19
DSG T E C H N O L O G I E S with M3 Technology. 1 Agenda DSG Overview DSG AXOM Tool DSG Process Applications: Activation Silicide Formation a-Silicon Crystallization

DSG Overview DSG

  • Upload
    others

  • View
    52

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 1

AgendaDSG Overview

DSG AXOM Tool

DSG Process Applications:

Activation

Silicide Formation

a-Silicon Crystallization

Page 2: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 2

Executive TeamDSG Overview

A x o m

• Jeffrey Kowalski• President/CEO of DSG Technologies:

– 34 years Semiconductor Experience. Mostek. – President Silicon Valley Group (SVG) / ASML

1995-2004.– Founded DSG Technologies in 2004

Page 3: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 3

DSG TechnologiesDSG Overview

A x o m

• Founded 2005: California Corporation

• Private Equity Funded

• Development / Demo Center in Morgan Hill, CA• Development Systems in Class 10,000 Clean Room• Microwave Modeling Capability for New Materials

• Currently Working in Development Programs with >20 Customers:

Page 4: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 4

Axom Tool LayoutAxom150 / Axom300

Page 5: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 5

Low Temperature Activation

• Si, SiC, Sapphire Substrates• Low Thermal Budget < 500°C

Activation• Boron : Arsenic : Phosphorus

• Throughput > 50 WPH (300mm)• Low Dopant Diffusion• Patented Microwave Technique

• Low Leakage• Effective with Low Dosages

Page 6: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 6

BackgroundLTA

• In semiconductor materials, electrons move freely in response to the MW electrical field and an electric current results. The flow of the electrons will heat the material through resistive heating. The higher the resistance of the semiconductor material the higher the temperature it will reach. The average MW power per unit volume is converted to heat.

Page 7: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 7

MW EfficiencyAxom 300 • Loss Factor represents the efficiency of microwave absorption in the wafer, as the loss factor

decreases the efficiency of the microwave absorption decreases.

Loss Factor - Si Wafer

00.20.40.60.8

11.21.41.6

0 100 200 300 400 500 600 700

Temperture (C)

Loss

Fac

tor

Section B Section A

(N-type Wafer)

Page 8: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 8

P-Type Activation : Spike vs MWA

Species : BF2Vacc : 1.5 KeVDose : 1.5e15 cm ²

Species : GEVacc : 15 KeVDose : 3e14 cm ²

PAI Main I/I

Spike MWA

Temperature

Rs (Ohm/Sq.)

STD DEV (%)

1050°C

665

6.3

720

6.1

490°C

Page 9: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 9

P-Type Activation : Spike vs MWA

• Comparable Mobility and Carrier Concentration even at Shallow Junction Depth

Hall Carrier Evaluation

Spike MWA

Rs (Ohm/sq.)

Hall Coef(m²/C)

Mobility(cm²/V•s)

Carrier Conc(cm ²)

577

1.58

27.4

3.95E+14

588

1.90

25.3

3.38E+14

Page 10: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 10

Ge Epitaxy on Si

• Comparisons of Sheet Resistance on Ge Epitaxy Wafer Between RTA and Microwave.

• X-Ray Diffraction (XRD) Analysis

Page 11: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 11

X-Ray Diffraction (XRD) AnalysisAxom 300

2θ62 64 66 68 70 72

Inte

nsity

10x100

100x100

1x103

10x103

100x103

1x106

450 oC 5 minlevel 6 25 mimlevel 7 100 sec.level 8 30 sec.

• RTA Will Degrade the Ge Crystal• The Ge Signal Still Exits after Microwave Treatment

Ge Signal

Page 12: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 12

Sheet Resistance (Ohm/sq.)Ge Epitaxy

8.63E22.1E3Microwave

5.30E36.18E31.10E4RTA

600°C 10 sec.

500°C 30 sec.

400°C 100 sec.

• On N-type wafer,BF2 15keV,5E15 cm-2

• N type wafer, resistively: 2~10 Ω-cm

320°C 100 sec.

4.3E2

No Reading

Page 13: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 13

22nm Devices

MW Applications

Page 14: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 14

Activation: P-Type

• Total MW Power – 1st Order Condition to Drive Absorption Efficiency

• Average Power per Unit Volume is Converted to Heat

1500

1000

500

Rs

(Ohm

/Sq.

)

Junction Depth (nm)

10.0 10.5 11.0

RsL vs Xj : MW Power Levels

MW Power A

MW Power B

MW Power C

Conditions : GePAI + C + B 200eV

Page 15: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 15

N-Type Activation : Leakage

• Leakage Reduced with Longer Dwell Time or Increased MW Power

1000

100

10

Leak

age

(a.u

.)

Dwell Time (sec)

60 120 180

Leakage Measurement

1

240 300

MW Power A (450°C)

MW Power B (500°C)

Page 16: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 16

USJ Activation

PAI Implant Rs (ohm/sq.) Avg.5 keV, 1E15 810

10 keV, 1E15 750

15 keV, 1E15 760

20 keV, 1E15 755

USJ Activation with PAI: B 0.5keV, 5E14

Without PAI: Rs = 6150 ohm/sq.

Page 17: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 17

Nickel Silicide Formation

• Formation of NiSi 220°C

• Process time: 60 seconds

• Throughput >100 WPH (300mm)

• Reduced Leakage in Replacement RTP2

Page 18: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 18

a-Si Crystallization

Damage Recovery

Metal Gate annealw/ Al

• MSM Capacitor Formation

• Image Sensor Damage Recovery

• Integration: Metal Gate ZrO2 Crystallization < 250C

• Single Crystal Ge Activation

Page 19: DSG Overview DSG

DSGT E C H N O L O G I E S

with M3 Technology. 19

Image Sensors – Damage Recovery

• DSG R&D Research Project for Next Generation Image Devices

• Recovery Levels equal to 1300°C RTP / Multiple Laser Steps

• Damage Recovery Improvement over Thermal Anneal

0.1 µm 0.1 µm

1300°C Standard AnnealSi Implant 70 keV

600°C MW AnnealSi Implant 70 keV