DrVelocity estimation in lateral heterogeneous mediumiver

Embed Size (px)

DESCRIPTION

An optimization technique for estimating velocities in a lateral heterogeneous medium

Citation preview

  • '&

    $%

    Depth and Velocity Estimation in a LateralHeterogeneous Medium

    by

    Debora CoresUniversidad Simon Bolvar

    SIAM Annual meeting- PhiladelphiaJuly 2002

    1

  • '&

    $%

    OUTLINE

    Resumen

    The Tomography Problem in Lateral Heterogeneous Medium (LHM)

    Historical Overview

    Discretized Problem

    Numerical Approach

    Preliminary Numerical Results

    Conclusions

    2

  • '&

    $%

    Resumen

    In this work we present the depth and velocity estimation problem as a set ofnon-linear constrained optimization problems, where few depth and velocityparameters are needed to get the approximated estructure of the model. Onthe other hand, to solve this optimization problem we use the recentlydeveloped Spectral Projected Gradient Method (SPG), that allow us to handlebox constraints, which correspond to velocity bounds. This optimizationtechnique is a low optimization technique that only requieres first orderinformation and have some computational advantages. We present somenumerical results that show the computational advantage and performace ofthe SPG for solving this nonlinear inverse problem.

    3

  • '&

    $%

    PROBLEM: The Tomography Problem in LHM

    Minimizef(S) =

    12

    kT

    r

    T (S)k

    22

    T : IR

    6n+6m

    ! IR

    nsnrn travel time function,

    T = (T

    1

    (S); T

    2

    (S); : : : ; T

    nsnrnn

    (S)) where,

    T

    i

    (S) =

    Z

    Ray

    i

    1

    V (x; y; z)

    dl

    i

    T

    r

    2 IR

    nsnrn real traveltime vector.

    p 2 IR

    6n3n parameters inLHM.

    n is the number of layers

    ns is the number of sources

    nr is the number of receivers.

    4

  • '&

    $%

    Historical Overview

    In a 2D MediumGauss Newton Approach:Levenberg and Marquardt methodusing Gauss Seidel with SuccessiveOverrelaxation: T. Bishop et al, 1985solved the problem in a 2D laterally var-ing mediaLevenberg and Marquardt Methodwith SVD descomposition : T.Zhu and L. Brown, 1987; Farra andMadariaga, 1988.Low Storage Opt. Techniques:Spectral Gradient Method: Castillo,Cores and Raydan , 2000.

    In a 3D MediumGauss Newton Approach:Levenberg and Marquardt methodusing SVD descomposition: Bishopet al., 1985

    5

  • '&

    $%

    DISCRETIZED PROBLEM: Travel time function

    The travel time function ray j reflecting in the layer k, can be represented asthe sum on i of the straight segments of the ray.

    T

    i;j;k

    (S) =

    P

    k+1

    i=2

    l

    i;j;k

    v

    i;j;k

    +

    P

    2n+1

    i=2n+2k

    l

    i;j;k

    v

    i;j;k

    where

    l

    i;j;k

    =

    p

    (x

    i;j;k

    x

    i1;j;k

    )

    2

    + (y

    i;j;k

    y

    i1;j;k

    )

    2

    + (f

    i;j;k

    f

    i1;j;k

    )

    2

    v

    i;j;k

    = a

    i

    (x

    i;j;k

    + x

    i1;j;k

    )

    2

    + b

    i

    (y

    i;j;k

    + y

    i1;j;k

    )

    2

    + c

    i

    for k = 1; : : : ; n, i = 2; : : : ; k + 1; 2n+ 2 k; : : : ; 2n+ 1 (the straightsegments of the ray) and j = 1; : : : ; ns nr n.

    6

  • '&

    $%

    DISCRETIZED PROBLEM: depth parameters

    We only consider dip interfaces in the problem. Assume that for any interface

    i = 1; : : : ; n+ 1 we have three points, let us denote them by

    P

    1

    i

    = (p

    1i

    ; q

    1

    i

    ; k

    1

    i

    )

    T

    , P

    2

    i

    = (p

    2i

    ; q

    2

    i

    ; k

    2

    i

    )

    T and P 3i

    = (p

    3i

    ; q

    3

    i

    ; k

    3

    i

    )

    T

    .

    Then the plane generated by these points can be written as:

    f

    i;j;k

    =

    1i

    (x

    i;j;k

    p

    1i

    )

    2i

    (y

    i;j;k

    q

    1

    i

    )

    3i

    + k

    1

    i

    where,

    1

    i

    = (q

    2

    i

    q

    1

    i

    )(k

    3

    i

    k

    1

    i

    ) (k

    2

    i

    k

    1

    i

    )(q

    3

    i

    q

    1

    i

    )

    2

    i

    = (k

    2

    i

    k

    1

    i

    )(p

    3i

    p

    1i

    ) (p

    2i

    p

    1i

    )(k

    3

    i

    k

    1

    i

    )

    3

    i

    = (p

    2i

    p

    1i

    )(q

    3

    i

    q

    1

    i

    ) (q

    2

    i

    q

    1

    i

    )(p

    3i

    p

    1i

    )

    7

  • '&

    $%

    DISCRETIZED PROBLEM: Model parameters

    Result: For different values of k1i

    ; k

    2

    i

    ; k

    3

    i

    , i = 1; : : : ; n+ 1, we can

    generate any dip plane in

  • '&

    $%

    GENERAL DISCRETIZED PROBLEMMin

    12

    kT

    r

    T (S)k

    22

    =

    P

    ns

    i=1

    P

    nr

    j=1

    P

    nk=1

    (T

    r

    i;j;k

    T

    i;j;k

    (S))

    2

    s:t: L S U

    where,

    T :