Dynamics 70 M4 Transient

  • Upload
    longpvr

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 Dynamics 70 M4 Transient

    1/58

    Transient Dynamic Analysis

    Module 4

  • 8/12/2019 Dynamics 70 M4 Transient

    2/58

    March 14, 2003Inventory #001809

    4-2

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    Training Manual

    Module 4

    Transient Dynamic AnalysisA. Define transient dynamic analysis and its purpose.

    B. Learn basic terminology and concepts underlying transient analysis.

    C. Learn how to do a transient analysis in ANSYS.D. Work on a transient analysis exercise.

  • 8/12/2019 Dynamics 70 M4 Transient

    3/58

    March 14, 2003Inventory #001809

    4-3

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis

    A. Definition & PurposeWhat is transient dynamic analysis?

    A technique to determine the response of a structure to arbitrary

    time-varying loads such as an explosion.

    Input

    Loads as a function of time.

    Output

    Time-varying displacements and other derived quantities such asstresses and strains.

  • 8/12/2019 Dynamics 70 M4 Transient

    4/58

    March 14, 2003Inventory #001809

    4-4

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis

    Definition & PurposeTransient dynamic analysis is used in the design of:

    Structures subjected to shock loads, such as automobile doors

    and bumpers, building frames, and suspension systems.

    Structures subjected to time-varying loads, such as bridges, earth

    moving equipment, and other machine components.

    Household and office equipment subjected to bumps and

    bruises, such as cellular phones, laptop computers, and vacuum

    cleaners.

  • 8/12/2019 Dynamics 70 M4 Transient

    5/58

    March 14, 2003Inventory #001809

    4-5

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis

    B. Terminology & ConceptsTopics covered:

    Equation of motion

    Solution methods Integration time step

  • 8/12/2019 Dynamics 70 M4 Transient

    6/58

    March 14, 2003Inventory #001809

    4-6

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNA

    MICS7.0

    DYNA

    MICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology & Concepts

    Equation of Motion Equation of motion for a transient dynamic analysis is the same

    as the general equation of motion.

    This is the most general form of dynamic analysis. Loading may

    be any arbitrary function of time.

    Depending on the method of solution, ANSYS allows all types of

    nonlinearities to be included in a transient dynamic analysis -

    large deformation, contact, plasticity, etc.

    [ ]{ } [ ]{ } [ ]{ } ( ){ }tFuKuCuM =++

  • 8/12/2019 Dynamics 70 M4 Transient

    7/58

    March 14, 2003Inventory #001809

    4-7

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Solution Methods

    Solving the equation of motion

    Direct Integration Mode Superposition

    Implicit Explicit

    Full Reduced Full Reduced

  • 8/12/2019 Dynamics 70 M4 Transient

    8/58

    March 14, 2003Inventory #001809

    4-8

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Solution MethodsTwo methods of solving the equation of motion:

    Mode superposition (discussed in Module 6)

    Direct integration Equation of motion is directly integrated step by step over time. At

    each time point ( time = 0, t , 2t, 3t,.) a set of simultaneous,

    static equilibrium equations (F=ma) is solved.

    An assumption (integration scheme) is made regarding how

    displacement, velocity and acceleration will vary over t

    Various integration schemes are available in literature such as

    Central difference, Average acceleration, Houbolt, Wilson,

    Newmark etc.

  • 8/12/2019 Dynamics 70 M4 Transient

    9/58

    March 14, 2003Inventory #001809

    4-9

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    ANSYS uses Newmark integration scheme.

    Varying values of and causes integration scheme to change (implicit /

    explicit / average acceleration ).

    Newmark is an implicit scheme. ANSYS/LS-DYNA uses explicit scheme. See module 1 for a discussion of

    implicit and explicit.

    [ ] [ ] [ ] ( ){ }

    tttutututtu

    ttt

    ut

    utt

    ut

    utt

    u

    tF

    tt

    uK

    tt

    uC

    tt

    uM

    +++=+

    +

    +++=+

    =

    +

    +

    +

    +

    +

    ])1[(

    2])2/1[(

    Transient Analysis - Terminology and Concepts

    Solution Methods

  • 8/12/2019 Dynamics 70 M4 Transient

    10/58

    March 14, 2003

    Inventory #001809

    4-10

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Solution Methods Solution can use either reducedor fullstructure matrices.

    Reduced matrices

    Used to speed up the solution.

    No nonlinearities (except gap) allowed.

    [K], [C], and [M] are written in terms of master DOF, which form a

    subset of the full DOF set.

    Reduced [K] is exact, but reduced [C] and [M] are approximate. There

    are other disadvantages also, not discussed in this seminar.

    Full matrices

    No reduction. Uses full [K], [C], and [M].

    All nonlinearities allowed.

    All discussions in this seminar assume this approach.

  • 8/12/2019 Dynamics 70 M4 Transient

    11/58

    March 14, 2003

    Inventory #001809

    4-11

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Integration Time Step An important concept in time integration techniques is the

    integration time step (also ITS ort).

    ITS = time increment t from one time point to the next.

    Determines solution accuracy, so its value should be chosen

    carefully.

    ANSYS allows only a constant value of ITS for reduced and mode

    superposition transient analyses.

    In a FULL transient analysis, ANSYS can automatically vary the timestep size within limits set by user (discussed later).

  • 8/12/2019 Dynamics 70 M4 Transient

    12/58

    March 14, 2003

    Inventory #001809

    4-12

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    The integration time step ( ITS) size should be small enough to

    capture the following:

    the response frequency

    the contact frequency (if applicable)

    wave propagation effects (if applicable)

    Nonlinear response (plasticity, creep, contact status)

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    13/58

    March 14, 2003

    Inventory #001809

    4-13

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Integration Time Step

    Response frequency

    Different types of loads excite differentnatural frequencies of the structure.

    Response frequency is the weightedaverage of all frequencies excited by agiven load.

    The ITS should be small enough tocapture the response frequency .

    Twenty time points per cycle shouldbe sufficient, i.e,

    t = 1/20f

    where f is the response frequency.Response period

  • 8/12/2019 Dynamics 70 M4 Transient

    14/58

    March 14, 2003

    Inventory #001809

    4-14

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Response frequency (continued)

    During solution, the full transient method (discussed in this seminar)

    prints the response frequency and the number of points per cycle at

    every time point.

    The goal is to maintain about 20 points per cycle.

    By default, ANSYS automatically increases or decreases ITS to

    maintain about 20 points per cycle at the response frequency.

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    15/58

    March 14, 2003

    Inventory #001809

    4-15

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Integration Time Step

    Contact frequency

    When two objects come in

    contact, the gap or contact

    surface is usually represented bya stiffness (gap stiffness).

    The ITS should be small enough to

    capture the frequency of the gap

    spring.

    Thirty points per cycle are

    recommended. This is sufficient

    to capture the momentum transfer

    between the two objects. A larger

    ITS might result in energy loss,

    and the impact may not beperfectly elastic.

    The response frequency printed

    during solution includes contact

    frequency.

    masseffectivem

    stiffnessgapk

    frequencycontactf

    m

    k

    2

    1f

    f30

    1ITS

    c

    c

    c

    =

    =

    =

    =

    =

  • 8/12/2019 Dynamics 70 M4 Transient

    16/58

    March 14, 2003

    Inventory #001809

    4-16

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Transient Analysis - Terminology and Concepts

    Integration Time StepWave propagation

    Caused by impact. More

    prominent in slender structures

    (such as a thin rod dropped onone end).

    Requires a very small ITS and a

    fine mesh along the direction of

    the wave.

    Explicit method (available inANSYS-LS/DYNA) may be better

    suited for this.

    densitymass

    modulussYoung'

    speedwaveelastic

    directionwavealonglength

    20/sizeelement3

    =

    =

    ==

    =

    =

    E

    Ec

    L

    Lxc

    xITS

  • 8/12/2019 Dynamics 70 M4 Transient

    17/58

    March 14, 2003

    Inventory #001809

    4-17

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Nonlinear response

    A full transient analysis can include any type of nonlinearity.

    Nonlinearities can be classified into 3 types: Material nonlinearity (plasticity , creep, hyperelasticity )

    Geometric nonlinearity (large strain , large rotation, buckling)

    Element nonlinearity (contact , cable)

    Nonlinearities require an iterative solution at each time point.

    These iterations are called equilibrium iterations.

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    18/58

    March 14, 2003

    Inventory #001809

    4-18

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    Nonlinear response (continued)

    Smaller ITS sizes generally help equilibrium iterations to converge

    quickly.

    Nonlinearities such as plasticity, creep and friction are non-

    conservative in nature and require the load history to be followed

    accurately. A small ITS size helps in following the load history

    accurately.

    A small ITS size is also required to capture changes in contactstatus.

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    19/58

  • 8/12/2019 Dynamics 70 M4 Transient

    20/58

    March 14, 2003

    Inventory #001809

    4-20

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    Training Manual

    So how do you choose an ITS?

    Recommended way is to activate automatic time stepping

    (AUTOTS), then provide tinitial , tmin , and tmax. ANSYS uses an

    automatic time stepping algorithm (AUTOTS) to determine theoptimum t value for a given problem.

    Example: If AUTOTS is on with tinitial= 1 sec, tmin= 0.01 sec, and

    tmax= 10 sec; then ANSYS starts with an ITS= 1 sec and allow it to

    vary between 0.01 and 10 depending on the structures response.

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    21/58

    March 14, 2003

    Inventory #001809

    4-21

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    Training Manual

    AUTOTS is on by default for full transient analyses and is not

    available for reduced and mode superposition methods.

    AUTOTS will reduce the ITS (up to tmin) if:

    less than 20 points are being used at the response frequency

    solution is diverging

    solution takes a large number of equilibrium equations (slow

    convergence)

    plastic strain is accumulated in one time step exceeds 15%

    Creep ratio exceeds 0.1

    if contact status is about to change ( controlled by KEYOPT(7) of most

    contact elements)

    Transient Analysis - Terminology and Concepts

    Integration Time Step

  • 8/12/2019 Dynamics 70 M4 Transient

    22/58

    March 14, 2003

    Inventory #0018094-22

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis

    C. Procedure We will discuss the Full method only in this section.

    Five main steps:

    Build the model

    Choose analysis type and options

    Specify BCs and initial conditions

    Apply time-history loads and solve

    Review results

  • 8/12/2019 Dynamics 70 M4 Transient

    23/58

    March 14, 2003

    Inventory #0018094-23

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Build the ModelModel

    All nonlinearities are allowed.

    Remember density!

    See also Modeling Considerations in Module 1.

  • 8/12/2019 Dynamics 70 M4 Transient

    24/58

    March 14, 2003

    Inventory #0018094-24

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Choose Analysis Type & Options Build the model

    Choose analysis type and options:

    Enter Solution and choose transient

    analysis. Choose Full transient

    Solution options - discussed next.

    Damping - discussed next.

  • 8/12/2019 Dynamics 70 M4 Transient

    25/58

    March 14, 2003

    Inventory #0018094-25

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAMICS7.0

    DYNAMICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Solution options

    Choose large displacement transient

    or small displacement transient .

    When in doubt, choose largedisplacement transient

    Transient Analysis Procedure

    Choose Analysis Type & Options

    Specify output controls

    (discussed next)

    Specify time at end of load step.

    Automatic time stepping

    (discussed next)

    Specify initial, min and max

    values of t for this load step.

  • 8/12/2019 Dynamics 70 M4 Transient

    26/58

    March 14, 2003

    Inventory #0018094-26

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Automatic time stepping

    An algorithm that automatically calculates appropriate ITS sizes

    during the transient.

    Recommendation is to activate it and also specify minimum and

    maximum values of ITS.

    If nonlinearities are present, use the Program Chosen option.

    Note: The global solution controls switch [SOLCONTROL] is ON

    by default. We recommend leaving it as is. More importantly, do

    not turn this switch on and off between load steps.

    Transient Analysis Procedure

    Choose Analysis Type & Options

  • 8/12/2019 Dynamics 70 M4 Transient

    27/58

    March 14, 2003

    Inventory #0018094-27

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Output controls

    Used to determine what is written to the results file.

    Use the OUTRES command or choose Solution > Soln Control.. >

    Basic in the menu

    Typical choice is to write all items at every substep to the

    results file.

    Allows smooth plots of results vs. time.

    Might cause results file to be large.

    Transient Analysis Procedure

    Choose Analysis Type & Options

  • 8/12/2019 Dynamics 70 M4 Transient

    28/58

    March 14, 2003

    Inventory #0018094-28

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Turn transient effects on/off

    useful for setting up initial

    conditions (discussed later)

    Ramp or Step apply load

    Specify damping (discussed

    next)

    Use default values for time

    integration parameters

    Transient Analysis Procedure

    Choose Analysis Type & Options

  • 8/12/2019 Dynamics 70 M4 Transient

    29/58

    March 14, 2003

    Inventory #0018094-29

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Choose Analysis Type & Options

    Damping

    Both alpha damping and beta damping are available.

    In many cases, alpha damping (viscous damping) is ignored and

    only beta damping (damping due to hysteresis) is specified:

    = 2/

    where is the damping ratio and is the dominant response

    frequency (rad/sec).

    Material damping (e.g. rubber) and element damping (e.g. shock

    absorber) are also available.

  • 8/12/2019 Dynamics 70 M4 Transient

    30/58

    March 14, 2003

    Inventory #0018094-30

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Choose Analysis Type & Options Choose solver

    By default ANSYS chooses Sparse solver

    For large problems (>100000 dofs) use PCG solver

  • 8/12/2019 Dynamics 70 M4 Transient

    31/58

    March 14, 2003

    Inventory #0018094-31

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Build the model

    Choose analysis type and options

    Specify BCs and initial conditions BCs in this case are loads or

    conditions that remain constant

    throughout the transient, e.g:

    Fixed points (constraints)

    Symmetry conditions

    Gravity

    Initial conditions are discussed next.

  • 8/12/2019 Dynamics 70 M4 Transient

    32/58

    March 14, 2003

    Inventory #0018094-32

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Initial conditions

    Transient analyses require initial

    displacement (u0) and initial

    velocity(v0) to be specified.

    By default, u0= v0 = a0 = 0.

    Examples where non-zero initial

    conditions may be required:

    Aircraft landing gear (v00).

    A golf club striking a ball (v00).

    Drop test of an object (u0= v0 =0 ,

    a00).

  • 8/12/2019 Dynamics 70 M4 Transient

    33/58

    March 14, 2003

    Inventory #0018094-33

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Two ways to apply initial conditions:

    Start with a static load step

    Useful when initial conditions need to be applied on only a portion of

    the model, such as plucking the end of a cantilever beam with an

    imposed displacement (u0 is known , v0 =0)

    Required for applying a non-zero initial acceleration.

    Use the IC command

    Solution > Define Loads > Apply > Initial Conditn > Define

    Useful when a non-zero initial displacement or velocity needs to be

    applied on the entire body.

  • 8/12/2019 Dynamics 70 M4 Transient

    34/58

    March 14, 2003

    Inventory #0018094-34

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Example - Dropping an object from rest

    In this case a0=g (gravitational acceleration) and u0 = v0=0.

    Use the static load step method.

    Load step 1:

    Transient effects OFF. Use TIMINT,OFF command or

    Solution > Soln Control

    Select the Transient Tab and unselect Transient effects

    Small time interval, e.g, 0.001.

    2 substeps, stepped loads. (If ramped or with one substep, v0 will benon-zero.)

    Hold the object at rest, i.e, fix all DOFs on the object.

    Apply acceleration of g.

    SOLVE.

  • 8/12/2019 Dynamics 70 M4 Transient

    35/58

    March 14, 2003

    Inventory #0018094-35

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Load step 2:

    Transient effects ON.

    Release the object, i.e, delete DOF

    constraints on the object.

    Specify ending time and continue with

    the transient. Acel

    t0.0005 0.001

    Load step 1

    Application of Temporal Acceleration

  • 8/12/2019 Dynamics 70 M4 Transient

    36/58

    March 14, 2003

    Inventory #0018094-36

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Example - Plucking the free end of a cantilever beam

    In this case u00 at one end of the beam, and v0=0.

    Use the static load step method.

    Load step 1:

    Transient effects OFF. Use TIMINT,OFF command or

    Solution > Soln Control

    Select the Transient Tab and unselect Transient effects

    Small time interval, e.g, 0.001. 2 substeps, stepped loads. (If ramped or with one substep, v0 will be

    non-zero.)

    Apply the desired non-zero displacement at the free end of the beam.

    SOLVE.

  • 8/12/2019 Dynamics 70 M4 Transient

    37/58

    March 14, 2003

    Inventory #0018094-37

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Load step 2:

    Transient effects ON.

    Delete the imposed displacement.

    Specify ending time and continue with the transient.

  • 8/12/2019 Dynamics 70 M4 Transient

    38/58

    March 14, 2003

    Inventory #0018094-38

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Specify BCs & Initial Conditions

    Example - Initial velocity on a golf club head

    Assuming that only the club head is modeled and that the entire head

    moves, we have v00. We will also assume that u0 = a0 = 0.

    The IC command method is convenient for this case.

    1 Select all nodes on the club.

    2 Use the IC command to apply initial velocity, or

    Choose Solution > Define Loads > Apply > Initial Conditn > Define

    Pick all nodes. Select direction and enter velocity value.

    3 Activate all nodes.

    4 Specify ending time, apply other loading conditions

    (if any), and solve.

  • 8/12/2019 Dynamics 70 M4 Transient

    39/58

  • 8/12/2019 Dynamics 70 M4 Transient

    40/58

    March 14, 2003

    Inventory #0018094-40

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    Build the model

    Choose analysis type and options

    Specify BCs and initial conditions

    Apply time-history loads and solve

    Time-history loads are loads that vary

    with time.

    Three ways to apply them:

    Function tool

    Tabular input

    Multiple load steps

    Load

    t

    Load

    t

    Load

    t

  • 8/12/2019 Dynamics 70 M4 Transient

    41/58

    March 14, 2003

    Inventory #0018094-41

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    Function Tool

    Allows you to apply complicated boundary conditions. To access thefunction editor, choose Solution > Define Loads > Apply > Functions >Define/Edit

    Recommendation: do not use the Function Tool if the boundaryconditions can be expressed directly with tabular input

    For more informationrefer to Applying LoadsUsing Function BoundaryConditions in the Basic

    Analysis Guide.

  • 8/12/2019 Dynamics 70 M4 Transient

    42/58

    March 14, 2003

    Inventory #0018094-42

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    Tabular input

    Allows you to define a table of load vs. time (using array

    parameters) and apply the table as a load.

    Very convenient, especially if there are several different loads, eachwith its own time history.

    For example, to apply the force-vs-time curve shown:

    1. Choose Solution > Define Loads > Apply > Structural > Force/Moment >

    On Nodes, then pick desired nodes.

    0.5

    Force

    t

    22.5

    10

    1.0 1.5

  • 8/12/2019 Dynamics 70 M4 Transient

    43/58

    March 14, 2003

    Inventory #0018094-43

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    2. Choose the force direction and

    New table, then OK.

    3. Enter table name and no. of rows

    (no. of time points), then OK.

    4. Fill in time and load values, then

    File > Apply/Quit.

    T i t A l i P d

  • 8/12/2019 Dynamics 70 M4 Transient

    44/58

    March 14, 2003

    Inventory #0018094-44

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    5. Specify ending time and integration time step.

    Solution > Load Step Opts > Time/Frequenc > Time - Time Step

    There is no need to specify the stepped or ramped condition. It is

    implied by the load curve.

    6. Activate automatic time stepping, specify output controls, and solve

    (discussed later.)

    T i t A l i P d

  • 8/12/2019 Dynamics 70 M4 Transient

    45/58

    March 14, 2003

    Inventory #0018094-45

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    Multiple load step method

    Allows you to apply each segment of the load-vs-time curve in a

    separate load step.

    No need to use array parameters. Simply apply each segment andeither solve the load step or write it to a load step file (LSWRITE).

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    46/58

    March 14, 2003

    Inventory #0018094-46

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    For example, to apply the same force-vs-time curve

    as before:

    1. Plan the approach. We will need three load

    steps in this case: one for the up-ramp load,

    one for the down-ramp load, and one for the

    step removal of the load.Force

    t

    22.5

    10

    0.5 1.0 1.52. Define load step 1:

    Apply force = 22.5 units at the desired nodes.

    Specify the ending time (0.5), integration time step, and ramped

    loads.

    Activate automatic time stepping, specify output controls*, and

    either solve or write the load step to a load step file.

    *Discussed later

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    47/58

    March 14, 2003

    Inventory #0018094-47

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    3. Define load step 2:

    Change force values to 10.0.

    Specify the ending time (1.0). No need to respecify the integration

    time step or ramped condition. Solve or write the load step to a load step file.

    4. Define load step 3:

    Delete the forces or set their values to zero.

    Specify the ending time (1.5) and stepped loads.

    Solve or write the load step to a load step file.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    48/58

    March 14, 2003

    Inventory #0018094-48

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Apply Time-History Loads & Solve

    Solution

    Use SOLVE command (or LSSOLVE if load

    step files were written).

    At each time step, ANSYS calculates loadvalues based on the load-vs-time curve.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    49/58

    March 14, 2003

    Inventory #0018094-49

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Review Results

    Build the model

    Choose analysis type and options

    Specify BCs and initial conditions

    Apply time-history loads and solve

    Review Results

    Consists of three steps:

    Plot results vs. time at specific points in the

    structure. Identify critical time points.

    Review results over entire structure at those

    time points.

    Use POST26, the time-

    history postprocessor

    Use POST1, the

    general postprocessor

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    50/58

    March 14, 2003

    Inventory #0018094-50

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Review Results - POST26

    To plot results vs. time:

    First define POST26 variables in the Variable Viewer.

    Tables of nodal or element data.

    Identified by a number 2.

    Variable 1 contains time-points and is predefined.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    51/58

    March 14, 2003

    Inventory #001809

    4-51

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    Transient Analysis Procedure

    Review Results - POST26

    Define variables (cont'd)

    Pick nodes that might deform the most, then choose the DOF

    direction.

    List of defined variables is updated.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    52/58

    March 14, 2003

    Inventory #001809

    4-52

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    y

    Review Results - POST26

    Once the variables are

    defined, you can graph them

    or list them. A Graphed Response in the Time Domain

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    53/58

    March 14, 2003

    Inventory #001809

    4-53

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    y

    Review Results - POST26

    Identify critical time points

    Use the List Extremes menu.

    Note down the time points at which the minimum and maximum

    values occur.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    54/58

    March 14, 2003

    Inventory #001809

    4-54

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual

    y

    Review Results - POST1

    Review results over entire structure at critical time points

    Enter POST1, read results By Time/Freq..., and enter appropriate

    time value.

    Plot deformed shape and stress contours.

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    55/58

    March 14, 2003

    Inventory #001809

    4-55

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual Review Results - POST1

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    56/58

    March 14, 2003

    Inventory #001809

    4-56

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training Manual Review Results - POST1

    Transient Analysis Procedure

  • 8/12/2019 Dynamics 70 M4 Transient

    57/58

    March 14, 2003

    Inventory #001809

    4-57

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training ManualTransient Analysis Procedure

    Build the model

    Choose analysis type and options

    Specify BCs and initial conditions

    Apply time-history loads and solve

    Review Results

    Lesson D:

  • 8/12/2019 Dynamics 70 M4 Transient

    58/58

    March 14, 2003

    Inventory #001809

    4-58

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    DYNAM

    ICS7.0

    Training ManualWorkshop - Transient Analysis

    In this workshop, you will examine the transient response of a

    block bouncing on a beam.

    See your Dynamics Workshop supplement for details

    Transient Analysis Workshop - Bouncing Block, Page W-35