25
Dynamic measurement: application of system identification in metrology Ivan Markovsky 1 / 25

Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Dynamic measurement:application of system identification

in metrology

Ivan Markovsky

1 / 25

Page 2: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Dynamic measurement takes into accountthe dynamical properties of the sensor

model of sensor as dynamical system

to-be-measuredvariable u

measurement process−−−−−−−−−−−−−−−→ measuredvariable y

assumptions1. measured variable is constant u(t) = u2. the sensor is stable LTI system3. sensor’s DC-gain = 1 (calibrated sensor)

2 / 25

Page 3: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

I can’t understand anything in general unlessI’m carrying along in my mind a specificexample and watching it go. R. Feynman

examples of sensors:1. thermometer2. weighing scale

3 / 25

Page 4: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Thermometer is 1st order dynamical system

environmentaltemperature u

heat transfer−−−−−−−−−→ thermometer’sreading y

measurement process: Newton’s law of cooling.y = a

(u−y

)the heat transfer coefficient a > 0 is in general unknown

DC-gain = 1 is a priori known

4 / 25

Page 5: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Scale is 2nd order dynamical system

u = Mm

kd

||

||

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)..y + d

.y + ky = gu

process dynamics depends on M =⇒ unknown

DC-gain = g/k — known for given scale (on the Earth)

5 / 25

Page 6: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Measurement process dynamicsdepends on the to-be-measured mass

0 100

time

1

5

10

me

asu

red

ma

ss

M = 1

M = 5

M = 10

6 / 25

Page 7: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Sensor’s transient responsecontributes to the measurement error

transient decays exponentially

however measuring longer is undesirable

main idea: predict the steady-state value

7 / 25

Page 8: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Plan

Dynamic measurement state-of-the-art

Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator

8 / 25

Page 9: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Plan

Dynamic measurement state-of-the-art

Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator

9 / 25

Page 10: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Classical approach ofdesign of compensator

sensor compensatoru uy

goal: find a compensator, such that u = u

idea: use the inverse system C = S−1, whereI S is the transfer function of the sensorI C is the transfer function of the compensator

10 / 25

Page 11: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Inverting the model is not a general solution

1. S−1 may not exist / be a non-causal system

2. initial conditions and noise on y are ignored

3. the sensor dynamics has to be known

11 / 25

Page 12: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Modern approach of usingadaptive signal processing

real-time compensator tuning

requires real-time model identification

solutions specialized for 2nd order processesW.-Q. Shu. Dynamic weighing under nonzero initial conditions.IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993.

12 / 25

Page 13: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

There are opportunities forSYSID community to contribute

ad-hock methods

restricted to 1st / 2nd order SISO processes

lack of general approach and solution

13 / 25

Page 14: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Dynamic measurement isnon standard SYSID problem

of interest is the steady-state u (not the model)

the input is unknown (blind identification)

the DC-gain is a priori known

14 / 25

Page 15: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Plan

Dynamic measurement state-of-the-art

Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator

15 / 25

Page 16: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

The data is generated from LTI systemwith output noise and constant input

yd︸︷︷︸measured

data

= y︸︷︷︸true

value

+ e︸︷︷︸measurement

noise

y︸︷︷︸true

value

= u︸︷︷︸steady-state

value

+ y0︸︷︷︸transientresponse

assumption 4: e is a zero mean, white, Gaussian noise

16 / 25

Page 17: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

using state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtainyd(1)

yd(2)...

yd(T )

︸ ︷︷ ︸

yd

=

11...

1

︸︷︷︸

1T

u +

c

cA...

cAT−1

︸ ︷︷ ︸

OT

x0 +

e(1)

e(2)...

e(T )

︸ ︷︷ ︸

e

17 / 25

Page 18: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Maximum-likelihood model-based estimator

solve approximately

[1T OT

][ ux0

]≈ yd

standard least-squares problem

minimize over y , u, x0 ‖yd− y‖

subject to[1T OT

][ ux0

]= y

recursive implementation Kalman filter

18 / 25

Page 19: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Plan

Dynamic measurement state-of-the-art

Model-based maximum-likelihood estimator

Data-driven maximum-likelihood estimator

19 / 25

Page 20: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x∆y(t) = cx(t)

20 / 25

Page 21: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

if ∆y is persistently exciting of order n

image(OT−n) = image(H (∆y)

)where

H (∆y) :=

∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n+ 1)

∆y(3) ∆y(4) · · · ∆y(n+ 2)...

......

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)

21 / 25

Page 22: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

model-based equation

[1T OT

][ ux0

]= y

data-driven equation

[1T−n H (∆y)

][u`

]= y |T−n (∗)

subspace method: solve (∗) by (recursive) least squares

22 / 25

Page 23: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

The subspace method is suboptimal

subspace method

minimize over y , u, ‖yd|T−n− y‖

subject to[1T−n H (∆yd)

][u]

= y

maximum likelihood model-free estimator

minimize over y , u, ‖yd|T−n− y‖

subject to[1T−n H (∆y)

][u]

= y

structured total least-squares problem

23 / 25

Page 24: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Summary

dynamic measurement is identification(-like) problem

however, the goal is to estimate the stead-state value

ML estimation structured total least squares

24 / 25

Page 25: Dynamic measurement:application of system identificationin ...homepages.vub.ac.be/~imarkovs/talks/ernsi18-slides.pdf · IEEE Trans. Instrumentation Measurement, 42(4):806–811, 1993

Perspectives

recursive solution of the STLS problem

statistical analysis of the subspace method

generalization to non-constant input

25 / 25