16
Driving Innovation Through Bioengineering Solutions a world-class business in a global hub for biotechnology

Driving Innovation Through Bioengineering Solutions€¦ · Driving Innovation Through Bioengineering Solutions a world-class business in a global hub for biotechnology. ... 0 10

  • Upload
    dangnga

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

DrivingInnovationThroughBioengineeringSolutionsaworld-classbusinessinaglobalhubforbiotechnology

ProcessScale-Up&TechTransferCapabilities

2

Uniqueblendofengineeringandbiotechnologyskillsets

• 20+experiencedengineers

• Builtandoperatedmanyplants

• Multiplesuccessfultechtransfers

• Multiplesuccessfulscale-ups

• Holisticapproach:– Safety– Processengineering– Modelingandeconomics– Fermentation,filtration,distillation– Scale-down/scale-up

ThinkBig,ThenSmall

3

• Processeconomics• Bioreactordesignandmodeofoperation• Aerobicity oranaerobicity• Masstransferrates• Hydrostaticandgaspressures• Heattransferandcoolingmethodology• Brothproperties(viscosity,foam,composition)• Brothmixingandheterogeneity• Asepticdesign(cleaning,sterilization)• Geneticstability• Industrialgraderawmaterials• Downstreamprocessingeffects

Beginwiththeendinmind,thenscaleitdown

Howarelab-scaleandcommercial-scaledifferent?Considerthesefactorstodesignlab‘scale-down’experimentsandde-riskthescale-upprocess

LauriSuominen

FermentationScale-DownApproach

4

Usemodelstopredictcommercial-scaleconditions

• Developpredictivemodelsofcommercial-scalefermentors

• Linkmicrobe’smetabolismtoreactordesign• Identifykeyprocesssensitivitiesatscale:

– Massandheattransferlimitations– HighpartialpressureofO2/CO2

– OUR/DOgradients– pH/temperaturegradients– Substrate/nutrientgradients– Pressuregradients

• Characterizehowfermentordesignparameters(scale,geometry,aspectratio)impactkeyprocesssensitivitiesandprocesseconomics

FermentationScale-DownApproach

5

Designlab-scaleexperimentstosimulatelarge-scaleconditions

• Designlab-scaleexperimentstosimulatelarge-scaleconditionspredictedbymodels

• Developandoptimizemicrobeandfermentationprocessunderlarge-scaleconditions

• Usesystemsbiology(omics)approachtounderstandhowdifferencesbetweenlabandlarge-scaleconditionsimpactorganism’sperformance

• Identifybothstrainandprocessengineeringstrategiestoimproveperformanceandde-riskthescale-upprocess

ValidationoftheScale-DownApproach

6

Modelpredictionvs.actualcommercialperformance

StirredTankReactorModel

Mid:P,Us,P/V,kLa,yO2/CO2

Bot:P,Us,P/V,kLa,yO2/CO2

Top:P,Us,P/V,kLa,yO2/CO2

vOUR,vCER

vOUR,vCER

• Modeled240m3 STRfermentoratpartnersretrofitfacility• Combinationofempiricalandtheoreticalcorrelationsbasedon

reactorandagitatorsystemdesign• Modelusedtoassessmacro-scalegradientsexpectedin

bioreactorfromtoptobottom• Usedtodeterminegradientmagnitudesandtimescalesfor

testinginlabscale-downsimulations

ValidationoftheScale-DownApproach

7

Modelpredictionvs.actualcommercialperformance

StirredTankReactorModel

Mid:P,Us,P/V,kLa,yO2/CO2

Bot:P,Us,P/V,kLa,yO2/CO2

Top:P,Us,P/V,kLa,yO2/CO2

vOUR,vCER

vOUR,vCER

• Modelidentifiedoxygenuptakerate(OUR)gradientasthekeyprocesssensitivity

• SevereOURgradientfrombottomtotopexpectedduetohighlocalpowerinputofRushtonimpelleratthebottomofthefermentor

• ModelestimatesOURgradienttobe~40-70%ofaverageOUR

OxygenUptakeRate(OUR)Gradient

0

20

40

60

80

100

120

140

0 10 20 30 40

Titer,g/L

EFT, hr

Titer

0.00.51.01.52.02.53.03.54.04.5

0 10 20 30 40Rate,g/L/hrEFT, hr

Rate

0.000.050.100.150.200.250.300.350.400.450.50

0 10 20 30 40

ProcessYield,g/gsu

bsfe

d

EFT, hr

ProcessYield

0

2

4

6

8

10

12

14

16

0 10 20 30 40

Biom

ass,gdcw/L

EFT, hr

Biomass

0123456789

10

0 10 20 30 40

Cond

uctiv

ity,m

S/cm

EFT, hr

Conductivity

%90

%92

%94

%96

%98

%100

%102

%104

%106

0 10 20 30 40

TotD

oRBal,%

TotDoR

Con

sEFT, hr

TotDoRBal

012345678910

0 10 20 30 40

Cond

uctiv

ity,m

S/cm

EFT, hr

Conductivity

%0

%20

%40

%60

%80

%100

%120

0 10 20 30 40

TotN

Bal,%

TotNIn

EFT, hr

TotNBal

ValidationoftheScale-DownApproach

8

Modelpredictionvs.actualcommercialperformance

2LControl(n=3)

2L40-70%vOUR Osc (n=4)

• Simulated40-70%OURgradientusinglab-scaleOURoscillationstudy

• In-housedevelopedstiroscillationalgorithmusedtooscillateagitationratebetweentargetOURrange

• Time-scaleofsinusoidaloscillationsetbyestimatedreactormixingtimeatscale

• Comparisonofoscillationconditiontocontrolshowedsignificantreductioninproducttiterandrate,higherbiomassandrespiration,andkeyshiftsinfermentationbyproducts

ValidationoftheScale-DownApproach

9

Modelpredictionvs.actualcommercialperformance

2L Lab (n=3)

240,000LProduction (n=6)

Parameter Scale-DownPrediction(Δ)

PerformanceatScale(Δ)

Titer(g/L) -22 -19

Rate(g/L/hr) -0.6 -0.5

Biomass (g/L) +2.1 +1.8

Respiration(%) +7% +5%

Cond (mS/cm) +0.9 +1.0

0

20

40

60

80

100

120

140

160

0 10 20 30 40

Titer,g/L

EFT, hr

Titer

0.00.51.01.52.02.53.03.54.04.55.0

0 10 20 30 40Rate,g/L/hrEFT, hr

Rate

0.000.050.100.150.200.250.300.350.400.45

0 10 20 30 40

ProcessYield,g/gsu

bsfe

d

EFT, hr

ProcessYield

024681012141618

0 10 20 30 40

Biom

ass,gdcw/L

EFT, hr

Biomass

0123456789

0 10 20 30 40

Cond

uctiv

ity,m

S/cm

EFT, hr

Conductivity

%0

%20

%40

%60

%80

%100

%120

0 10 20 30 40

TotD

oRBal,%

TotDoR

Con

sEFT, hr

TotDoRBal

0123456789

0 10 20 30 40

Cond

uctiv

ity,m

S/cm

EFT, hr

Conductivity

%0

%20

%40

%60

%80

%100

%120

0 10 20 30 40

TotN

Bal,%

TotNIn

EFT, hr

TotNBal

ApplyingtheScale-DownApproach

10

Usescale-downapproachtoaddressissuesbeforescale-up

Bothstrain andprocess changescanimpactperformanceatscale!

UnderideallabconditionsStrain/ProcessAperformedbetterthanStrain/ProcessB

Underscale-downconditionsStrain/ProcessAsignificantlyunderperformed,Strain/ProcessBshowedminorperformancereductionbutstillachievedcommercialtargets– Strain/ProcessBselectedforscale-up

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40

Prod

uctT

iter

(%Com

mercialTa

rget)

FermentationTime(hrs)

IdealLabConditions

Strain/ProcessA

Strain/ProcessB

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40

Prod

uctT

iter

(%Com

mercialTa

rget)

FermentationTime(hrs)

Scale-DownConditions

Strain/ProcessA

Strain/ProcessB

0% 20% 40% 60% 80%

100% 120%

2L 30L 13kL

Rate,g/L.hr

(as%

of2

L)

ApplyingtheScale-DownApproach

11

Strain/ProcessBusedforsuccessfulcommercialscale-up

RobustCommercialPerformancePredictableScale-Up

13,000L

Demonstration Commercial

50xScale-Up

AverageFermentationPerformance

(~50commercialscalerunsvs.averagedemoscale)

0% 20% 40% 60% 80%

100% 120%

0 10 20 30 40 50

FermentationBatch

PercentAverageCommercialYield

Top5FermentationRunFermentationRun

ConsistencyAcrossScales

0% 20% 40% 60% 80%

100% 120%

2L 30L 13kL

Titer,g/L

(as%

of2

L)

0% 20% 40% 60% 80%

100% 120%

2L 30L 13kL

Yield,g/g

(as%

of2

L)

CampaignStrain

TiterRateYield

98%104%100%

0.01.02.03.04.05.06.0

0 10 20 30 40 50

FermentationBatch

CumulativeProduct(MMlbs)

TransferringProcessTechnology

12

Keystoasuccessfultechtransfer

OURPLACE

“They”sawhow“We”didit

“They”believethatitworks

THEIRPLACE

“We”sawhow“They”repeatedit

“We”and“They”knowitworksat

theirplace StrongCollaboration!

WE THEYWE THEY

Do’s:• Shareresponsibility• Detailedwrittenprotocols• Allowpeople(experts)tomovebetweensites• Expectproblemsandpreparetotroubleshoot• Beover-prepared,boringisgood!

Don'ts:• Handoffresponsibility• Verballycommunicateprotocols• Createbarriers• Assumesuccess• Takeshortcuts,createdrama

TechTransferinPractice

13

Importanceoffermentationengineeringsupportservices

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

Prod

uctT

iter(g/L)

FermentationTime(hrs)

ProcessPerformance

Geno

Client

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

wOUR

(mmol/kg/hr)

FermentationTime(hrs)

ProcessControl

Geno

Client

Technologytransferwithoutfermentationengineeringsupport

Organismand TechnologyTransferPackagetransferredtoclientpriortoon-sitesupport

TechTransferinPractice

14

Importanceoffermentationengineeringsupportservices

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

Prod

uctT

iter(g/L)

FermentationTime(hrs)

ProcessPerformance

Geno

Client

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

wOUR

(mmol/kg/hr)

FermentationTime(hrs)

ProcessControl

Geno

Client

SignificantimprovementinperformancealignmentwithGenomaticafermentationengineeringsupport

ValidationofSOPs,implementationofcustomcontrolalgorithms,analyticalcrossvalidationkeystosuccess!

TechTransferinPractice

15

Demonstratedsuccessintechtransfertoandfromclientsites

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 25 50 75 100 125

Prod

uct(pp

m)

FermentationTime(hrs)

ClienttoGenoTechTransfer

Client

GenoLCMS

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

Prod

uct(g/L)

FermentationTime(hrs)

GenotoClientTechTransfer

Client

Geno

BioprocessScale-Up&TechTransferMethodology

16

1. Beginwiththeendinmind

2. Build,test,andrefinemodels

3. Scale-down beforescale-up

4. Noshortcuts whentransferringtechnology

Keyprinciplesforsuccess

http://www.genomatica.com/partners/tate-lyle/

Considerthecommercialdesignbeforeyoudoanything

Developstrainandprocessunderscale-downconditionsinthelab

Predictconditionsatscaleandidentifykeysensitivities

Keyinstrumentation,detailedSOPs,fullanalytical,engineeringsupport