123
Dynamics of a planar Coulomb gas Dynamics of a planar Coulomb gas Djalil CHAFAÏ Université Paris-Dauphine Workshop on Optimal and Random Point Configurations February 26, 2018 – ICERM, Brown University 1/26

Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dynamics of a planar Coulomb gas

Djalil CHAFAÏ

Université Paris-Dauphine

Workshop on Optimal and Random Point ConfigurationsFebruary 26, 2018 – ICERM, Brown University

1/26

Page 2: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Joint work with. . .

François BOLLEY and Joaquín FONTBONA

2/26

Page 3: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Motivation: Ginibre Ensemble

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

1.0

n=500;plot(eig(randn(n,n)+i*randn(n,n)/sqrt(2*n)))

Stochastic process leaving invariant this random picture?

3/26

Page 4: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Motivation: Ginibre Ensemble

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

1.0

n=500;plot(eig(randn(n,n)+i*randn(n,n)/sqrt(2*n)))

Stochastic process leaving invariant this random picture?

3/26

Page 5: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Outline

Poincaré inequality

Dyson Process

Ginibre process

4/26

Page 6: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 7: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Gradient dynamical system with noise

xn`1´ xn “´∇Hpxnq`gn

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 8: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Markov process pXtqtě0 stochastic differential equation in Rd

dXt “´∇HpXtqdt`dBt

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 9: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Markov process pXtqtě0 stochastic differential equation in Rd

dXt “´∇HpXtqdt`dBt

� Well-posedness or non-explosion: if ∇2H ě cId , c P R

� Reversible invariant Boltzmann–Gibbs measure

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 10: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Markov process pXtqtě0 stochastic differential equation in Rd

dXt “´∇HpXtqdt`dBt

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx , Z “

ż

e´Hpxqdx

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 11: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Markov process pXtqtě0 stochastic differential equation in Rd

dXt “´α∇HpXtqdt`?

αdBt

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx , Z “

ż

e´Hpxqdx

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 12: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Markov diffusion processes

� H : Rd Ñ R, Hpxq energy of state or configuration x P Rd

� Markov process pXtqtě0 stochastic differential equation in Rd

dXt “´α∇HpXtqdt`c

α

βdBt

� Well-posedness or non-explosion: if ∇2H ě cId , c P R� Reversible invariant Boltzmann–Gibbs measure

µβ pdxq “e´βHpxq

dx

X0 „ µ ñ pX0,Xtqd“ pXt ,X0q @t ě 0

5/26

Page 13: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Fokker–Planck evolution equation and generator

� Let pt : Rd Ñ R` be the density of LawpXtq with respect to µ

� Fokker–Planck evolution equation and generator

Btpt “ Gpt where Gf “∆f ´x∇H,∇fy.

� The operator ´G is symmetric and non-negative in L2pµq

� Decay to the equilibrium: for all p0,

Bt}pt ´1}2L2pµq “ BtVarµpptq “ 2EµpptGptq “´2Eµp|∇pt |2q ď 0.

� Exponential decay equivalent to Poincaré inequality: for all ρ ą 0,

@p0, t, Varµpptqď e´2ρ tVarµpp0q iif @f , Varµpf qď´Eµp|∇f |2q

ρ.

6/26

Page 14: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Fokker–Planck evolution equation and generator

� Let pt : Rd Ñ R` be the density of LawpXtq with respect to µ

� Fokker–Planck evolution equation and generator

Btpt “ Gpt where Gf “∆f ´x∇H,∇fy.

� The operator ´G is symmetric and non-negative in L2pµq

� Decay to the equilibrium: for all p0,

Bt}pt ´1}2L2pµq “ BtVarµpptq “ 2EµpptGptq “´2Eµp|∇pt |2q ď 0.

� Exponential decay equivalent to Poincaré inequality: for all ρ ą 0,

@p0, t, Varµpptqď e´2ρ tVarµpp0q iif @f , Varµpf qď´Eµp|∇f |2q

ρ.

6/26

Page 15: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Fokker–Planck evolution equation and generator

� Let pt : Rd Ñ R` be the density of LawpXtq with respect to µ

� Fokker–Planck evolution equation and generator

Btpt “ Gpt where Gf “∆f ´x∇H,∇fy.

� The operator ´G is symmetric and non-negative in L2pµq

� Decay to the equilibrium: for all p0,

Bt}pt ´1}2L2pµq “ BtVarµpptq “ 2EµpptGptq “´2Eµp|∇pt |2q ď 0.

� Exponential decay equivalent to Poincaré inequality: for all ρ ą 0,

@p0, t, Varµpptqď e´2ρ tVarµpp0q iif @f , Varµpf qď´Eµp|∇f |2q

ρ.

6/26

Page 16: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Fokker–Planck evolution equation and generator

� Let pt : Rd Ñ R` be the density of LawpXtq with respect to µ

� Fokker–Planck evolution equation and generator

Btpt “ Gpt where Gf “∆f ´x∇H,∇fy.

� The operator ´G is symmetric and non-negative in L2pµq

� Decay to the equilibrium: for all p0,

Bt}pt ´1}2L2pµq “ BtVarµpptq “ 2EµpptGptq “´2Eµp|∇pt |2q ď 0.

� Exponential decay equivalent to Poincaré inequality: for all ρ ą 0,

@p0, t, Varµpptqď e´2ρ tVarµpp0q iif @f , Varµpf qď´Eµp|∇f |2q

ρ.

6/26

Page 17: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Fokker–Planck evolution equation and generator

� Let pt : Rd Ñ R` be the density of LawpXtq with respect to µ

� Fokker–Planck evolution equation and generator

Btpt “ Gpt where Gf “∆f ´x∇H,∇fy.

� The operator ´G is symmetric and non-negative in L2pµq

� Decay to the equilibrium: for all p0,

Bt}pt ´1}2L2pµq “ BtVarµpptq “ 2EµpptGptq “´2Eµp|∇pt |2q ď 0.

� Exponential decay equivalent to Poincaré inequality: for all ρ ą 0,

@p0, t, Varµpptqď e´2ρ tVarµpp0q iif @f , Varµpf qď´Eµp|∇f |2q

ρ.

6/26

Page 18: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Exactly solvable model: Ornstein–Uhlenbeck process� Gaussian model: Hpxq “ |x|2

2 , dXt “´Xtdt`dBt ,

µ “N p0, Idq, Gf pxq “∆f pxq´xx ,∇f pxqy

� Mehler formula: LawpXt | X0 “ xq “N pxe´t ,p1´ e´2tqIdq.� Hermite orthonormal polynomials pPnqně0

GPn “´nPn and Gp¨q “ ´8ÿ

n“0

nx¨,PnyPn

� Spectral decomposition and spectral gap

pt “

8ÿ

n“0

e´ntxp0,PnyPn.

� Optimal Poincaré inequality, equality achieved for f “ P1

Varµpf q ď Eµp|∇f |2q.

7/26

Page 19: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Exactly solvable model: Ornstein–Uhlenbeck process� Gaussian model: Hpxq “ |x|2

2 , dXt “´Xtdt`dBt ,

µ “N p0, Idq, Gf pxq “∆f pxq´xx ,∇f pxqy

� Mehler formula: LawpXt | X0 “ xq “N pxe´t ,p1´ e´2tqIdq.

� Hermite orthonormal polynomials pPnqně0

GPn “´nPn and Gp¨q “ ´8ÿ

n“0

nx¨,PnyPn

� Spectral decomposition and spectral gap

pt “

8ÿ

n“0

e´ntxp0,PnyPn.

� Optimal Poincaré inequality, equality achieved for f “ P1

Varµpf q ď Eµp|∇f |2q.

7/26

Page 20: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Exactly solvable model: Ornstein–Uhlenbeck process� Gaussian model: Hpxq “ |x|2

2 , dXt “´Xtdt`dBt ,

µ “N p0, Idq, Gf pxq “∆f pxq´xx ,∇f pxqy

� Mehler formula: LawpXt | X0 “ xq “N pxe´t ,p1´ e´2tqIdq.� Hermite orthonormal polynomials pPnqně0

GPn “´nPn and Gp¨q “ ´8ÿ

n“0

nx¨,PnyPn

� Spectral decomposition and spectral gap

pt “

8ÿ

n“0

e´ntxp0,PnyPn.

� Optimal Poincaré inequality, equality achieved for f “ P1

Varµpf q ď Eµp|∇f |2q.

7/26

Page 21: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Exactly solvable model: Ornstein–Uhlenbeck process� Gaussian model: Hpxq “ |x|2

2 , dXt “´Xtdt`dBt ,

µ “N p0, Idq, Gf pxq “∆f pxq´xx ,∇f pxqy

� Mehler formula: LawpXt | X0 “ xq “N pxe´t ,p1´ e´2tqIdq.� Hermite orthonormal polynomials pPnqně0

GPn “´nPn and Gp¨q “ ´8ÿ

n“0

nx¨,PnyPn

� Spectral decomposition and spectral gap

pt “

8ÿ

n“0

e´ntxp0,PnyPn.

� Optimal Poincaré inequality, equality achieved for f “ P1

Varµpf q ď Eµp|∇f |2q.

7/26

Page 22: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Exactly solvable model: Ornstein–Uhlenbeck process� Gaussian model: Hpxq “ |x|2

2 , dXt “´Xtdt`dBt ,

µ “N p0, Idq, Gf pxq “∆f pxq´xx ,∇f pxqy

� Mehler formula: LawpXt | X0 “ xq “N pxe´t ,p1´ e´2tqIdq.� Hermite orthonormal polynomials pPnqně0

GPn “´nPn and Gp¨q “ ´8ÿ

n“0

nx¨,PnyPn

� Spectral decomposition and spectral gap

pt “

8ÿ

n“0

e´ntxp0,PnyPn.

� Optimal Poincaré inequality, equality achieved for f “ P1

Varµpf q ď Eµp|∇f |2q.

7/26

Page 23: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 24: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 25: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id

� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 26: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 27: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 28: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Brascamp–Lieb 1976)

If µpdxq “ e´Hpxq

Z dx, ∇2H ą 0 on Rd , then for any smooth f : Rd Ñ R,

Varµpf q ď Eµxp∇2Hq´1

∇f ,∇fy

� Proof by induction on dimension d

� Ornstein–Uhlenbeck: ∇2H “ Id� Convexity: ∇2H ě ρ Id ą 0 gives Poincaré with 1{ρ

� H convex means that µpdxq “ e´Hdx is log-concave

� Jensen divergence: Varµpf q “ Eµ Φpf q´ΦpEµ f q, Φpuq “ u2

8/26

Page 29: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 30: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 31: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id

� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 32: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 33: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 34: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexity

Theorem (Bakry–Émery 1984)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then for any convex Φ : I Ñ Rwith pu,vq ÞÑ Φ2puqv2 convex and any smooth f : Rd Ñ I

Eµ Φpf q´ΦpEµ f q ďEµpΦ

2pf q|∇f |2qρ

� Proof by semigroup interpolation ept´sqGpΦpesGf qq, etGf “ Ef pXtq

� Ornstein–Uhlenbeck: ∇2H “ Id� Poincaré: I “ R, Φpuq “ u2

� Beckner: I “ R`, Φpuq “ up, 1ă p ď 2

� Logarithmic Sobolev: I “ R`, Φpuq “ u logpuq

9/26

Page 35: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexityTheorem (Caffarelli 2000)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then µ is the image of N p0, Idqby a Lipschitz function F : Rd Ñ Rd with }F}Lip ď

1?ρ

.

� Proof by Monge–Ampère equation: f “ detpDFqg

� Gives Poincaré from the Gaussian by transportation:

Varµpf q “ VarN p0,Id qpf pFqq

ď EN p0,Id qp|∇f pFqq|2q

ďEµp|∇f |2q

ρ

� Gives also any Φ-Sobolev inequality from the Gaussian!

10/26

Page 36: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexityTheorem (Caffarelli 2000)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then µ is the image of N p0, Idqby a Lipschitz function F : Rd Ñ Rd with }F}Lip ď

1?ρ

.

� Proof by Monge–Ampère equation: f “ detpDFqg

� Gives Poincaré from the Gaussian by transportation:

Varµpf q “ VarN p0,Id qpf pFqq

ď EN p0,Id qp|∇f pFqq|2q

ďEµp|∇f |2q

ρ

� Gives also any Φ-Sobolev inequality from the Gaussian!

10/26

Page 37: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexityTheorem (Caffarelli 2000)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then µ is the image of N p0, Idqby a Lipschitz function F : Rd Ñ Rd with }F}Lip ď

1?ρ

.

� Proof by Monge–Ampère equation: f “ detpDFqg

� Gives Poincaré from the Gaussian by transportation:

Varµpf q “ VarN p0,Id qpf pFqq

ď EN p0,Id qp|∇f pFqq|2q

ďEµp|∇f |2q

ρ

� Gives also any Φ-Sobolev inequality from the Gaussian!

10/26

Page 38: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

Comparison to Gaussianity via convexityTheorem (Caffarelli 2000)

If µpdxq “ e´Hpxq

Z dx, ∇2H ě ρ Id ą 0, then µ is the image of N p0, Idqby a Lipschitz function F : Rd Ñ Rd with }F}Lip ď

1?ρ

.

� Proof by Monge–Ampère equation: f “ detpDFqg

� Gives Poincaré from the Gaussian by transportation:

Varµpf q “ VarN p0,Id qpf pFqq

ď EN p0,Id qp|∇f pFqq|2q

ďEµp|∇f |2q

ρ

� Gives also any Φ-Sobolev inequality from the Gaussian!

10/26

Page 39: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

KLS conjecture

Conjecture (Kannan–Lovász–Simonovits 1995)

There exists a universal constant C ą 0 such that for any dimensiond ě 1 and any smooth H : Rd Ñ R with ∇2H ě 0 and Cov“ Id ,µpdxq “ e´Hpxq

Z dx satisfies to a Poincaré inequality with constant C.

� . . .

� KLS/Bobkov true with d1{2

� . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . .

� Lee–Vempala 2016: true with d1{4

� . . .

11/26

Page 40: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

KLS conjecture

Conjecture (Kannan–Lovász–Simonovits 1995)

There exists a universal constant C ą 0 such that for any dimensiond ě 1 and any smooth H : Rd Ñ R with ∇2H ě 0 and Cov“ Id ,µpdxq “ e´Hpxq

Z dx satisfies to a Poincaré inequality with constant C.

� . . .

� KLS/Bobkov true with d1{2

� . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . .

� Lee–Vempala 2016: true with d1{4

� . . .

11/26

Page 41: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

KLS conjecture

Conjecture (Kannan–Lovász–Simonovits 1995)

There exists a universal constant C ą 0 such that for any dimensiond ě 1 and any smooth H : Rd Ñ R with ∇2H ě 0 and Cov“ Id ,µpdxq “ e´Hpxq

Z dx satisfies to a Poincaré inequality with constant C.

� . . .

� KLS/Bobkov true with d1{2

� . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . .

� Lee–Vempala 2016: true with d1{4

� . . .

11/26

Page 42: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

KLS conjecture

Conjecture (Kannan–Lovász–Simonovits 1995)

There exists a universal constant C ą 0 such that for any dimensiond ě 1 and any smooth H : Rd Ñ R with ∇2H ě 0 and Cov“ Id ,µpdxq “ e´Hpxq

Z dx satisfies to a Poincaré inequality with constant C.

� . . .

� KLS/Bobkov true with d1{2

� . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . .

� Lee–Vempala 2016: true with d1{4

� . . .

11/26

Page 43: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Poincaré inequality

KLS conjecture

Conjecture (Kannan–Lovász–Simonovits 1995)

There exists a universal constant C ą 0 such that for any dimensiond ě 1 and any smooth H : Rd Ñ R with ∇2H ě 0 and Cov“ Id ,µpdxq “ e´Hpxq

Z dx satisfies to a Poincaré inequality with constant C.

� . . .

� KLS/Bobkov true with d1{2

� . . . , Bourgain, . . . , Klartag, . . . , Eldan, . . .

� Lee–Vempala 2016: true with d1{4

� . . .

11/26

Page 44: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Outline

Poincaré inequality

Dyson Process

Ginibre process

12/26

Page 45: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 46: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 47: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

dMt “´nMtdt`dBt .

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 48: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

dMt “´αnnMtdt`?

αndBt .

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 49: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

dMt “´Mtdt`dBt?

n.

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 50: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

dMt “´Mtdt`dBt?

n.

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 51: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Hermitian Random Matrices

� Hermnˆn ” Rn`2 n2´n2 “ Rn2

“ Rd

� Boltzmann–Gibbs measure

µpdMq “e´

n2 TrpM2q

ZdM

� Stochastic Differential Equation à la Ornstein–Uhlenbeck

dMt “´Mtdt`dBt?

n.

� Change of variable: if specpMq “ tx1, . . . ,xnu,

M “ UDU˚ with D “ diagpx1, . . . ,xnq

� Stochastic process of spectrum?

13/26

Page 52: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process

� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .

14/26

Page 53: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´

n2

řni“1 x2

iăjpxj ´ xiq2

Zdx

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .

14/26

Page 54: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´ n

2

řni“1 x2

i ´2ř

iăj log1

xj´xi

Zdx

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .

14/26

Page 55: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´ n

2

řni“1 x2

i ´2ř

iăj log1

xj´xi

Zdx

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .

14/26

Page 56: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´ n

2

řni“1 x2

i ´2ř

iăj log1

xj´xi

Zdx

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .

14/26

Page 57: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Gaussian Unitary Ensemble and Dyson Process� State space

D “ tpx1, . . . ,xnq P Rn : x1 ă ¨¨ ¨ ă xnu

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´ n

2

řni“1 x2

i ´2ř

iăj log1

xj´xi

Zdx

� Dyson Ornstein–Uhlenbeck process via Itô formula

dX it “´

ˆ

X it `

2n

ÿ

iăj

1

X jt ´X i

t

˙

dt`dBi

t?n

� Well-posedness: . . . , Rogers–Shi, . . .

� Poincaré and log-Sobolev: . . . , Erdos–Yau et al, . . .14/26

Page 58: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

James Dyson (1947 –)

15/26

Page 59: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Freeman Dyson (1923 –)

15/26

Page 60: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Freeman Dyson (1923 –)

� Freeman DysonA Brownian-motion model for the eigenvalues of a random matrixJournal of Mathematical Physics 3 (1962) 1191–1198.

� Greg Anderson & Alice Guionnet & Ofer ZeitouniAn introduction to random matrices (CUP 2009)

� László Erdos & Horng-Tzer YauDynamical Approach To Random Matrix Theory (AMS 2017)

15/26

Page 61: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Freeman Dyson (1923 –)

� Freeman DysonA Brownian-motion model for the eigenvalues of a random matrixJournal of Mathematical Physics 3 (1962) 1191–1198.

� Greg Anderson & Alice Guionnet & Ofer ZeitouniAn introduction to random matrices (CUP 2009)

� László Erdos & Horng-Tzer YauDynamical Approach To Random Matrix Theory (AMS 2017)

15/26

Page 62: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Freeman Dyson (1923 –)

� Freeman DysonA Brownian-motion model for the eigenvalues of a random matrixJournal of Mathematical Physics 3 (1962) 1191–1198.

� Greg Anderson & Alice Guionnet & Ofer ZeitouniAn introduction to random matrices (CUP 2009)

� László Erdos & Horng-Tzer YauDynamical Approach To Random Matrix Theory (AMS 2017)

15/26

Page 63: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Optimal Poincaré constant (mind the gap!)

� Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx with Hpxq “

n2

nÿ

i“1

x2i `2

ÿ

iăj

log1

xj ´ xi

� Log-concavity∇

2Hpxq ě n.

� Brascamp–Lieb or Bakry–Émery or Caffarelli

Varµpf q ďEµp|∇f |2q

n.

� Equality achieved for f pxq “ x1`¨¨ ¨` xn (compute traces)

� Lipschitz deformation of Gaussian (Hoffman–Wielandt)

16/26

Page 64: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Optimal Poincaré constant (mind the gap!)

� Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx with Hpxq “

n2

nÿ

i“1

x2i `2

ÿ

iăj

log1

xj ´ xi

� Log-concavity∇

2Hpxq ě n.

� Brascamp–Lieb or Bakry–Émery or Caffarelli

Varµpf q ďEµp|∇f |2q

n.

� Equality achieved for f pxq “ x1`¨¨ ¨` xn (compute traces)

� Lipschitz deformation of Gaussian (Hoffman–Wielandt)

16/26

Page 65: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Optimal Poincaré constant (mind the gap!)

� Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx with Hpxq “

n2

nÿ

i“1

x2i `2

ÿ

iăj

log1

xj ´ xi

� Log-concavity∇

2Hpxq ě n.

� Brascamp–Lieb or Bakry–Émery or Caffarelli

Varµpf q ďEµp|∇f |2q

n.

� Equality achieved for f pxq “ x1`¨¨ ¨` xn (compute traces)

� Lipschitz deformation of Gaussian (Hoffman–Wielandt)

16/26

Page 66: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Optimal Poincaré constant (mind the gap!)

� Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx with Hpxq “

n2

nÿ

i“1

x2i `2

ÿ

iăj

log1

xj ´ xi

� Log-concavity∇

2Hpxq ě n.

� Brascamp–Lieb or Bakry–Émery or Caffarelli

Varµpf q ďEµp|∇f |2q

n.

� Equality achieved for f pxq “ x1`¨¨ ¨` xn (compute traces)

� Lipschitz deformation of Gaussian (Hoffman–Wielandt)

16/26

Page 67: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Dyson Process

Optimal Poincaré constant (mind the gap!)

� Boltzmann–Gibbs measure

µpdxq “e´Hpxq

Zdx with Hpxq “

n2

nÿ

i“1

x2i `2

ÿ

iăj

log1

xj ´ xi

� Log-concavity∇

2Hpxq ě n.

� Brascamp–Lieb or Bakry–Émery or Caffarelli

Varµpf q ďEµp|∇f |2q

n.

� Equality achieved for f pxq “ x1`¨¨ ¨` xn (compute traces)

� Lipschitz deformation of Gaussian (Hoffman–Wielandt)

16/26

Page 68: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Outline

Poincaré inequality

Dyson Process

Ginibre process

17/26

Page 69: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Ginibre process

� Boltzmann–Gibbs measure on MatnˆnpCq

µpMq “e´nTrpMM˚q

ZdM

� Schur unitary decomposition: if tx1, . . . ,xnu “ specpMq,

M “ UTU˚ with T “ D`N and D “ diagpx1, . . . ,xnq.

� Lack of normality is generic: µptN “ 0uq “ 0

� Process on spectrum melts N and D (Ñ Bourgade–Dubach)

� How about an O.-U. like diffusion leaving invariant µ?

18/26

Page 70: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Ginibre process

� Boltzmann–Gibbs measure on MatnˆnpCq

µpMq “e´nTrpMM˚q

ZdM

� Schur unitary decomposition: if tx1, . . . ,xnu “ specpMq,

M “ UTU˚ with T “ D`N and D “ diagpx1, . . . ,xnq.

� Lack of normality is generic: µptN “ 0uq “ 0

� Process on spectrum melts N and D (Ñ Bourgade–Dubach)

� How about an O.-U. like diffusion leaving invariant µ?

18/26

Page 71: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Ginibre process

� Boltzmann–Gibbs measure on MatnˆnpCq

µpMq “e´nTrpMM˚q

ZdM

� Schur unitary decomposition: if tx1, . . . ,xnu “ specpMq,

M “ UTU˚ with T “ D`N and D “ diagpx1, . . . ,xnq.

� Lack of normality is generic: µptN “ 0uq “ 0

� Process on spectrum melts N and D (Ñ Bourgade–Dubach)

� How about an O.-U. like diffusion leaving invariant µ?

18/26

Page 72: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Ginibre process

� Boltzmann–Gibbs measure on MatnˆnpCq

µpMq “e´nTrpMM˚q

ZdM

� Schur unitary decomposition: if tx1, . . . ,xnu “ specpMq,

M “ UTU˚ with T “ D`N and D “ diagpx1, . . . ,xnq.

� Lack of normality is generic: µptN “ 0uq “ 0

� Process on spectrum melts N and D (Ñ Bourgade–Dubach)

� How about an O.-U. like diffusion leaving invariant µ?

18/26

Page 73: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Ginibre process

� Boltzmann–Gibbs measure on MatnˆnpCq

µpMq “e´nTrpMM˚q

ZdM

� Schur unitary decomposition: if tx1, . . . ,xnu “ specpMq,

M “ UTU˚ with T “ D`N and D “ diagpx1, . . . ,xnq.

� Lack of normality is generic: µptN “ 0uq “ 0

� Process on spectrum melts N and D (Ñ Bourgade–Dubach)

� How about an O.-U. like diffusion leaving invariant µ?

18/26

Page 74: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

� Ginibre process on Cn “ pR2qn

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 75: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´n

řni“1 |xi |

2

Z

ź

iăj

|xi ´ xj |2dx

� Ginibre process on Cn “ pR2qn

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 76: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´n

řni“1 |xi |

2´2ř

iăj log1

|xi´xj |

Zdx

� Ginibre process on Cn “ pR2qn

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 77: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´n

řni“1 |xi |

2´2ř

iăj log1

|xi´xj |

Zdx

� Ginibre process on Cn “ pR2qn

dX it “´2X i

t dt´2n

ÿ

i‰j

X jt ´X i

t

|X it ´X j

t |2

dt`dBi

t?n.

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 78: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´βn

´

1n

řni“1 |xi |

2` 1n2

ř

iăj log1

|xi´xj |

¯

Zdx

� Ginibre process on Cn “ pR2qn

dX it “´2

αn

nX i

t dt´2αn

n

ÿ

j‰i

X jt ´X i

t

|X it ´X j

t |2

dt`c

αn

βndBi

t .

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 79: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´βn

´

1n

řni“1 |xi |

2` 1n2

ř

iăj log1

|xi´xj |

¯

Zdx

� Ginibre process on Cn “ pR2qn

dX it “´2

αn

nX i

t dt´2αn

n

ÿ

j‰i

X jt ´X i

t

|X it ´X j

t |2

dt`c

αn

βndBi

t .

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 80: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´βn

´

1n

řni“1 |xi |

2` 1n2

ř

iăj log1

|xi´xj |

¯

Zdx

� Ginibre process on Cn “ pR2qn

dX it “´2

αn

nX i

t dt´2αn

n

ÿ

j‰i

X jt ´X i

t

|X it ´X j

t |2

dt`c

αn

βndBi

t .

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices

19/26

Page 81: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

� State space

D “ CnzYi‰j tpx1, . . . ,xnq P Cn : xi “ xju

� Boltzmann–Gibbs measure via change of variable

µpdxq “e´βn

´

1n

řni“1 |xi |

2` 1n2

ř

iăj log1

|xi´xj |

¯

Zdx

� Ginibre process on Cn “ pR2qn

dX it “´2

αn

nX i

t dt´2αn

n

ÿ

j‰i

X jt ´X i

t

|X it ´X j

t |2

dt`c

αn

βndBi

t .

� RMT: βn “ n2

� No convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli

� No Hoffman–Wielandt for non-normal matrices19/26

Page 82: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posedness� Explosion time

TBD “ limRÑ8

TR

whereTR “ inf tt ě 0 : HpXtq ą Ru

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 83: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posedness� Explosion time

TBD “ limRÑ8

TR

whereTR “ inftt ě 0 : distpXt ,BDq ď 1{Ru

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 84: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posedness� Explosion time

TBD “ limRÑ8

TR

where

TR “ inf

"

t ě 0 : maxi|X i

t | ě R or mini‰j|X i

t ´X jt | ď 1{R

*

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 85: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 86: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !

� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 87: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 88: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 89: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D

20/26

Page 90: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Well posednessTheorem (Well-posedness)

For all X0 “ x P D, n ě 2, βn ą 0, we have PpTBD “`8q “ 1.

� No constraint on β in contrast with Rogers–Shi for Dyson O.–U. !� Positivity and coercivity

infxPD

Hpxq ą 0 and limxÑBD

Hpxq “ `8

� CutoffW pxq “ rW pxq on |x | ă R with rW smooth

� Itô formula

ExpHpXt^T qq´Hpxq “ Ex

ˆż t^T

0GHpXsqds

˙

.

� R1TRďt ď HpXt^TRq and GH ď cn on D20/26

Page 91: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n

21/26

Page 92: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion

� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n

21/26

Page 93: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n

21/26

Page 94: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n

21/26

Page 95: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n

21/26

Page 96: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Poincaré inequalityTheorem (Poincaré inequality)

For any n, the law µn satisfies a Poincaré inequality.

� Proof using Lyapunov criterion� Bakry–Barthe–Cattiaux–Guillin Lyapunov approach

Hpxq “1n

nÿ

i“1

|xi |2`

1n2

ÿ

j‰i

log1

|xi ´ xj |

Gf “αn

βn∆f ´αn∇H ¨∇f

GΨď´cΨ` c11K

Ψ“ eγH

� The constant depends on n21/26

Page 97: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Uniform Poincaré for the one particle marginalTheorem (Uniform Poincaré for one-particle)

If βn “ n2 then the one-particle marginal of µ is log-concave andsatisfies a Poincaré inequality with a constant uniform in n.

� If βn “ n2 then one particle marginal of µ has density

z P C ÞÑ ϕpzq “e´n|z|2

π

n´1ÿ

`“0

n`|z|2`

`!.

� Circular law

limnÑ8

supzPK

ˇ

ˇ

ˇ

ˇ

ϕpzq´1t|z|ď1u

π

ˇ

ˇ

ˇ

ˇ

“ 0.

� The function z ÞÑ logřn´1

`“0|z|2`

`! is concave!� Second moment of ϕ bounded in n then KLS/Bobkov theorem

22/26

Page 98: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Uniform Poincaré for the one particle marginalTheorem (Uniform Poincaré for one-particle)

If βn “ n2 then the one-particle marginal of µ is log-concave andsatisfies a Poincaré inequality with a constant uniform in n.

� If βn “ n2 then one particle marginal of µ has density

z P C ÞÑ ϕpzq “e´n|z|2

π

n´1ÿ

`“0

n`|z|2`

`!.

� Circular law

limnÑ8

supzPK

ˇ

ˇ

ˇ

ˇ

ϕpzq´1t|z|ď1u

π

ˇ

ˇ

ˇ

ˇ

“ 0.

� The function z ÞÑ logřn´1

`“0|z|2`

`! is concave!� Second moment of ϕ bounded in n then KLS/Bobkov theorem

22/26

Page 99: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Uniform Poincaré for the one particle marginalTheorem (Uniform Poincaré for one-particle)

If βn “ n2 then the one-particle marginal of µ is log-concave andsatisfies a Poincaré inequality with a constant uniform in n.

� If βn “ n2 then one particle marginal of µ has density

z P C ÞÑ ϕpzq “e´n|z|2

π

n´1ÿ

`“0

n`|z|2`

`!.

� Circular law

limnÑ8

supzPK

ˇ

ˇ

ˇ

ˇ

ϕpzq´1t|z|ď1u

π

ˇ

ˇ

ˇ

ˇ

“ 0.

� The function z ÞÑ logřn´1

`“0|z|2`

`! is concave!� Second moment of ϕ bounded in n then KLS/Bobkov theorem

22/26

Page 100: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Uniform Poincaré for the one particle marginalTheorem (Uniform Poincaré for one-particle)

If βn “ n2 then the one-particle marginal of µ is log-concave andsatisfies a Poincaré inequality with a constant uniform in n.

� If βn “ n2 then one particle marginal of µ has density

z P C ÞÑ ϕpzq “e´n|z|2

π

n´1ÿ

`“0

n`|z|2`

`!.

� Circular law

limnÑ8

supzPK

ˇ

ˇ

ˇ

ˇ

ϕpzq´1t|z|ď1u

π

ˇ

ˇ

ˇ

ˇ

“ 0.

� The function z ÞÑ logřn´1

`“0|z|2`

`! is concave!

� Second moment of ϕ bounded in n then KLS/Bobkov theorem

22/26

Page 101: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Uniform Poincaré for the one particle marginalTheorem (Uniform Poincaré for one-particle)

If βn “ n2 then the one-particle marginal of µ is log-concave andsatisfies a Poincaré inequality with a constant uniform in n.

� If βn “ n2 then one particle marginal of µ has density

z P C ÞÑ ϕpzq “e´n|z|2

π

n´1ÿ

`“0

n`|z|2`

`!.

� Circular law

limnÑ8

supzPK

ˇ

ˇ

ˇ

ˇ

ϕpzq´1t|z|ď1u

π

ˇ

ˇ

ˇ

ˇ

“ 0.

� The function z ÞÑ logřn´1

`“0|z|2`

`! is concave!� Second moment of ϕ bounded in n then KLS/Bobkov theorem

22/26

Page 102: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Second moment dynamics

Theorem (Second moment dynamics)

pRtqtě0 “ p|Xt |

2

n qtě0 is an ergodic Cox–Ingersoll–Ross process:

dRt “ 4αn

n

nβn`

n´12n

´Rt

dt`

d

4αn

nβnRt dBt .

23/26

Page 103: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Second moment dynamics

Theorem (Second moment dynamics)

pRtqtě0 “ p|Xt |

2

n qtě0 is an ergodic Cox–Ingersoll–Ross process:

dRt “ 4αn

n

nβn`

n´12n

´Rt

dt`

d

4αn

nβnRt dBt .

In particular, with Γn “ Gammapn` n´12n βn,βnq, for any t ě 0

W1pLawpRtq,Γnq ď e´4 αnn t W1pLawpR0q,Γnq.

23/26

Page 104: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Second moment dynamics

Theorem (Second moment dynamics)

pRtqtě0 “ p|Xt |

2

n qtě0 is an ergodic Cox–Ingersoll–Ross process:

dRt “ 4αn

n

nβn`

n´12n

´Rt

dt`

d

4αn

nβnRt dBt .

Moreover for any x P D and t ě 0, we have

EpRt | R0 “ rq “ re´4αn

n t `

ˆ

12`

nβn´

12n

˙

´

1´ e´4αn

n t¯

.

23/26

Page 105: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limit

νn,t “1n

nÿ

i“1

δX it

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 106: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limit

νn,t “1n

nÿ

i“1

δX it

dX it “´2

αn

nX i

t dt´2αn

n

ÿ

j‰i

X it ´X j

t

|X it ´X j

t |2

dt`c

αn

βndBi

t .

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 107: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limit

Theorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with . . .

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 108: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

ddt

ż

R2f pxqνtpdxq “ σ

ż

∆f pxqνtpdxq´2ż

R2x ¨∇f pxqνtpdxq

`

ż

R4

px´ yq ¨ p∇f pxq´∇f pyqq|x´ y |2

νtpdxqνtpdyq

� Semi-linear Partial Differential Equation (Sznitman)� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 109: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 110: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 111: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 112: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 113: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 114: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 115: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 116: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

McKean–Vlasov mean-field limitTheorem? (Limiting McKean–Vlasov equation)

If σ “ limnÑ8αnβnP r0,8q then limnÑ8 νn,t “ νt with

Btνt “ σ∆νt `∇ ¨ pp∇V `∇W ˚νtqνtq.

� Semi-linear Partial Differential Equation (Sznitman)

� Regimes: pαn,βnq “ pn,n2q and pαn,βnq “ pn,nq equation

� Dyson O.-U. Cauchy–Stieltjes transformÑ Burger’s equation

� Dyson O.-U. . . . , Cépa–Lépingle, . . . , Cabanal–Guionnet,. . .

� Smooth interactions: . . . , Carrillo–McCann–Villani (2003), . . .

� Vortex model: . . . , Fournier–Hauray–Mischler (2014), . . .

� Without noise and confinement: . . . , Duerinckx (2016),. . .

24/26

Page 117: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 118: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 119: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 120: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 121: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 122: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

Numerical analysis and stochastic simulation� Overdamped Langevin dynamics

dXt “´α∇HpXtqdt`c

α

βdBt

� Ergodic theorem limtÑ81t

şt0 δXs ds “ e´βH

� Ñ Metropolis Adjusted Langevin Algorithm (MALA)

� Underdamped Langevin dynamics#

dXt “ ∇UpYtqdt

dYt “´∇HpXtq´ γ∇UpYtqdt`b

γ

βdBt .

� Ergodic theorem limtÑ81t

şt0 δpXs,Ysq

ds “ e´βH b e´γU

� Ñ Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz)

25/26

Page 123: Dynamics of a planar Coulomb gas - icerm.brown.edu...Dynamics of a planar Coulomb gas Poincaré inequality Fokker–Planck evolution equation and generator Let pt: Rd ÑR be the density

Dynamics of a planar Coulomb gas

Ginibre process

That’s all folks!

Thank you for your attention.

26/26