25
Drill Core Airborne PIMA/TERRASPEC Field Satellit e UWA 3 rd year HyLogger Spectral Sensing Instruments – Spectral Sensing Instruments – Remote Systems Remote Systems

Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

Embed Size (px)

Citation preview

Page 1: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

Drill Core

Airborne

PIMA/TERRASPEC

FieldSatellite

UWA 3rd year

HyLogger

Spectral Sensing Instruments –Spectral Sensing Instruments –

Remote SystemsRemote Systems

Page 2: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Types of Remote Spectral Sensing Systems

• The trade off: spectral vs radiometric vs spatial resolution.

• Profiling (e.g. Hylogger) vs imaging (HyChips, HyMap)

• Single element FTIR vs linear array vs area array

• Whiskbroom (linear array, e.g. HyMap vs pushbroom (area array, e.g. ASTER) with higher signal/ratio

Page 3: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Remote Sensing Systems – Spectral Resolution

-12

13.5

39

64.5

90

115.5

0.35 0.85 1.35 1.85 2.35

-12

13.5

39

64.5

90

115.5

7.35 8.35 9.35 10.35 11.35 12.35

Electro-Magnetic Spectrum - Wavelength in Micrometer

Gro

und

Ref

lectanc

e (offse

t fo

r clarit

y)

Gro

und

Em

issivity (o

ffse

t fo

r clarit

y)

dark soil

green vegetation

green vegetation

dark soil

limestone

limestone

sandstone

sandstone

dry vegetationdry vegetation

ARGUS

Hymap

Aster

Landsat TM

Spectral Coverage

0.45

0.65

0.85

1.05

1.25

1.45

1.65

1.9 2.1 2.3 2.5

Wavelength (micrometer) =>

Laboratory

ARGUS / AVIRIS

HYMAP

ASTER

Landsat TM

Spectral Resolution

mu

ltis

pec

tral

hyp

er-

Choosing the right technology for your requirement!

Page 4: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Atmospheric Windowsatmospheric transmittance: windows for remote sensing

“Reflected Wavelengths” “Emitted Wavelengths”

Atm

osp

her

ic

Tra

nsm

iss

ion

Page 5: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Page 6: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Airborne HyMap

Spectral Configuration – 128 channels

Module Spectral range Bandwidthacross module

Average spectralsampling interval

VIS 0.45 – 0.89 um 15 – 16 nm 15 nmNIR 0.89 – 1.35 um 15 – 16 nm 15 nm

SWIR1 1.40 – 1.80 um 15 – 16 nm 13 nmSWIR2 1.95 – 2.48 um 18 – 20 nm 17 nm

www.hyvista.com

• Australian sensor• Sydney-based• NASA-approved• high SNR• 126 bands• 0.4-2.5 m• 3-30 m pixel• 512 pixel swath• whiskbroom• fully calibrated

Page 7: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Airborne HyMap

HyMap products delivered for the Qld Next Generation Mineral Mapping Project (excerpt) (http://www.em.csiro.au/NGMM/):

• Natural colour basemap;• False colour basemap; • Green vegetation content;• Dry vegetation content;• Iron oxide content;• Hematite/Goethite ratio;• Ferrous iron content; • Kaolin content;• Kaolin crystallinity;• Al-smectite content;• Al-smectite composition;• White mica (par-ms-phengite) content;• White mica composition;• White mica crystallinity;• MgOH (cc/dol/chl/ep/amph) content;• MgOH (cc/dol/chl/ep/amph) composition;• Ferric iron and MgOH;• Ferrous iron and MgOH;• Chlorite-Epidote content;• Epidote content;• Opaques;• Hydrated silica

false colour white mica composition

2190 nm

2215nmAl-rich Al-poor

5kmBlock H

Page 8: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

C3DMM Kalgoorlie Terrain 3D model

Geoscience Australia’spmd*CRC GOCAD modelEastern Goldfields

Ferrous iron in MgOH minerals

actinolitetalctremolite

Page 9: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

SEBASSTIR

• Airborne pushbroom• Liquid He cooled• Area array • 124 bands by 128 pixels • 7.6 and 13.5 m• 50 nm FWHM• S:N >1000:1 • 3.5 m pixels (300 m

swath)

• Airborne pushbroom• Liquid He cooled• Area array • 124 bands by 128 pixels • 7.6 and 13.5 m• 50 nm FWHM• S:N >1000:1 • 3.5 m pixels (300 m

swath)

Page 10: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

ARGUS

• VISNIR: 370 - 1050 nm @ > 5nm res. => 136 ch : VINI..PS

• SWIR: 900 - 2500 nm @ > 10nm res => 145 ch. : SWI..PS

• TIR: 8 - 13 mm @ 30-60 nm res. => 120 ch. : TI..PS

Mineral Mapping Magnetics

Gamma Ray Spectroscopy

“geophysics integrated spectrometry”

Page 11: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

HYPERION

• NASA Technology Demonstrator

• Spaceborne hyperspectral VNIR-SWIR pushbroom imager, launched 2000

• Area array

• 242 spectral bands by 256 pixels

• 400-2500 nm

• SWIR SNR <40:1

• Data available from USGS

Page 12: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

ASTER

(Advanced Spaceborne Thermal Emission and Reflective Radiometer)

• “Next generation” geology-tuned satellite sensor:

• 14 spectral bands including 6 SWIR and 5 TIR geological bands (+ DEM)

• 15 m VNIR

• 30 m SWIR

• 90 m TIR

• Pushbroom for VNIR and SWIR• Whiskbroom for TIR • Significant Instrument/Data Issues

• atmospheric correction, SWIR X-talk, TES

www.asterweb.jpl.nasa.govwww.science.aster.ersdac.or.jp

Page 13: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

ASTER Geological Products from Band Combinations

• 3/2 : green vegetation

• 2/1, 4/1, 4/3 : iron oxide abundance

• 7/4, 5/4 : ferric/ferrous iron (in silicate/carbonate) ratio

• (5+7)/6 : Al-OH abundance

• (6+9)/(7+8) : Mg-OH + carbonate abundance

• 7/5,7/6,6/5 (RGB) or KWIK Residuals of 5,6,7 or 7/5 with mask of

(5+7)/6 : Al-OH type (Group 1: alunite, pyrophyllite, kaolinite,

dickite); Group 2: muscovite; Group 3: phengite)

• 11/(10+12), 11/10, 13/12 and 13/10 : SiO2 abundance

• 13/14 : carbonate abundance

• 12/13 : “basic” minerals (garnet, CPX, epidote, chlorite)

Use close spaced TIR bands to minimise T effect

Page 14: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

C-SatMAP ASTER processing : Mt Isa

CSIRO’s C-SatMap software

Airborne & Satellite multispectral data coverage

• ASTER L1B imagery (crosstalk corrected)• 130 scenes• >1 terrabyte of data• cross-calibrated• reduced to reflectance• 12 geoscience products• 1 weeks processing• calibrated to HyMap reflectance

100 km

ASTER

False colour 321

Page 15: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

raw datacalibrated dataProcessed geological product

Al-clay content

100 km

ASTER

AlOH content :

(B5 + B7) / B6

Linear histogram stretch :

2.06 (blue-low) to 2.4 (red-high)

C-SatMAP ASTER processing : Mt Isa

CSIRO’s C-SatMap software

Page 16: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

C-SatMAP ASTER processing : Mt Isa

CSIRO’s C-SatMap software

ASTER

CSIRO Regolith product :

R : B3/B2G: B3/B7B: B5/B7

Interpretation:

Red : iron oxidesGreen : non mafic rocksBlue : clays

Page 17: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

CSIRO’s C-SatMap software

ASTER

Ferrous iron content withinMgOH-carbonate :

e.g.

B5 / B4 - Ferrous iron content

masked by areas interpreted ashigher content of MgOH-carbonate

(B6+B9) / (B7+B8)

C-SatMAP ASTER processing : Mt Isa

Page 18: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

C-SatMAP ASTER processing : Mt Isa

Page 19: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

50 km grid cell

Image spatial resolution

5 km grid cell5 km grid cell 500 m grid cell500 m grid cell size 50 m grid cell size500 m grid cell 50 m grid cellHyMap 4.5m pixelASTER 30m pixel

Mount Isa Inlier

Page 20: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Spectral Resolution –Relative mineral information content

HyMap false colourASTER false colour HyMap mica contentASTER AlOH content

2185

nm

2215 nm

Al-rich Al-poor

composition

?

HyMap kaolin content

25%*content

5%* 25%*content

5%*

HyMap smectite abundancePublished geology

Wonga “biotite” granite

Burstall granite

granodiorite

Mount Isa Inlier

Page 21: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

WA ASTER Map

200 km

high

low

Page 22: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Future Satellite systems

MSMISat, South Africa (2010)200 bands, 400-2400 nm, 14 m pixel, 15 km swath

EnMap, Germany (2012)~200 bands, 420-2450 nm, 30m pixel, 30 km

swath

Hyper, Japan (2013) 220 bands, 400-2500 nm, 30m pixel, 60 km swath

HyspIRI, USA (2016) 210 bands, 400-2500nm , 60 m pixel, 90 km swath

www.isiswg.org

Page 23: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Integrated analysis for mapping & exploration

Page 24: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Software

• ENVI (Environment for Visualising Images) (www.ittvis.com)

• Hyperspectral images• Field spectra

• Neil Pendock Suite• ASTER and hyperspectral images

• CSIRO/HyVista Suite• ASTER and hyperspectral multi-scene processing

• C-HyperMAP

• C-SatMAP

• IDL based

• ERMapper (www.ermapper.com)

• ASTER wizard

Page 25: Drill Core Airborne PIMA/TERRASPEC Field Satellite UWA 3 rd year HyLogger Spectral Sensing Instruments – Remote Systems

UWA 3rd year

Spectral In-House Training @ CET, UWA, Crawley -01.03.2010 – GP2, second floor, Rm111, 3rd year Geology Lab

9:00 Mineral Spectroscopy Theory : Wavelength coverage, EMR-matter interaction, vibrational spectroscopy; VNIR-SWIR-TIR mineralogy and mineral groups; mineral disorder/abundance/chemistry; spectral libraries

Spectral Sensing Instruments – Proximal Systems : Spectral/radiometric/spatial resolution of field/lab systems; Hylogging

10:30 – 11:xx Lots of questions and Coffee

11:xx ASD &/or PIMA @ Lab and/or outside:

The Spectral Geologist (TSG) Software introduction : Applications, Interpretation of afore scanned data

12:30 – 13:30 Lunch

13:30 Spectral Sensing Instruments – Remote Systems : Spectral/radiometric/spatial resolution of remote systems; satellite vs airborne; imaging vs line profiling; multispectral vs hyperspectral; VNIR vs SWIR vs TIR

Alteration and Regolith Spectral-Mineral Models : Critical for successful use of spectral technology; Regolith mapping and Au (and Ni sulphide) exploration in the Kalgoorlie area; Mapping of ultramafic rocks; Alteration mapping using hyperspectral techniques.

15:00 – 15:xx Lots of questions & Afternoon Tea

Theory &

Proximal

Systems

ASD, PIMA, TSG

Remote Systems

Application to

Mineral Systems