33
DWD Global Data Assimilation System (GME & ICON) 3D-Var & VarEnKF Andreas Rhodin DWD-HERZ Winterschool on Data Assimilation 2012-02-17 A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 1 / 33

DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

DWD Global Data Assimilation System(GME & ICON)

–3D-Var & VarEnKF

Andreas Rhodin

DWD-HERZ Winterschool on Data Assimilation

2012-02-17

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 1 / 33

Page 2: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Models and Assimilation Systems at DWD

Present :

GME global 30 km 3D-Var–PSASCOSMO-EU regional 7 km NudgingCOSMO-DE regional 2.8 km Nudging, Latent Heat Nudging

Future :

ICON global, regional refinements Hybrid 3D-Var/EnKFCOSMO-DE regional convective scale LETKF

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 2 / 33

Page 3: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Course of this talk

Current operational system (3D-Var)I Operational setupI Algorithm (PSAS), inner & outer loopI Observation operators, tangent linear & adjoint

Experimental LETKFI Preliminary results

Localisation for remote sensing observationsPlans for the hybrid VarENKF

I Algorithm (additional control variables)I Advantages

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 3 / 33

Page 4: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Operational global data assimilation

3D−VarGME 3h

obs obs

obs

GME 7d

GME 3h

obs

3D−VarGME 3h

3D−Var

2:15h cutofftime −>

Analysis cycle −>

Forecast −>

Cycled 3 hour GME forecast / 3D-Var analysisLong term (7 day) forecast at 00 and 12 UT

I seperate (Hauptlauf) analysis with 2h15 cutoffIn addition (not shown)

I seperate (Hauptlauf) analysis with 2h15 cutoffI additional forecasts (6,18 UT) for COSMO EU boundary conditionsI Sea Surface Analysis, Snow analysisI Soil moisture analysisA.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 4 / 33

Page 5: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

01.06.2010 2Thomas Hanisch, DWD/FE13

Operational timetableof the

DWD model suitewith

dataflow

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 5 / 33

Page 6: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Operations / Pre-operations / Experiments

On sxw (vector computer) / lxw (Linux Cluster) – (Offenbach) :

Operations

Pre-operational suite (currently GME 20km)

On sxe / lxe – (currently in Ludwigshafen) :

ExperimentsI NUMEX (numerical experimentation system)

mimics dependencies in routine setup

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 6 / 33

Page 7: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var – PSAS Algorithm

Minimize cost function:

J =1

2(x− xb)TB−1(x− xb) +

1

2(y −H(xb))TR−1(y −H(xb))

For the linear case (H(x)→ Hx) we can derive the following linearequation for the analysis xa which minimizes J:

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Size of B, x : nx ≈ 108 (number of model variables)Size of R, y : ny ≈ 106 (number of observations)

How to solve this equation on the Computer ?

We use an iterative Conjugate Gradient algorithm.

Then we need not represent the matrices B,R,H,HT

We merely need routines that calculate the respective matrix products

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 7 / 33

Page 8: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS - Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Observation operator H(x)

Calculates the model equivalent to the observations from the model state

H(x) = Hi (Ho(x))Hi : Interpolation to the location to the observationHo : Observation operator (may be complex: RTTOV, occultations)

Realised by respective subroutines

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 8 / 33

Page 9: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS - Linearised Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

H linearised observation operator

defined by the Jakobian of H

H =d

dxH(x)

i.e. we have to differentiate H with respect to x

If the have a computer code that calculates H(x) we can obtain a codethat calculates Hx by application of the chain rule (line by line) to thatcode (automatic differentiation).

H3(H2(H1(x))) = H3H2H1x

The linearised observation operator Ho for radiance assimilation isincluded in the RTTOV package.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 9 / 33

Page 10: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS - Adjoint Observation Operator

xa − xb = BHT (HBHT + R)−1(y −H(xb))

For the L2 norm used here the adjoint is given by the the transposedmatrix.

We have:HT = (H3H2H1)T = HT

1 HT2 HT

3

Thus we can apply the chain rule in reversed order line by line to the codethat calculates H(x) (automatic differentiation).

The adjoint observation operator HTo for radiance assimilation is included

in the RTTOV package as well.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 10 / 33

Page 11: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS - B-Matrix

xa − xb = BHT (HBHT + R)−1(y −H(xb))

The background error covariance matrix is a large dense matrix in modelspace.

As shown in Harald Anlaufs talk we represent it by a sparse approximationin wavelet transformed space Bw :

B = WBwWT

In fact we use a sparse square root representation: Bw = B1/2w B

1/2w

T

W,WT are realised by the respective wavelet transformation routines.

Bw is not defined on the model grid but on a lat-lon grid.Thus in HBHT and BHT the operators H,HT include interpolationoperators to the respective grid.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 11 / 33

Page 12: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS - R-Matrix

xa − xb = BHT (HBHT + R)−1(y −H(xb))

In general R is diagonal or at least sparse.

Thus R can be represented explicitly.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 12 / 33

Page 13: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS Conjugate Gradient Algorithm

xa − xb = BHT (HBHT + R)−1(y −H(xb))

We solve the linear set of equations for zby a preconditioned CG algorithm in observation space:

(HBHT + R) z = y −H(xb)

That requires of order 15 to 25 iterations.

Finally the postmultiplication step to model space is required:

xa − xb = BHT z

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 13 / 33

Page 14: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS – Outer Loop

The CG algorithm solves the linear problem:

(HBHT + R) z = y −H(xb)

In order to solve the full nonlinear problem we have to iterate in an outerloop:

1) Solve the linear system for an estimate zi

2) Re-linearise at the new estimate:

a) recalculate the right hand sideb) linearise H to obtain Hc) replace R by the inverse Hessian of Jo in case of VQC.

3) Proceed with 1).

After ≈ 10 outer loops our convergence criterium is met.In order to ensure convergence we perform a line serch after each CG step.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 14 / 33

Page 15: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

3D-Var PSAS Algorithm – Line Search Monitoring

-100

-50

0

50

100

150

200

250

-0.5 0 0.5 1 1.5

J

x

iteration 7

derivatives (analytic)derivatives (finite differences)

cost function evaluations

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

0.0002

-0.5 0 0.5 1 1.5

J

x

iteration 14

derivatives (analytic)derivatives (finite differences)

cost function evaluations

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

-0.5 0 0.5 1 1.5 2

J

x

iteration 29

derivatives (analytic)derivatives (finite differences)

cost function evaluations

-2e-10

-1.5e-10

-1e-10

-5e-11

0

5e-11

1e-10

1.5e-10

2e-10

-0.5 0 0.5 1 1.5

J

x

iteration 34

derivatives (analytic)derivatives (finite differences)

cost function evaluations

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 15 / 33

Page 16: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Remarks on the Convergence

For conventional data we can find the minimum of the cost functionexactly.

For more complex operators minimisation does fail earlier if H is notsufficiently accurate.

For practical porposes minimisation is stopped then the accuracy of thesolution is small compared to the specified background and observationalerrors.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 16 / 33

Page 17: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Global LETKF for GME - Formulation

LETKF following Hunt & al

Apply the square root formulation of EnKF at every model gridpoint

Use Observations in the vicinity of the gridpoint, with R−1 scaled independence on the distance using the Gaspari & Cohn function.

Use this localisation in the vertical and horizontal.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 17 / 33

Page 18: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Global LETKF for GME - Setup

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 3h

GME 7d

GME 7d

GME 7d

GME 7d

obsobs obs

LETKF LETKF

Forecast −>

Analysis cycle −>

time −>

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 18 / 33

Page 19: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

GME LETKF experiments

Setup:I GME (ni=64), 6 hourly cycle, 32 ensemble members, 15 day period.

Parameters changed:I Model error

F additive model error (random noise generated by 3D-Var-B)F multiplicative inflation

I ObservationsF conventional data onlyF conventional data + AMSU-AF artifitial data (nature run + gaussian noise on observations)

I Localisation length scaleF 200, 300, 500 km

Results:I Additive model error with 300 km localisation length scale works best.I Strong positive impact of AMSU-A in SH

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 19 / 33

Page 20: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Global LETKF Experiments:32 members, ni=64, 10 days of 6 h cycling

Spatial distribution of spread and rmseDependence on data density

Meridional distribution of rmse (o) and spread (o).500 hPa first guess temperature.

Without (left) and with (right) assimilation of AMSU-A.

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 20 / 33

Page 21: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Global LETKF: Temporal evolution of spread and rmse.

850 hPa zonal wind (u)Temporal evolution of first guess ensemble spread (+) and rmse (o)

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 21 / 33

Page 22: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Status: Global LETKF

rmse/spread correlation as a function of height (SH, TR, NH)

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 22 / 33

Page 23: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Global LETKF: Forecast uncertainty.

RMSE of deterministic forecastRMSE of ensemble mean

Ensemble spread

for 12, 24, 48, 72, 120, 168h forecasts of surface pressure (hPa).

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 23 / 33

Page 24: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Model error: Backscatter algorithm

As an alternative for the 3D-Var-B additive model error formulation thebackscatter algorithm was explored by Jason Ambadan (cf. Poster)

���

���

���

���

��í�

��í�

��í�

��í�

��í�

��í�

��í�

���

���

���

7RWDO�KRUL]RQWDO�ZDYHQXPEHU��Q

.LQHWLF�HQHUJ\�SHU�XQLW�PDVV�>NJ�Ví�@

*0(������.LQHWLF�(QHUJ\�VSHFWUD��7�����DW����K3D�

ZLWKRXW�%6

ZLWK�%6

%6

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 24 / 33

Page 25: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Localisation for remote sensing observations

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 25 / 33

Page 26: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Localisation on B

The ensebmble covariance matrix is rank deficient.Compare: number of degrees of freedom vs. ensemble size.

Small entries of the empirical correlation matrix S are uncertain:σ2

ij ≡ E{

(Sij − Bij)2}

= 1N−1

[BiiBjj + (Bij)

2]

Remedy: force small matrix elements to zero,i.e. Multiply ensemble covariance matrix B element by element(Schur product ◦) with a localisation matrix C.Choice of C:

I C positive definite (so that C ◦ B is a valid covariance matrix).I Cii = 1, Cij = 0 for large distances.

These requirements are fullfilled for the pieacewise rational functionsproposed by Gaspary + Cohn.Choices for implementation:

I Explicit Schur product:too expensive

I Variational formulation:(uses operator implementation of C1/2 · x)

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 26 / 33

Page 27: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Localisation in observation spaceIn situ observations:

I The Kalman gain equations use matrices BHT and HBHT .I H(C ◦ B)HT is equivalent to C ◦ (HBHT );

(C ◦ B)HT is equivalent to C ◦ (BHT ).I Fast (parallel) implementations exist.

(size of observation space << model space).

Remote sensing observations:Localisation on B is different from localisation in observational space.Implementation:

I assign a nominal position to the remote sensing observation.(in order to specify Cij)

Choices:I Apply: C ◦ (HBHT ).I Apply: C ◦ (R−1) (Hunt et al.)

DrawbackI H(C ◦ B)HT is not equivalent to C ◦ (HBHT ).I C ◦ (HBHT ) is sub-optimal.I same applies to Hunt et al. algorithm

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 27 / 33

Page 28: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Localisation on R (Hunt et al.)

LETKF algorithm proposed by Hunt et al.I Perform local analyses at each model gridpointI Use observations only within a prescribed localisation distanceI Weight of observations continuously approaches zero at bounds of

localisation volume.(i.e. weight R−1)

AdvantageI fastI no constraints on weight function

(varying localisation length scale)

DisadvantageI inconsistent and suboptimal approach for remote sensing data

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 28 / 33

Page 29: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Plan for a Variational EnKF

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 29 / 33

Page 30: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Plan for a Variational EnKF

Integrate the EnKF and the 3D-Var in a hybrid system

Use the information from a lower dimensional EnKF for the update ofthe higher dimensional deterministic forecast.

Method: use an operator implementation of the square root of thelocalisation matrix.Corresponds to the additional control variable approach (MarkBuehner)

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 30 / 33

Page 31: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

Variational EnKF for GME/ICON

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME ens

GME det

obs

GME det3D−Var

EnKF

time → ← analysis cycle interval→

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 31 / 33

Page 32: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

VarEnKF: Formulation

3D-Var update:

xa − xb = BHT (HBHT + R)−1(y −H(xb))

Replace B by an operator implementation of the localized ensembleB-matrix:B→ C ◦ (WWT )

We need an operator implementation of the square root of the localisationmatrix C:C = LLT

Then (cf talk by Tijana):C ◦WWT = (WL)(WL)T

We can even replace the original B by a weighted sum:B→ αB3DVar + βC ◦ (WWT )

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 32 / 33

Page 33: DWD Global Data Assimilation System (GME & ICON) -- 3D …...DWD Global Data Assimilation System (GME & ICON) {3D-Var & VarEnKF AndreasRhodin DWD-HERZ Winterschool on Data Assimilation

VarEnKF: Advantages

AdvantagesI Smooth transition between 3D-Var and EnKFI Deterministic analysis using Ensemble B (and 3D-Var B)I Variational Quality Control applicableI Varational bias correction applicableI Consistent handling of remote sensing observations

(localisation on B)

A.Rhodin () DWD Global Data Assimilation System Offenbach 2012-02-17 33 / 33