(t)>

0

0.1

0.2

0.3

-4 -2 0 2 4E

0

1

2

0

0.4

0.8

(a)

(b)

(c)

(d)

J

h=0.5

Torres & LFS PRB 92, 01420 (2015)

h=1.5

h=2.7

100 102 104t

10-4

10-3

10-2

10-1

100<F(t)>

0

0.1

0.2

0.3

-4 -2 0 2 4E

0

1

2

0

0.4

0.8

(a)

(b)

(c)

(d)

h=1.5

h=2.7

C!ini 2

100 102 104t

10-4

10-3

10-2

10-1

100

<F(t)>

0

0.1

0.2

0.3

-4 -2 0 2 4E

0

1

2

0

0.4

0.8

(a)

(b)

(c)

(d)

C!ini 2

100 102 104t

10-4

10-3

10-2

10-1

100

<F(t)>

0

0.1

0.2

0.3

-4 -2 0 2 4E

0

1

2

0

0.4

0.8

(a)

(b)

(c)

(d)C!ini 2

h=0.5

h=2.7 C!ini 4

!

! = IPRini

H final = hnSnz

n=1

L

! + J(SnxSn+1

x + SnySn+1

y + SnzSn+1

z )n=1

L

! multifractal fluctuations

Powerlaw decay for a disordered system: sparse LDOS

Page 52: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw Exponent

Generalized dimension Multifractal dimension

!IPRini = C!ini 4

!

! "1

(Dim)"# " <1

Torres & LFS PRB 92, 01420 (2015)

ln(Dim)

Page 53: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw Exponent

10-1 100 101 102 103t

10-4

10-3

10-2

10-1

100

<F(t)>

10-1 100 101 102 103t

10-1

100(a) (b)h=1.0 h=2.7

L=16 L=14 L=12 L=10

J J

Generalized dimension Multifractal dimension

!IPRini = C!ini 4

!

! "1

(Dim)"# " <1

F(t) = dE! dE" C!ini 2 C"

ini 2!! ei(E""E! )t # d#ei#t |# |$"1! #1t$

F(t) ! t"!

Torres & LFS PRB 92, 01420 (2015)

Page 54: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw decay: tail and filling of the LDOS

The long-time powerlaw decay of F(t) in many-body quantum systems depends on the tails and filling of the LDOS. •  Well filled LDOS (chaos): between t-2 and t-3 depending on the number of

particles that interact simultaneously.

•  Sparse LDOS: energy of the initial state, level of disorder, symmetries, regime.

Rigol arXiv:1511.04447

Page 55: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Real Systems: Banded Matrices

H =J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+ " J4n=1

L!2

" (#! nz! n+2

z +! nx! n+2

x +! ny! n+2

y )

H = H0 + !V

Torres & LFS PRE 89 (2014)

Page 56: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Band Random Matrix

Wigner Band Random Matrix

Torres & LFS PRE 89 (2014)

1 +v +v 0+v 2 !v +v+v !v 3 +v0 +v +v 4

0 0 0 00 0 0 0!v 0 0 0+v +v 0 0

0 0 !v +v0 0 0 +v0 0 0 00 0 0 0

5 +v !v 0+v 6 +v +v!v +v 7 +v0 +v +v 8

"

#

$$$$$$$$$$

%

&

''''''''''

Wigner, Ann. Math. (1955)

q = v2

bs

q>>1: semicircle q<<1: Lorentzian

Page 57: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Band Random Matrix

Wigner Band Random Matrix

Torres & LFS PRE 89 (2014)

1 +v +v 0+v 2 !v +v+v !v 3 +v0 +v +v 4

0 0 0 00 0 0 0!v 0 0 0+v +v 0 0

0 0 !v +v0 0 0 +v0 0 0 00 0 0 0

5 +v !v 0+v 6 +v +v!v +v 7 +v0 +v +v 8

"

#

$$$$$$$$$$

%

&

''''''''''

q = v2

bs

q>>1: semicircle q<<1: Lorentzian

Powerlaw Band Random Matrix

Hnm2 =

1

1+ n!mb

2

Page 58: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Powerlaw Band Random Matrix

Hnm2 =

1

1+ n!mb

2

t!3

t!2

t!(<1)

b=0

b=Dim

Page 59: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Few-body Observables

Page 60: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Dynamics of few-body observables

When:

[Hinitial,O]= 0

!O(t)" = F(t)O(0)+ !n |O | n" !n | e#iH finalt | ini"n$ini%

2

When initial state is a site-basis vector:

magnetization, spin-spin correlation in z, structure factor in z, interaction energy

!O(t)" = !#(t) |O |#(t)" Hinitial n = !n n

H final ! = E! !

Page 61: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Dynamics of few-body observables

When:

[Hinitial,O]= 0

!O(t)" = F(t)!O(0)+ !n |O | n" !n | e#iH finalt | ini"! "## $##n$ini

%2

When initial state is a site-basis vector:

magnetization, spin-spin correlation in z, structure factor in z, interaction energy

!O(t)" = !#(t) |O |#(t)" Hinitial n = !n n

H final ! = E! !

C!nC!

inie!iE!t!

"2

C!ini 2 e!iE!t

!

"2

Page 62: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Observables: Full Random Matrix

!O(t)" = F(t)O(0)+ !n |O | n" !n | e#iH finalt | ini"! "## $##n$ini

%2

C!nC!

inie!iE!t!

"2

ML/2z (0)

J1(2! init)2

! 2init

2

F(t) =J1(2! init)

2

! 2init

2

ML/2z (0)F(t)

ML/2z (t)

ML/2z (t)

Jt

infinite time average

Page 63: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Observables: Band Random Matrix

!O(t)" = F(t)O(0)+ !n |O | n" !n | e#iH finalt | ini"! "## $##n$ini

%2

C!nC!

inie!iE!t!

"2

0.01 0.1 1 10Jt

10-410-310-210-1100

Mz L/2(t)

ML/2z (0)F(t)

ML/2z (t)

Page 64: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Observables: Integrable models

!O(t)" = F(t)O(0)+ !n |O | n" !n | e#iH finalt | ini"2

n$ini%

0.1 1 10Jt

10-510-410-310-210-1

Mz L/2(t)

!(0) ="#"#"#"#

Néel state XX model

ML/2z (t) = J 0 (2t) / 2

L = 24,Sz = 0

t!1/2

Schütz, Mitra

Page 65: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Observables: Integrable models

!O(t)" = F(t)O(0)+ !n |O | n" !n | e#iH finalt | ini"2

n$ini%

0.1 1 10Jt

10-510-410-310-210-1

Mz L/2(t)

!(0) ="#"#"#"#

Néel state XX model

ML/2z (t) = J 0 (2t) / 2

!(0) ="#"#"#"#

Néel state XXZ model

Barmettler et al, NJP (2010) L = 24,Sz = 0

ms (t)! e"t/! 2 cos("t +#)

t!1/2

Mossel & Caux, NJP (2010)

DW, ! =1.5 F(t)" e#t/!Schütz, Mitra

Page 66: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

2 4 6 8 10Jt

10-6

10-4

10-2

100Mz L/2(t)

Observables: Chaotic spin-1/2 system

L = 24,Sz = 0

!(0) ="#"#"#"#

Néel state

J4n=1

L!1

" (#! nz! n+1

z +! nx! n+1

x +! ny! n+1

y )+

+!J4n=1

L!2

" (#" nz" n+2

z +" nx" n+2

x +" ny" n+2

y )

ML/2z (t) = A

te!t/!sin("t +#)

0.1 1 10 100 1000

10�9

10�7

10�5

0.001

0.1

t

F�t�

Jt

F t!2

exp(!! 2init

2 )

Page 67: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Conclusions

Ø  The dynamics of the system depends on the interplay between the initial state and the final Hamiltonian.

F(t) for short- and long-times Ø  The shape and width of the LDOS: short-time decay of F(t). (No dependence on the regime)

Tavora, Torres, LFS, arXiv soon

PRA 89 (2014) PRA 90 (2014) NJP 16 (2014) PRE 89 (2014)

•  Lorentzian LDOS: exponential decay. •  Gaussian LDOS: Gaussian decay. •  Semicircle LDOS: Bessel2/t2 •  Bimodal LDOS: uncertainty relation bound •  Filled LDOS: t-2 , t-3 due to bounds in the spectrum. •  Fragmented LDOS: small powerlaw exponent due to correlations.

Ø  The filling of the LDOS: long-time decay of F(t) (Dependence on the regime) PRB 92 (2015)

Ø  Observables: no general picture yet. C!nC!

inie!iE!t!

"2

Page 68: Dynamics of Interacting Quantum Systems - uni-goettingen.de · (ii) Systems without invariance under time reversal (atom in an external magnetic field) Hamiltonians are Hermitian)

Lea F. Santos, Yeshiva University Bad Honnef, Germany, 2015

Excited State Quantum Phase Transition with trapped ions: long-range interaction

H = B ! nz

n! +

J| n"m |"

! nx! m

x

n<m!

P. Richerme et al, Nature 511, 198 (2014) P. Jurcevi et al, Nature 511, 202 (2014)

N=2000, L=0

! = 0.6

Ek/N 0 0.2 0.4 0.6 0.8

Ckn

!E

2

LFS & Pérez-Bernal PRA 92, 050101R

(2015)

|!(0)" = n = 0 = Ckn=0

k# |!k "

! = 0Lipkin H = (1!! )nt +

!N(t+s+ s+t)2

n=1332

!(0) |!(t)"22

0 0.2 0.4 0.6 0.8 1Control Parameter

0

0.2

0.4

0.6

0.8

E k/N (a

.u.)

0 0.2 0.4 0.6 0.8Normalized Energy (a.u.)

0

5

10

Den

sity

of S

tate

s

0 0.4 0.8

0.41 0.42

0 0.4 0.8 0 0.4 0.80 0.4 0.80

0.04

0.08

0.12

PR(k

)U

(3)/N

0 0.4 0.80

0.1

0.2

PR(k

)SO

(4)/N

0.41 0.42

0 0.4 0.8

0 0.4 0.8Normalized Excitation Energy (Ek/N, a.u.)

0

0.1

0.2

0 0.4 0.8Normalized Excitation Energy (Ek/N, a.u.)

c = 0.2 = 0.3 = 0.4

= 0.0

= 0.6 = 0.9

= 0.6 = 0.9

PR vs E/N