57
the united nations educational, scientific and cultural organization abdus salam international centre for theoretical physics international atomic energy agency SMR 1331/18 AUTUMN COLLEGE ON PLASMA PHYSICS 8 October - 2 November 2001 DYNAMIC CURRENT SHEETS - III Lev Zelenyi Russian Acedemy of Sciences, Space Research Institute Moscow, Russia These are preliminary lecture notes, intended only for distribution to participants. strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

DYNAMIC CURRENT SHEETS - III

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DYNAMIC CURRENT SHEETS - III

theunited nations

educational, scientificand culturalorganization

abdus salaminternational centre for theoretical physics

international atomicenergy agency

SMR 1331/18

AUTUMN COLLEGE ON PLASMA PHYSICS8 October - 2 November 2001

DYNAMIC CURRENT SHEETS - III

Lev Zelenyi

Russian Acedemy of Sciences, Space Research InstituteMoscow, Russia

These are preliminary lecture notes, intended only for distribution to participants.

strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it

Page 2: DYNAMIC CURRENT SHEETS - III
Page 3: DYNAMIC CURRENT SHEETS - III

I N T E R N A T I O N A ! A T O M I C E N E R G Y A G E N C Y

U N I T E D N A T I O N S EDUCAT I O N A L , S C I E N T I F I C A N D C U L T U R A L O R G A N I Z A T I O N

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICSI.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

Lecture 1.

CURRENT SHEETS IN SPACE PLASMA

Non adiabatic particle dynamics andnumerical simulations

Lecture 2.

EQUILIBRIUM CONFIGURATIONS OFFORCED SHEETS

Role of trapped and transient populations.

Lecture 3.

FRACTAL STRUCTURES IN CURRENT SHEETS

Multiscale turbulence and current branching

Acknowledgements:

UCLA MPAE, LindauV.Peroomian J.BuchnerM.Ashour-Abdalla

Maryland University Space Research InstituteD.Schriver A.GaleevM.Sitnov A.MilovanovS.Sharma H.Malova

E.GrigorenkoCalabria UniversityG.Zimbardo Georgian ObservatoryP.Veltri A.TaktakishviliA.Greko

Page 4: DYNAMIC CURRENT SHEETS - III

I N T E R N A T I o N A I. A T O M I C E N FI R G Y A G K N C Y

UNITED NATIONS EDUCATIONAL., SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICSI.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

Lecture 3

FRACTAL STRUCTURES IN CURRENT SHEETS

1. Introduction: "Laminar" and "turbulent" sheets.

2. "Turbulence" in magnetotail1. Universality of power-low spectra.2. "Clumps" in plasma sheet.

3. Parameters of fractal distribution.1. Length (Hausdorff dimension).2. Spatial fractal dimension3. Index of connectivity4. Fractal dimension and Fourier spectra.

4. Self-consistent fractal model1. Diffusion on fractals.2. Effective cross-tail transport.3. Scaling of Maxwell equations.4. Percolation thresholds and Alexander-Orbach condition.5. Characteristics of "turbulence" and indexes of power law spectra.

5. Numerical model of particle transport in turbulent sheet1. Towards the pressure balance.2. Current splitting.3. Particle residence time

6. Structural stability of branched current network.

7. Conclusions: "Turbulence" as an intrinsic property of CS.

Page 5: DYNAMIC CURRENT SHEETS - III

Universality of the spectra of low-frequency magnetic "turbulence" in the near-Earth and distant parts of magnetotail

P(f)~F\ a (2*2.5)f (0 .01-1 Hz)

Kinks in the spectrum

B | ~ 104Gn ~ 1 cm'

AMPTE-CCE (Ohtani, 1995, 1998)AMPTE-IRM (Bauer, 1995)ISEE (Borovsky, 1998)

OQO-5 (Russell, 1972)

INTERBALL-1(Petrukovich, 1998)

GEOTAIL(Hoshino, 1994)

Page 6: DYNAMIC CURRENT SHEETS - III
Page 7: DYNAMIC CURRENT SHEETS - III

HOSHINO ET AL TURBULENT PLASMA SHEET

. J!TO6O7 13VM15J «O6Z5 IMJ-I6I0 930(507 123OI2J5

10'fHi

Figure 2 Fourier Power spectral densities of Type C without bipolar gand Type B with bipolar signature (c) , observed by G EOT AIL The turnover Ofcontinuum appears around 0 04JElz. The model fitted spectra are plotted as dotte

OUTANI ET A L FRACTAL ANA1 Y t

Intprval ? (H Component) r i ,

tooo

100

0 1 1Frequency fHzl

Figure 4 Companson of ihe (top) fractal and (bottom)Foumr analyses for the H component during interval 2,froni 1152 45 to 1154 15 UT The dotted lines in the toppanel show the results of the two segment filting

" e t r u k o k n . f i "•

IT- - T [

-i.z.f X

.ju-l

Page 8: DYNAMIC CURRENT SHEETS - III

OHTANI ET AL.: FRACTAL ANALYSIS OF TAIL CURRENT DISRUPTION 49 9S 19,137

(a)For T < 1J4

1.0-

0.5-

x o.o-'

-0 5-

-1.0-1

(b)

1.

0.5 -I

X 0.0

-0.5-

-1.0-

10 12

Forx>Tc/4

10 30 40 50

Figure 1. Schematic illustrations of the measurement ofthe length of fluctuations, L{r), in cases in which r is (a)significantly shorter than and (b) the significant fraction ofthe characteristic time scale (period) of fluctuations.

AMPTE/CCE August 30 (Day 240), 1986

Figure '3. Expanded plot of the AMPTE/CCE magneto-meter data from 1152 to 1157 UT.

sets. Since in the Fourier analysis /*(/) is calculated for dis-crete values of/separated equally (A/ = (NAt)~i, where N isthe total number of data points), we do not have many datapoints in a low-frequency range. On the other hand, the fractalanalysis has no methodological restriction in selecting values oft, although the calculation of IX,T) is less stable for r closer tothe whole duration of the data interval. Since the region of tailcurrent disruption is spatially localized, the spacecraft does notremain in the disruption region for very long, and the dynamicsof a current sheet cause rapid motion of the spacecraft relativeto the spatial structure of signatures, resulting in abruptchanges in the phase of magnetic fluctuations. Thus these twopoints are cr'cial in examining current disruption.

3. Case Study: August 28, 1986, Event

3.1. Outline of the Event

An event we selected for a case study occurred on August28 (day 240), 1986. This event provides a unique opportunity,because the AMPTE/CCE satellite was in the disniption regionat a substorm onset and remained in the region for as long as 3min. The event was originally reported by Takahashi et al.[1987] and was examined later by Lui et al. [1992] andBurkhart el al. [1993] from different viewpoints.

Figure 2 shows a 20-min (1145-1205) plot of the AMPTE/CCE magnetometer data sampled every 0.124 s (see Potemra

AMPTE/CCE August 30 (Day 240), 1986

11:45 12:05

Figure 2. AMPTE/CCE magnetometer data from 1145 to1205 UT of the August 28, 1986, event. (Top to bottom)The V, D, and H magnetic components and the total fieldstrength. The horizontal bars in the H component panelrepresent the intervals we selected for the fractal analysis.

Page 9: DYNAMIC CURRENT SHEETS - III

O

I1I:

ml"

<D

o

CO

a

A

r'

O a:

ca1"

Page 10: DYNAMIC CURRENT SHEETS - III

Geometrical (FRACTAL) approach to magnetotail

jiigh (3 plasma

• "Turbulence" - ensemble of multiscale hierarchical

structures; consisting of magnetic CLUMPS and VOjDS -

i.e. is not SPACE Filling

• System reached the stage of NL self-consistent

SATURATION

(problem of "Turbulence" generation is BYPASSED)

All NL effects are accounted in the Geometry of the system

• In certain interval of scales QC<%<£> Geometry could

be considered as FRACTAL i.e. is Self-Similar.

Cross tail current Jy — <Jy> + 8 Jy is organized in

Percolating Network

Clumps <-» 5BZ <->SJy <Jy> <-> B o x - lobe field

Page 11: DYNAMIC CURRENT SHEETS - III

Coupled patterns of magne-totail current system and struc-tured turbulence

» Geometric analysis:Strong NL turbulence isintroduced into TOPOLOGYof tbe system.A l ; n . v h i n i r r c l n l i o n s i n s U ' n d <>!

D i d e r a i l i;il I q u n t i o n s

PUM'fAi

i

Turbulence is considered asF R A C T A L object in

Page 12: DYNAMIC CURRENT SHEETS - III

art £xaroj>£e */ a. Fr^ctat Oijeti

"Hotf Con« is ihe coast 0/

t (13a)

//

A :

QS

one-dim. measute is <*>> TAe coosidne i«kes on inietmeJiate

posUion Between ocutve on a

10

Page 13: DYNAMIC CURRENT SHEETS - III

ihe measure ««comes

Themonw

fine stiuctutescaEeS

a math, exampfe. -*J>e von, /<oc/l>

oo )

B

=:> a hon- TtcitftoCPc continuous

ihe SeC^-simifa^ fi

Page 14: DYNAMIC CURRENT SHEETS - III

Hov/ to iake into account thece o/ i-7e /tne-scafe

y SpatiaB ScaPeS ?

moQo^oV (135*):

/ / (A) = tfic cove^ina numiez =ifce mtrv

A h€e<Jed to co\/ez iAeSet

The von, /<ocfi cutve

(X) =

A -0 -

in

The Canton set %

N D =

"dust"12

Page 15: DYNAMIC CURRENT SHEETS - III

Jistxitt/kion, of ike «ne<t$J4- the moqnefi'c -fietJ -(EuetuorkionS

ifiri

0

0 0 v„

<?

13

Page 16: DYNAMIC CURRENT SHEETS - III

Oi petcoEcktinQ network of /IWs

t

14

Page 17: DYNAMIC CURRENT SHEETS - III

Fox. FRACTAL Distinction of

>

15

Page 18: DYNAMIC CURRENT SHEETS - III

Le \A <j t d

L

%l

pRODUCFFRACTAL OBJECT

VJ

F.

V

16

Page 19: DYNAMIC CURRENT SHEETS - III

FRACTAL PARAMETERS

IN SPATIAL AND TEMPORAL DOMAINS

Relation of 5 - fractal dimension of time seriesand I) - spatial fractal dimension

N

k=\

B(tk+T)-B{th

\

V JWe assume that the fractal aggregate convects

with the constant velocity VR

N

D-2

.D-2k

.D-2

I) - 2 - 1 - 5D + 8 = 3

O = 1, D = 2 —> Euclidean (nonfractal) case

Power low index of Fourier spectraa = 5 - 25 -> 2D - 1

Berry SteadyEquation convection

17

Page 20: DYNAMIC CURRENT SHEETS - III

The Index of ConntttiifituGeodesic &n£_fl& a Ftactaf ol/ecr: w^

p *th -• connecieJ jiomoyneous

B

«5'<0> d r < 1 discormeciej cludetL^^HlJ|#TVj«nL<»,

A B

Ji"scohnecic3

18

Page 21: DYNAMIC CURRENT SHEETS - III

GLOSSARY of TERMS:

• "CLUMPY" turbulence (not space filling)

• Hausdorff Fractal Dimension - D(generalization of the topological dimension E = 1. 2. 3)

Anomalous ion diffusivity: <8% > =

a = 1 (Einstein diff.) - > a = 2 / ( 2 + g )

subdiffusion ! 0.8

connectivity: "normal" diffusionsuperdiffusion

• Percolat ion Threshold (Alexander - Orbach Conjecture)

• O - Fractal dimension of time series

curve

D + 6 = 3 for convection of turbulence with flow(Milovanov,, Zelenyi, 1993)

S(/) ~ f'a power low index

19

Page 22: DYNAMIC CURRENT SHEETS - III

INTERBALL-TAIL MIF-M experiment

200 300 400 500seconds, 13:55 UT, 22 December, 1996

600 700

10

10 10 10t, seconds

10

Number of intervals with negative B vs length

x > 5 sec: 75% of points

8 10 12x, seconds

14 16 18 20

20

Page 23: DYNAMIC CURRENT SHEETS - III

Interball-Tail magnetic field, current sheet 16/12/1998

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 r - 1.8

21

Page 24: DYNAMIC CURRENT SHEETS - III

-organise J steady state ofcuvteift and cici/ePoped magnetic

' 4

>&*&&h*&$^^

tnQ o{ -ihe cu«erit dysfem

iniht cu%ttrit ihtet: Sj£o?e component of ihe ftetd : < I M

CJ

i

"krioiieJ u/eS-ft/re petcoPatinQ netu/otk

"puPBeJ" on iKe

22

Page 25: DYNAMIC CURRENT SHEETS - III

'/'he tote of -the, finite IOA/ Latmatd

ttea Latmoz Radius (i.e.,

cwcvatute radius of -the ion,ntPy ccnticPs, -the

el ~kh@, mQjne^icn -the- cutxertf. <heei: : Q,

ct*

tonf>Qi±ir.t€$ on the,

Einste/a

4 4

tfmcL

23

Page 26: DYNAMIC CURRENT SHEETS - III

A n nuil outs particle diffusion onFsRAC'TAL obi eel.

(() 'Shagnessey Procaccia, 1995. Diffusion on Fractal Objects.)

Diffusion depends on microscopic time scale

of particle random motion ° y

1/ 1/ "Characteristic time

eff -± rjy T ' i, Hkv i ivc latlnis ol ciirvalmc ol particle trajectories

(7 — 0 Dependence on microscopic time disappears

-2Dt ( lassicai I-insicin Diffusion

>. 0 1 < or < 0

s L.--.J

Aniipcrsislcnl Diffusion Persistent Diffusion

Introduction to the problem:D. ben-Avraham, S. Havlin "Diffusion and Reactions in Fractals... "

24

Page 27: DYNAMIC CURRENT SHEETS - III

Rstimalcs of Anomalous Diffusion andH fleet ive Conductivity.

ff

D

e

mic •>

V

a

9-

a

a•*^ —V

2

2+O-

A t -•>

rL

V

( <J = 0, D-Vrj - classical strong (BOHM) diffusion limit)

Effective conductivity(scattering on magnetic clumps)

ne2r

mi

a

D

25

Page 28: DYNAMIC CURRENT SHEETS - III

Scaling Properties of MaxwellEquations.

4TFVxSBz=—Sj

c

mt

• Current fluctuations <->

the finite ion Larmor radius effects ^ a

• Estimate of cross-tail current.

Effective OHM's law due to scattering on fractal clumps

Differentiation on Fractal field: Vx -> % 2+a

26

Page 29: DYNAMIC CURRENT SHEETS - III

Self- Consistency Relation.

From the scaling ofMaxwell Equations:

a

From the Definition ofFractal Dimension D

8B\ D-2

• I) — 2 ™ O/(\+CT) Self-ConsistencyCondition

<r~ () , I) = 2 - homogeneous '"clnssical"turbulence

cr> 0, D < 2 Turbulence is

'ML

(J I Ti*ajcctory between magneticobstacles becomes more "wiggled"(current is getting more branched).

27

Page 30: DYNAMIC CURRENT SHEETS - III

The Alexander-Orbach conjecture

Current Network is at THRESHOLD ofPERCOLATION

r> ~ <J (AO, 1982)

Condition that network is "minimal", but already sufficient

to maintain the global cross-tail current structure.

CRITICALITY CONDITION ^> SOC

Originally checked numerically for many studies (AO, 1982)

analytically (Milovanov, 1997)

28

Page 31: DYNAMIC CURRENT SHEETS - III

Fractal parameters and Fourier spectra

in the interval of kinetic self-consistency

D — ?

2D

2 + cr

a1 + cr

43

<2

5

(Scaling EM EQs)

(AO conjecture)

l

u - velocity of plasma convection(decelerated SW speed in magnetotail)

[x] => [fl ~

P(f) -

£ = 5-25 =

D + 8

- fa

> 2 D -

Be^ty plasmaEquation convection

u r u

g a

uTWO KINKS in spectra: / * = —

l

73u

a

3

=> 7/3

Universalpower lawspectrum

29

Page 32: DYNAMIC CURRENT SHEETS - III

Fourier spectrum of multiscale structured"turbulence"

LnP(f)

Nai t - 1

N

w

Q 0.001

rs|3=-3.92

=-1.34 s|2=-2.21A fc • * . . « <

o.oio o.ioof[Hz]

Interball-Tail observations (18.11.96)The [Bz(Z=0)]2

ffl spectrum

l.OC

I. r - Flicker noise. Explicit time dependence of structures.

II. Interval of self-consistency:oxkV, a'

III. X < a ~ smoothness interval: / > « 2 , a =At small scales turbulence becomes space filling

30

Page 33: DYNAMIC CURRENT SHEETS - III

PROPERTIES of "TURBULENCE"at "Kinetic" scales (>Pi)

Why MHD - approach breaksat certain scale lengths?

MHD interpretation of turbulence:

OCy ~ OCB ~ 5/3 _fluid-like turbulence with frozen in B

non - MHD kinetic model (fractal field)

DB -> (5/3) -> otB = 2DB - 1 =

Dv = 3 - D B = 4/3

a v = 2DV - 1 =

Field fluctuations are decoupledfrom flow fluctuations

BOROVSKX 1997 Magnetotail

as Laboratory for turbulence

Interval 7: March 9,1979: Mttd Activity[x | Flow Velocities i

12-sec resolution)|_ 150g 100

J2 50E 0* . -50^ -100 i

-2000 20 40 60 SO 100 120

8 ___ t Jmin^JTT 7E . ^ ' ' ^ P o w t r Spectral Densities

S1 io'|

Bx , By , Bz

II 104|

c« 2 !10 f

OJ

f [mini

Page 34: DYNAMIC CURRENT SHEETS - III

Interval of Kinetic selfcon'sistency for low-frequency

"turbulence" in the high (3 plasma.

particle dynamics Maxwell law

>X> a ~pi 5 B -> 5U -> 5J_L

s.c/

'CLUMPY" properties of 8 B in Self-consist regime

D ~ 5/3 < 2

. . . Universal JFojyijer_j^ct^aS (/) ~ f~a of fluctuations in

the (5B -* 5U -> 8ji) interval q B = 7 / 3 , a v = 5/3

• n o n - M H D characteristics

. . "Universal" interval10"2 + lO^Hz < / <

Weakness of theory ->Rescaling of Spatial scales to Temporal

KINKS of power-law spectra at both ends of

the "Universal" interval.

32

Page 35: DYNAMIC CURRENT SHEETS - III

Substorm ONSET as Structural Instability of

percolating current network

Scenario:

• Accumulation of MAGN. ENERGY in tail5 WFT, <JY>t

• 2D highly-branched current system at the THRESHOLD

of CRITIC ALITY could not support the growing <JY>

• OVERCRITICAL CONDITIONS:

Simplification of current network:

• Reduced branching, straightening of current filaments:

Dt, at, D+^? G+i

Cascade of energy to smaller / > larger SCALES

• Reduction of ELASTICITY of current network

~ o+i , due to decrease of BRANCHING

• Structural instability of floating current LOOPS. ~ ??

Current WEDGE?

Rapid 3-dimensionalization of cross-tail current

33

Page 36: DYNAMIC CURRENT SHEETS - III

1A

enei«/»ons

8 pi•

Earthward

Figure 10. A schematic diagram of the tail current disruptionillustrating the chaotic features of magnetic Held and electriccurrent perturbations in the onset region. The basic concept wasadopted from Ltd et al. [1988, Figure 4].

Page 37: DYNAMIC CURRENT SHEETS - III

Self-consistent fractal description:

"Physical" properties of the turbulence are analyzed by

means of "unconventional" geometric parameters.

GLOSSARY of TERMS

• D = Hausdorff fractal 1 dimension describing spatialdistribution of magnetic turbulence "clumps" accross the

current sheet plane 1 < D < j , ;

(D < 2 — not "space-filling" turbulence).

• <T = connectivity of the fractal set composed of the

magnetic "clumps" 0 < (T < 1.

• I ) = Hausdorff fractal dimension of the current density

percolating network 1 < D < 2.

# JJ . = connectivity of the network 0 < <J < 1

SELF-CONSISTENT REGIME:magnetic field and current density fractal structures aremutually "conjugated"

(D, a) <-> (D+, a+)"duality" property

35

Page 38: DYNAMIC CURRENT SHEETS - III

a

36

Page 39: DYNAMIC CURRENT SHEETS - III

PRE-ONSET EVOLUTIONSimplification of the current system: 8WFt

GROWTHPHASE

Reduced branching of current: (jy)t(straightening of current filaments)

Graining of magnetic structure becomes more coarse:(Cascade of energy to large scales from small scales)

D->0

Weakly knotted current systembecomes TOPOLOGICALLY UNSTABLE

37

Page 40: DYNAMIC CURRENT SHEETS - III

38

Page 41: DYNAMIC CURRENT SHEETS - III

Normalized Wavelet Analysis 85/15-2 (Pa=1, 0=1» K*10;, M«12)—-*•?—

A>

CO

15: o « - t »<

• * -»*£• -» *- >M

' . " • ' • ' • •: " ' . ' . . • • ' ''••.•"'.''' : - : " ^ - ? - . : ? - ; ' . ' • ' • • : ' , * • • " * • ' ' ' • ' : • ' • • : • • : • -

1.2

0.3

°-4

- 0,6

- 0.4

- 0 2

- 0.0

1023:12 23:13 23:15 23:16

Plate 2. Wavelet transform for magnetic field fluctuations ob-served in a current disruption event. Several components of thesignal can be seen, including a signal suggesting waves at highfrequency cascading to lower frequency as" time "progresses.

39

Page 42: DYNAMIC CURRENT SHEETS - III

CONCLUSIONS-!

1. Structural stability of the stretched magnetotail could beprovided by self-organized turbulence preventing thecoalescence of current filaments.

2. Turbulence is not "space-filling" and self-consistentlysupports multiscale current network "pulled" on themagnetic field "clumps".

3. Turbulence structures could be described within"geometric" approach involving such topologicalparameters as Hausdorff fractal dimension & index ofconnectivity.

4. Self-consistent currents and fields topologies aremutually "conjugated" (dual to each other).

5. At "basic" steady state with minimum of free energy thesystem saturates at the threshold of percolation.

6. In the course of free energy accumulation in the tail(late growth phase) current system overcomes themarginal percolation threshold, and 3D currentfilaments start- to "emerge" from the current sheet dueto simplification of the current network.

7. Evolution of the current network above the percolationthreshold has catastrophic character and resembles thesecond-order phase transition. Current system becomesessentially 3D and has features often associated with theSubstorm Current Wedge.

40

Page 43: DYNAMIC CURRENT SHEETS - III

MAGNETIC TURBULENCE

AND ION DYNAMICS IN THE

DISTANT MAGNETOTAIL

© 1. Modelling of the Ion Dynamics ID sheet 3D-turbulence6.fi. /99£, (03,

3. 6. ft. 2oo i c #*

2. Multiscale structure.

Attempts of Self-Consistent Description3. 6 .g . W 6 , /££ , v 9 , p.5 - 6 . « 200i , /Of ,

Lev ZELENYI Pierluigi VELTRI

Sandro TAKTAKISHVILI Gaetano ZIMBARDO

Alexander MILOVANOV

Space Research Institute University of Calabria

Moscow Arcavacata di Rende

RUSSIA ITALY

41

Page 44: DYNAMIC CURRENT SHEETS - III

Pie I 4

X - - • • - • • •

5SSO•••'•*•/' -"—*"-"« t--

42

Page 45: DYNAMIC CURRENT SHEETS - III

Magnetic Field Model

Modified Harris profile with fluctuations:

B = B ,lc~a

_2

Box(z) = B0t a n h ( z / X)- ( z / X) c o s h " 2 (L I2X)

t a n h ( Z / 2 X ) - ( L I 2 X ) c o s h " 2 ( L / 2 X )

for |zj| = L /2 oBox^zj/oz^O

X - sheet half thickness, L- scale of the simulation box

1

1). 2-polarizat ions foreach mode :

c r = l

a 14 + 1 / 2

1) Parity conditions

(x, y, z) = -<BXJ,(x, y-z)

3). Correlation lengths:4). Harris sheet half thickness5) Simulation box

lx=ly=0.25L lz=0.05L

periodicconditions

43

Page 46: DYNAMIC CURRENT SHEETS - III

•1 I

44

Page 47: DYNAMIC CURRENT SHEETS - III

-1.0-

-0.4 -0.2

a) Y-.O

X

0.0z/L

0.2

b) 0

0.4

11 -it'-ll'-

< \ \

v 1

i l l\\\ \

t 1

0.8-1

0.6

0.4-

0.2-

0.0

I\

\ \I i 'i t .i i •

t i

! iI ;/ /

i i / ' * \ \ 'i i i i i t i '

i ii ii i

XN?\ V — • - -

M\11I I\\

- M -

d)

\ \\ \ \\

I i\ \\ -

i I

! I iII

I 'I lI I

I 1mm

i i

-o.i -0.05 0.0

z/L0.05 -0.1 -0.05 0.0 0.05 0.1

Wos

45

Page 48: DYNAMIC CURRENT SHEETS - III

1.0

X

46

Page 49: DYNAMIC CURRENT SHEETS - III

B,

-10

1200-1

1000-

r FETIMESUSTEM:

0

47

Page 50: DYNAMIC CURRENT SHEETS - III

o zrr0 Us

v o

v

o

p -I

pto

Temperature, TzH^ K) U> 4^ Lho o o o oo o o o oo o o o o

Current density, j

H

IXooas

Page 51: DYNAMIC CURRENT SHEETS - III

PRESSURE BALANCE AND ENERGY BUDGET

pzz + VZ « const — « 0.3

contrary to Bn «const case contibution of stresses due to off-diagonal terms is negligible

y=20LQv +

enthalpy W=U+Pyy

y.

heat flux<5%, Enthalpy~90%, directed energy-5-8%

heating is almost isotropic T|| ^ 1^

Proper sharing of energy between heating and currentmaintainance is achieved

only for

49

Page 52: DYNAMIC CURRENT SHEETS - III

0.25^

0.2-

^0.15

II o.H

0.05 H

0.0

<n>t w»1 Bo

-0.4 -0.2 0.0 0.2

z/L0.4

1000

£ 800

a

o 60000C/3

134 >

400 H

H 200 H

0

-0.4 -0.2 0,0 0.2

z/L0.4

50

Page 53: DYNAMIC CURRENT SHEETS - III

current density, jyo

o _

Oo

O

O

temperatiue, T

density, nooio

oo

o

,c»

o

(I/I

V \

o b

<

s i ^ ^ ' ^;

\J

/

t'

\i

i.

bulk velocity, Vy

Page 54: DYNAMIC CURRENT SHEETS - III

CONCLUSIONS - jl

The thickness of the current sheet rapidlygrows with the increase of the level offluctuations 5B/B0.

For 8B/Bo~0.3 enough scattering is producedby 8B to inflate the current sheet. Particlecurrent ~ corresponds to the Box(z).

For SB/Bo>0.3 double humped currentstructure is formed (in accordance with Geotailmeasurments).

Temperature variation across current sheet isvery essential P(z)=n(z) T(z).

For 5B/Bo>0.2 main part (90%) of electricenergy is converged to the randomization ofion distribution and quasi isotropic heating upto 5-10 keV. Only 5% - 8% of potential dropgoes to acceleration and current maintainance.

52

Page 55: DYNAMIC CURRENT SHEETS - III

REFERENCES for LECTURE 3

A. Results of Lecture 3 are published in following papers:

1. Milovanov A.V., L.M.Zelenyi. Applications of Fractal Geometry to Dynamicalevolution of Sunspots. Phys. Fluids, B, 5, 7, 2609-2615, 1993.

2. Milovanov A., L.Zelenyi, G.Zimbardo. Fractal Structures and Power-Law Spectra in theDistant Earth's Magnetotail. J.Geophys.Res., 101, A9,19903-19910, 1996.

3. Zelenyi L.M., A.V.Milovanov, G.Zimbardo. Multiscale magnetic structure of thedistant-tail: self-consistent fractal Approach. AGU, Geophys.Monograph 105, 321-339,1998.

4. Veltri P., G.Zimbardo, A.L.Taktakishvili, L.M.Zelenyi. Effect of magnetic turbulenceon the ion dynamics in the distant magnetotail. J. Geophys.Res., 103, A7, 14897-14910,1998.

5. Milovanov A.V., L.M.Zelenyi Functional background of the Tsallis entropy: "coarse-grained" systems and "kappa" distribution functions. J. Nonlinear Processes inGeophysics, 7, 3/4, 211-221, 2000.

6. Milovanov A. V., L.M.Zelenyi, P. Veltri, G.Zimbardo. Self-organized branching ofmagnetotail current systems near the percolation threshold. J.Geophys.Res., 106, A-4,6291-6307,2001

7. Milovanov A.V., L.M.Zelenyi, P.Veltri, G.Zimbardo, A.L.Taktakishvili. Geometricdescription of the magnetic field and plasma coupling in the near-Earth stretched tail priorto a substorm. Atmospheric& Solar-Terrestrial Phys., 63, 5, 705-721, 2001.

8. Greco A., A.L.Taktakishvili, G.Zimbardo, P.Veltri, L.M.Zelenyi. Ion dynamics in thenear Earth magnetotail: magnetic turbulence versus normal component of the averagemagnetic field. J. Geophys. Res. 2001. (in press)

9. Milovanov A. V., L.M.Zelenyi. "Strange" Fermi processes and power-law nonthermaltails from a self-consistent fractional kinetic equation. Phys. Rev. E, 64, 2001. (in press)

53

Page 56: DYNAMIC CURRENT SHEETS - III

B. Additional important publications:

1. Alfven H. Some properties of magnetospheric neutral surfaces. L. Geophys. Res., 73,4379, 1968.

2. Burlaga L.F., L.W.Klein. Fractal structure of the interplanetary magnetic field. J.Geophys. Res., 91, A1, 347-350, 1986

3. Ambrosiano J., W.H.Matthaeus et al. Test particle acceleration in turbulentreconnecting magnetic fields. J. Geophys. Res., 93, 14383, 1988.

4. Hoshino M., A.Nishida, et al. Turbulent magnetic field in the distant tail: Bottom-upprocess of plasmoid formation? Geophys. Res. Lett., 21, 2935, 1994.

5. Nishida A., T.Yamamoto et al. Structure of the neutral sheet in the distant tail (x ̂210 RR) in geomagnetically quiet times. Geophys. Res. Lett., 21, 2951, 1994.

6. Bauer T.M., W.Baumjohann, et al. Low-frequency waves in the near-Earth plasmasheet. J. Geophys. Res., 100, 9605, 1995.

7. Ohtani S., T.Higuchi et al. Magnetic fluctuations associated with tail current disruption:Fractal analysis. J. Geophys. Res., 100, 19, 135, 1995.

8. Borovsky J.E., R.C.Elphic et al. The Earth's plasma sheets as a laboratory for flowturbulence in high-p MHD. J. Plasma Phys., 57, 1, 1997.

9. Lui A.T.Y., A.-H.Najmi. Time frequency decomposition of signals in a currentdisruption event. Geophys. Res. Lett., 24, 3157, 1997.

10. Consolini G., A.T.Y.Lui. Sign-singularity analysis of a current disruption event.Geophys. Res. Lett., 26, 1673, 1999.

11. Alexander S., R.L.Orbach. Density of states on fractals. J.Phys.Lett., 43, L625. 1982.

12. Berry M.V. Diffractals. J. Phys. A Math. Gen., 12, 781, 1979.

13. Gefen Y., A.Aharony, S.Alexander. Anomalous diffusion on percolating clusters.Phys. Rev. Lett., 50, 77, 1983.

14. O'Shaughnessy B., I.Procacccia. Diffusion on fractals. Phys. Rev. A, 3073, 1985.

15. Milovanov A.V. Topological proof for the Alexander-Orbach conjecture. Phys. Rev.E, 56, 2437, 1997.

16. Biichner J., Kuska J.-P. Sausage mode instability of thin current sheets as a cause ofmagnetospheric substorms. Ann. Geophysicae, 17, 604, 1999.

54

Page 57: DYNAMIC CURRENT SHEETS - III

17. Biichner J., Kuska J.-P. Numerical simulation of three-dimensional reconnection due tothe instability of collisionless current sheets. Adv. Space Res., 19, 1817, 1997.

18. Wegelmann T., J. Biichner. Kinetic simulations of the coupling between currentinstabilities and reconnection in thin current sheets. Nonlinear Proc. In Geoph., 7, 141,2000.

C. TEXTBOOKS

J. Feder J. Fractals, Plenum, New York, 1988.

2. Ben-Avraham D., S.Havlin. Diffusion and reactions in fractals and Disordered systems.Cambridge University Press, 2000.

3. Isichenko M.B. Percolation statistical topography, and transport in random media. Rev.Mod. Phys., 64, 961, 1992.

4. Stauffer D., A.Aharony. Introduction percolation theory. Taylor & Francis, 1998.

5. Mandelbrot B.B. The Fractal Geometry of Nature. W.H.Freeman, New York, 1983.

55