59
Geoscience BC Report 2013‐15 1 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive Sulphide Mineralization and Precious and Base Metal Veins within the QUEST Project Area, Central British Columbia (NTS 093J) Brent C. Ward, Matthew I. Leybourne, David A. Sacco, Raymond E. Lett, Lambertus C. Struik

Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐151

DriftProspectingforPorphyryCopper‐Gold,VolcanogenicMassiveSulphideMineralizationandPreciousandBaseMetalVeinswithinthe

QUESTProjectArea,CentralBritishColumbia(NTS093J)

BrentC.Ward,MatthewI.Leybourne,DavidA.Sacco,RaymondE.Lett,LambertusC.Struik

Page 2: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐152

INTRODUCTION.............................................................................................................................................3

Locationandphysiography.......................................................................................................................5

Bedrockgeology............................................................................................................................................5MineralOccurrences...............................................................................................................................................8RegionalQuaternaryGeology............................................................................................................................10

Methods.........................................................................................................................................................12Geochemistry...........................................................................................................................................................12HeavyMinerals........................................................................................................................................................13

QUALITYCONTROL...................................................................................................................................13

Results...........................................................................................................................................................14Au,As,AgandHginTill........................................................................................................................................17Cu,MoandSbinTill..............................................................................................................................................39Pb,Bi,ZnandCdinTill.........................................................................................................................................50RareEarthElements,U,Th,K,Ca,Mg,Na,Cr,Hf,Co,MnandNiinTill...............................................51HeavyMineralConcentrates:visiblegold,pyriteandcinnabar...........................................................51

TillGeochemicalExploration................................................................................................................52Preciousandbasemetalveins..........................................................................................................................52PorphyryCu‐Au.......................................................................................................................................................52VolcanogenicMassiveSulphideDeposits......................................................................................................53Mercury......................................................................................................................................................................54

HEAVYMINERALCONCENTRATEGEOCHEMISTRY........................................................................54

Conclusions..................................................................................................................................................54

Acknowledgments.....................................................................................................................................55

REFERENCES................................................................................................................................................56

Page 3: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐153

DriftProspectingforPorphyryCopper‐Gold,VolcanogenicMassiveSulphideMineralizationandPreciousandBaseMetalVeinswithintheQUESTProjectArea,

CentralBritishColumbia(NTS093J)

BrentC.Ward1,MatthewI.Leybourne2,DavidA.Sacco1,RaymondE.Lett3,LambertusC.Struik4

1DepartmentofEarthSciences,SimonFraserUniversity,Burnaby,BCV5A1S6;[email protected],2103DollartonHwy,NorthVancouver,BCV7H0A73BCGeologicalSurveyEmeritus3956AshfordRd,Victoria,BCV8P3S5

4GeologicalSurveyofCanada,NaturalResourcesCanada,1500‐605RobsonStreet,Vancouver,BCV6B5J3

INTRODUCTION ThisreportsummarizestheresultsofregionaltillgeochemicalandmineralogicalsurveysandQuaternarystudiesconductedintheheartoftheQUESTProjectarea(GeoscienceBC’sprogramtoattractnewexplorationinanunder‐exploredportionofcentralBritishColumbia,initiatedin2007;http://www.geosciencebc.com/s/Quest.asp)(Figure1).TheQUESTProjectareahasgoodpotentialforCu‐Auporphyryandvolcanogenicmassivesulphide(VMS)mineralization,butmineralexplorationactivityhasbeenhinderedinsomeareasduetothethickcoverofsurficialdeposits.Regional‐scaletillsamplingfollowedbydetailedsurveysaroundsampleswithelevatedoranomalousvalueswascarriedouttoassessmineralpotentialofthisarea.Tillisthepreferredsamplingmediumforgeochemicalandmineralogicalsurveysinglaciatedterrainbecauseitiscommonlyconsideredafirstderivativeofbedrock(Dreimanis,1989;Levson,2001).Thismethodologyhasbeenshowntoaidinidentifyingpotentiallymineralizedbedrockunitsinareascoveredwiththickglacialdeposits(Levson,2001;McClenaghanetal.,2002;McClenaghan,2005).TheQuaternarygeology,specificallythedistributionofsurficialdepositsandtheice‐flowhistory,includingthedominanttransportdirection,wereusedtoplanthesurveysanddeterminethetransporthistoryoftillgeochemicalandmineralogicaldata.Theprimarygoalofthisstudyistouseregional‐scalemajor‐,minor‐andtrace‐elementtillgeochemicaldata,goldgraincountsandheavymineralseparationandidentificationtoidentifymineralizedbedrock.Thegeochemicalandmineralogicaldatapresentedherehighlightnewexplorationtargetsand,incombinationwiththearea’sglacialhistory,provideasurficialgeologicalcontextforcompaniestointerprettheirowngeochemicalandbedrockgeologydatasets.

Page 4: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐154

Page 5: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐155

LOCATIONANDPHYSIOGRAPHYThestudyarea,locatedinwest‐centralBritishColumbia,comprisessix,1:50000‐scalemapsheets(NTS093J/05,06,11,12,13,and14;Figure1).Highway97,whichlinksPrinceGeorgetoFortSt.John,runsalongsidetheeastsideofthestudyareaandHighway16,whichlinksPrinceGeorgetoFortSt.James,runstothesouth.AmoderatelydensenetworkofForestServiceroadsprovidesaccesstomostpartsofthestudyareaforfieldworkbasedoutofPrinceGeorge,FortSt.James,McLeodLakeandMackenzie.ThemajorityofthestudyarealiesintherelativelylowreliefoftheInteriorPlateau(Holland,1976;Mathews,1986),includingitssubdivisions,theNechakoPlainandtheFraserBasin.Theseareasarecharacterizedbydrumlinizedtill,glaciofluvialoutwashandeskerdepositswithglaciolacustrinedepositsoccurringinthesouthernregions.ThenorthwesternpartofthestudyareaoccurswithintheNechakoPlateauandischaracterizedbytillmantlesandexposedbedrock.

BEDROCK GEOLOGY ThestudyareastraddlesfouroftheterranesthatmakeuptheCanadianCordillera(CacheCreek,SlideMountain,Quesnel,Kootenay)whilethemostnortheasterncornerofitextendsintotheRockyMountainAssemblage(Figure2).AcomplexassemblageofintrusiveandextrusiverocksoftheSlideMountainterraneoccursintheeast.TheCacheCreekterraneisrepresentedbyPennsylvanianandPermianlimestoneinthesouthwesternportionofthestudyarea,withbasaltsoccurringjusttothesouth.TheRockyMountainassemblageinthenortheasterncornerofthestudyareacomprisesSiluriantoDevoniansandstoneandquartzite.TheQuesnelterranedominatesthestudyareaandiscomposedprimarilyofLateTriassictoEarlyJurassicarcvolcanicrocksoftheWitchLakesuccessionandvolcaniclasticrocksoftheCottonwoodRiversuccession,bothpartoftheNicolaGroup(Loganetal.,2010).TheNicolaGroupwaspreviouslyreferredtoastheTaklaGroup(Struik,1994),followingfirstusage.ItwascorrelatedwithTaklaGrouprockstothewestwithintheStikineterrane.TheNicolaGroupcomprises:a)mainlybasaltictodaciticvolcaniclasticrocksandsubordinatecoherentvolcanicrocks,eachwithaugite‐porphyrytextures(particularlycharacteristicoftheQuesnelterrane),whichformaneasternfaciesofalkalinetosubalkalineaugite‐phyricbasalticandesite;b)coevalandpartlycomagmaticplutonsrangingfromcalcalkaline(inthewest)toalkaline(intheeast);andc)sedimentaryrocks,includingshale,limestoneandepiclasticdeposits.StratigraphicallyoverlyingtheseterranesareaseriesofoverlapassemblagesrangingfromUpperCretaceoustoMiocenesedimentaryrocksandCretaceoustoPliocenevolcanicrocks.ThelatterincludesthedominantlyMioceneChilcotinbasaltsandEocenefelsicvolcanicrocks.Intrusiverocks,paragneissandmetasedimentaryrocksoftheWolverinemetamorphiccomplexwereexposedduringEoceneextension.ThemetamorphismandplutonismoccurredinthelateCretaceousandPaleogene,andtheprotolithfortheparagneissand

Page 6: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐156

metasedimentaryrocksarelikelyPrecambrianandEarlyPaleozoic(Struik,1994).RecentcompilationhasassignedtheserockstotheKootenayterrane(Loganetal.,2010).

Page 7: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐157

Page 8: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐158

Mineral Occurrences 

WithinthestudyareaaretwelveCushowings,sixAushowings,oneplatinumgroupelements(PGE)showing,twoHgshowingsandtwopast‐producingAuandPtdeposits(MINFILE;BCGeologicalSurvey,2010;Figure2).ThetwopastproducersaretheMcDougallRiverandMcLeodRiverplacerdeposits(MINFILE093J007and012;BCGeologicalSurvey,2010).Bothdepositsoccurinthenortheasternpartofthestudyarea,underlainprimarilybytheMississippianSlideMountainGroup.CaribooNorthernDevelopmentCo.Ltd.andNorthernReefGoldMinesLtd.workedtheMcDougallRiverplacergolddepositfromaround1931to1935,withtotalreportedproductionofapproximately1750gAu(62oz).From1981topresent,theareahasreceivedrenewedinterest,includingheavymineral,soil,siltandrocksampling;geologicalmapping;airborneverylowfrequency(VLF)andmagnetometersurveys;andgroundVLFandmagnetometersurveysbyavarietyofcompanies.AtMcDougallRiver,AuandPtwereextractedfromshallowgraveldepositsonbothbanksoftheriver,withadditionalclastsretrievedfromcracksandcrevicesinthebedrock.LocallyshearedrocksandquartzveinsmaybethesourceoftheplacerAuandPGE.HeavymineralsampleshaveyieldedhighAuandAgcontents,andmanyoftheplacerGoldgrainsrecoveredareangulartowiry,consistentwithminimaltransportfromalocalbedrocksource.Thecoincidentelectromagnetic(EM)andmagneticanomaliescouldrepresentthelocalsourceforAu.ThetwoHgshowings(MountPrinceSoutheastandNorthwest,MINFILE093J010,093J011)inthesouthwesternpartofthestudyareaareassociatedwiththePinchifault.Bothshowingsarecharacterizedbysmallvolumesofcinnabarhostedbycarbonate‐alteredandshearedNicolaGroupmaficvolcanicrocks,commonlyassociatedwithquartzstringers.Mostoftheothermineralshowingsinthestudyareaaresmallwithminimalassociatedexplorationactivity.MountMilligan(MINFILE093N194)isaCu‐AuporphyrydevelopedprospecttothenorthwestofthestudyareainQuesnelterrane.Inthisarea,TriassictoLowerJurassicvolcanicandsubordinatesedimentaryrocksofNicolaGroupareinterpretedtobetheextrusivephaseoftheHogemintrusivesuite.ManyCu‐AumineralshowingsareassociatedwiththeHogembatholithandsmallercoevalintrusions(LeFortetal.,2011).TheNicolaGroupintheMountMilliganareaisinformallysubdividedintoalower,predominantlysedimentaryInzanaLakesuccession,andanupper,predominantlyvolcaniclastic,WitchLakesuccession.TheWitchLakesuccessionhoststheMountMilligandepositandischaracterizedbyaugite‐phyricvolcaniclasticandcoherentbasalticandesite,withsubordinateepiclasticbeds.RegionalmappingandpetrographicstudiesintheMountMilliganareaindicatethattheWitchLakebasalticandesiteandassociatedsedimentaryrockshavebeensubjectedtostrongpotassicalterationdetectableforupto4kmfromthedeposit.WitchLakesuccessionvolcanicrockswereintrudedbysyn‐andpost‐depositionalgabbro,diorite,granodiorite,monzoniteandsyenite(Loganetal.,2010).RecentworkhasshownthatmineralizationatMountMilligan

Page 9: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐159

isdominatedbyanearlyCu‐richporphyrystage,withlatermineralizationcharacterizedbyenrichmentsinAu,PGE,As,Sb,Bi,TeandB(LeFortetal.,2011).

Page 10: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1510

Regional Quaternary Geology 

TheCordilleranIceSheethasrepeatedlycoveredBritishColumbiaandportionsofYukon,AlaskaandWashingtonoverthelasttwomillionyears(Armstrongetal.,1965;Clague,1989).Atitsmaximumextent,theCordilleranIceSheetwasupto900kmwideandupto2000–3000mthickovertheInteriorPlateau,closelyresemblingthepresent‐dayGreenlandIceSheet(Clague,1989).AmorecomprehensivehistoryoftheCordilleranIceSheetcanbefoundinJacksonandClague(1991)andClagueandWard(2011).ThemajorsourcesofregionalicethatcoveredcentralBritishColumbiaadvancedfromaccumulationcentresintheCoast,Skeena,OmenicaandCariboomountains(Tipper,1971a,b;LevsonandGiles,1997;Plouffe,1997,2000,Wardetal,2009).Thestudyareaoccursneartheconvergenceofthesethreeadvancingicefronts,makingitdifficulttodeterminewhichicecentre(s)hadthemostinfluenceoniceflowdirectionanddispersalintheearlypartsoftheLateWisconsinan.Previouslyreportedice‐flowindicators(Tipper,1971a;PaulenandBobrowsky,2003),incombinationwithdatafromthisstudy,suggestthatitwasmainlyicefromtheCoastMountainstothewestandtheCoastandCariboomountainstothesouththataffectedthearea.Absolutechronologicalinformationonthemovementand/orconfluenceoficefrontsthroughthestudyareaislimited.AlthoughitisknownthaticewasadvancingoutoftheCoastMountainsby28.8ka(GSC‐95,Clague,1989),itisnotclearwhenthisadvancereachedthecentralInteriorPlateau.Ice,possiblysourcedfromtheCaribooMountains(PaulenandBobrowsky,2003),coveredtheBowronValleysometimeafter19.9ka(AA44045,Wardetal.,2008).AccordingtoBobrowskyandRutter(1992),iceadvancingfromtheOminecaMountainsintowhatisnowthenortharmofWillistonLakeoccurredsometimeafter15180±100BP(TO‐708).Thedominanticeflowinthestudyareaisrelativelyeasytodemonstrateusingtheorientationsofthenumerousmacro‐forms.Themacro‐formswereinitiallycompiledfromexistingmaps(Tipper1971)andtheresolutionwasincreasedwithobservationsmadeduringmappingforthisproject(Figure3).Thedominanticeflowindicatorsgenerallyconsistofdrumlins,flutings,cragandtails,andstreamlinedbedrock(Figure3).Theinteractionofthetwosourcesresultedinageneralnortheasterntransportdirectionwithminorvariationacrossthe6sheets;thelargestreamlinedformsareapproximatelyENEinthesouthwestportionofthestudyareaandcurvenorthward,beingNNEinthenorthofthestudyarea.Small‐scaleiceflowindicatorsweremeasuredinthefieldsuchasgrooves,striationsandrat‐tails.Thesemicro‐flowindicatorsweremeasuredatatotalof22sites(Figure3).Atsomeofthesesites,multipleiceflowdirectionswererecorded,atothersonlyonedominantdirectionwasobserved.Findingmicro‐flowindicators(e.g.,striations,rat‐tails)waschallengingduetothelackofbedrockexposuresinpartsofthefieldarea,andtheweatherednatureofsomeoftheoutcropspresent.Inmostcases,exceptforsomefreshroadcuts,micro‐flowindicatorswereonlyfoundaftersediment,usuallytill,wasscraped,brushedorwashedoffbedrocksurfaces.

Page 11: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1511

Page 12: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1512

Theorientationofelongateclastsintillweremeasuredat12sites.Thesetillfabricscanbeusedtointerpretthegenesisofatillunitandthedirectionoficeflowthatdepositedit.FabricsandstriationswereusedtoadddetailandarelativechronologytotheiceflowhistorythatisdescribedinSaccoetal.(2012).

METHODS

Geochemistry 

Basaltillsampleswerecollectedatapproximately760siteswithinthestudyarea,duringthesummersof2008,2009,and2010.Thereareslightlydifferentnumbersofsamplesforthedifferentsizefractionsanalyzedowingtoasmallnumberoflostormislabeledsamples(seeAppendices).Basaltillinthestudyareaistypicallyadense,darkgrey,sandytoclayeysiltmatrixsupporteddiamictoncontaining25‐40%gravelsizedmaterial(clasts).Theaveragesampledensityisapproximately1sampleper8km2,buttherearesomezoneswithnosamplesandsomezoneswithhigherdensity.Insomeareassamplingwasnotpossiblebecauseofaccessproblems,roaddeactivationandlackofroads,orlackofsuitablesamplemedia,suchasareasofeolian,glaciofluvialandglaciolacustrinedeposits.Inaddition,nosamplingoccurredinCarpLakeProvincialPark.Ateachsamplesitethreeseparate~900gsampleswerecollectedfor:1)analysisoftheclay‐sizefraction(<0.002mm)byinductivelycoupledplasmamassspectrometry(ICP‐MS),followinganaquaregiadigestion,atAcmeAnalyticalLaboratoriesLtd.(Vancouver,BC);2)analysisofthesilt‐plusclay‐sizedfraction(<0.063mm)byinstrumentalneutronactivationanalysis(INAA)atActivationLaboratoriesInc.(Ancaster,ON);and3)forarchiveattheGeologicalSurveyofCanada.Thesearchivesampleswillbeavailableforfutureanalysisforeitherimproveddetectionlimitsordifferentelements.Clay‐sizedseparationswereproducedbycentrifugeatAcmeAnalyticalLaboratoriesLtd.(Vancouver,BC).Typically,between0.5–0.8kgoftillwereprocessed,whichonaverageyieldedapproximately5gofclay.TheclaysplitswereanalyzedbyICP‐MSfor36elements(analyticalpackage1DX)followingleachinginahot(95°C)aqua‐regiadigestion(detectionlimitsarelistedintheappendixeswiththedata).Upto5gofclayisanalyzedtoovercomepotentialnuggeteffectsforAu.Thesiltplusclay‐sizedfraction(<0.063mm)oftillsamples(onaverage,24gofmaterialwasused)wereanalyzedfor35elementsbyINAA(analyticalpackage1D,enhancedoption)(detectionlimitsarelistedintheappendixeswiththedata).Hoffman(1992)describestheanalyticalprocedureasfollows.Analiquotandaninternalstandard(oneforeveryelevensamples)areirradiatedwithfluxwiresatathermalneutronfluxof7x1012·n·cm‐2·s‐1.Afteraseven‐daydecay,thesamplesarecountedonahighpurityGedetector.Usingthefluxwires,thedecay‐correctedactivitiesarecomparedtoastandardcalibrationcurve.Thestandardincludedisonlyacheckonaccuracyandisnotusedforcalibrationpurposes.From10–30%ofthesamplesarerecheckedbyre‐measurement.

Page 13: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1513

Heavy Minerals 

Bulktillsamples(>10kg)werecollectedatevery4–5sitessampledforgeochemicalanalysis.Intotal,152sampleswerecollected.Heavymineralconcentrates(HMCs)wereseparatedatOverburdenDrillingManagementLimited(Nepean,ON)andwerepannedforgoldgrains,platinumgroupmetals(PGM)anduraninite.Bulksamplesweredisaggregated,followedbyseparationofthe>2mmand<2mmfractions.The<2mmfractionwasthenpreconcentratedonashakingtable,withthefinest,heaviestfractionbeingpanned.Gold,uraninite,andplatinumgroupelements(PGEs)werethenexaminedunderopticalmicroscopetoprovidegraincountsaswellasgrainmorphology.MoredetaileddescriptionsofthemethodsareprovidedinAverill(2001).Sulfideandcinnabargraincountswerealsomade,althoughwheren>20,thesecountsareestimates.Thetableconcentratewasthensievedandthe<0.25mmfractionsubsequentlyseparatedusingheavyliquidat3.2g/cm3.This<0.25mmfractionwasthenanalyzedbyINAAatBecquerelLaboratories(Mississauga,ON)usingtheirBQ‐NAA‐1package(withtheadditionofHgfor2009and2010samples).Theconcentrateisplacedinvials,whicharestackedintoone‐foot(30cm)longbundlesforirradiationattheMcMasterNuclearReactor,whichhasfluxof8x1012·n·cm‐2·s‐1.Afteratypicaldecayperiodofsixdays,theirradiatedsamplesareloadedontoahighresolution,coaxialgermaniumdetectorthatconstructsaspectrumofgamma‐rayenergiesversusintensities.Thecountingtimeistwentytothirtyminutespersample.Quantitativeelementalcontentsarederivedbycomparisonofpeakpositionsandareawithlibrarystandards.Forthe2009and2010samples,severalelements,suchasHg,Ni,Zr,Rb,Au,hadvariableandhigherthanusualdetectionlimitsbecauseofelevatedCr,REEandThcontents(SteveSimpson,pers.comm.,2011).Forexample,Auusuallyhasadetectionlimitof2ppbbuthereitrangesfrom5to42ppbdependingonthesample.However,thesamplestakenin2008didnothavethisissue.

QUALITY CONTROL Discriminatinggeochemicaltrendscausedbygeologicalfeaturesfromvariationduetospurioussamplingoranalyticalerroriscriticalforassessingthereliabilityofregionalgeochemicalsurveydata.Acombinationoffieldduplicates,analyticalduplicatesandreferencestandardsareusedtoestimatetheaccuracyandprecisionoftheseanalyticaldata.Every20samplegroupsubmittedforcommercialanalysiscontainafieldduplicate,ananalyticalduplicate(splitandinsertedintothesamplesequenceatthelabafterpreparation),andareferencestandard(eitheranin‐houseBCGeologicalSurveystandardoracertifiedCanadaCentreforMineralandEnergyTechnology[CANMET]standard).Nofieldoranalyticalduplicatesweredonefortheheavymineralsamples,owingtothelargesamplesizesrequired.Scatter‐plotsoftheanalyticalandduplicatepairsweregeneratedandaselectionisshowninFigure4and5,withtherestoftheanalysisinAppendix1.Precisionfortheaquaregia(clayfraction)ICP‐MSanalysesistypicallymuchbetterthanfortheINAA(silt+clay)analyses.For

Page 14: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1514

theICP‐MSanalyses,correlationcoefficientsforthefieldduplicatesaretypicallyhigherthanthosefortheanalyticalduplicatesandaregenerallyabove+0.9.Morethan80percentofthetotalvariationamongtheduplicatesisaccountedforbytheFieldDuplicate1–FieldDuplicate2correlation.CorrelationcoefficientsfortheINAAduplicatesaregenerallymuchlower,withbetterprecisionforCo,Cr,ThandtheREEthantheotheranalytes.ThehigherprecisionfortheICP‐MSdataisinpartrelatedtolowerdetectionlimitsandlessvariationingrainsize,butalsolikelyreflectsbetterinstrumentcapabilities.FourCANMETtillstandards(TILL1,2,3and4),BCGeologicalSurveysediment(RD29)andtillstandards(SM,Till99),andtwoquartzblanksampleswereanalysedwiththesurveysamplestomeasureanalyticalaccuracyandprecision.AllofthestandardsdataiscompiledinAppendix1.TheINAAquartzblanksampleresultsrevealamountsofAs,Br,Co,Cr,La,Ce,ThandScinthe1to10ppmrangeandlessthan0.2%Fe.Traceamounts(<than1ppm)ofCu,Pb,Co,Mn,SrandBaintheblanksaredetectablebytheaquaregiadigestion‐ICP‐ESanalysis.Elementconcentrationsdetectedintheblanksamplesmayreflecttracesinthequartzandnotnecessarilysamplecontaminationduringtheanalysis.Precisionisbelow+/‐8%RSDforAs,Cd,Co,Cr,Cu,Hg,Mn,Mo,Ni,Pb,Sb,VandZninstandardsanalysedbyaquaregiaICP‐MSandbelow+/‐8%RSDforAs,Br,Co,Cr,Fe,La,Ce,ThandScinGSBTill99.Accuracycanbeaccessedfromthenear‐totalINAAanalysesandmeasuredamountsformostelementsarewithin5%oftherecommendedvalue.PrecisionandaccuracyforelementsatdifferentconcentrationisbestshownbytheCANMETstandardsdata(Appendix1).TheINAAanalysesofCANMET.Goldshowsconsiderablevariationalthoughthemeanandrecommendedvaluesareverysimilar.ThelargemeasuredBadifferencescomparedtotherecommendedvaluearedifficulttoexplain.Table2listsprecisionandCANMETrecommendedvalues(hotaquaregiaanalyses)forCANMETTill1,2,3and4.Goldprecision(%RSD)forthreeofthestandardsisbelow+/‐30%andmostotherelementshaveaprecisionbelow+/‐8%RSD.Lowerprecision(i.e.above8%)commonlyreflectsalowelementconcentrationsmeasuredinthestandard.

RESULTS Elementswiththemostsignificancetopotentialeconomicmineralizationintheprojectareaarediscussedbelow.Notethatweanalyzeddifferentsizefractionsbydifferentanalyticalmethods.Insomecases,commodityelementsarenotanalyzedbybothmethods(e.g.,CuwasnotdeterminedbyINAA).Furthermore,dependingonwhereanelementissequesteredinasample,comparisonsbetweensizefractionsmayhavegreaterorlesserutility,asdiscussedbelow.Notealsothataquaregiadigestionisnottotal,silicateandresistantoxidesarenotdigestedtoanygreatextent.Bycontrast,INAAisatotalmethod.Thus,thedifferencesbetweenresultsfortheclay‐sizeversusthesiltplusclay‐sizefractionsarenotonlyafunctionofanalyticalmethod(partialversustotal),butalsoafunctionofwhereananalyteresideswithina

Page 15: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1515

Page 16: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1516

Page 17: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1517

sample.Forexample,Asshowsgoodcorrelationsforbothfieldandlaboratoryduplicatesforbothsizefractions,becauseAsisprimarilyassociatedwithadsorptiontoclay‐sizemineralsurfaces(Figure4).Bycontrast,Auismorepronetothenuggeteffectinthesiltplusclay‐sizefractionthanAuintheclayfraction(Figure5).Tillgeochemicaldata(ICP‐MSandINAAanalysis)isinappendix2.Heavymineraldata(Graincounts,INAAanalysisontheheavymineralfraction)isinAppendix3.Averagevaluesarepresentedbelowalongwithonestandarddeviationandsamplecount.Samplecountsarevariableasresultsbelowdetectionarenotincludedinthestatisticalcalculations.Thresholdvalues(percentile)aresetbasedoninflexionpointsonthecumulativefrequencyplots(Figure6);wehavenotdefinedasetbackgroundvalueowingtothevariabilityinthegeochemicallandscape.Wherecorrelationsarestated(rvalues),theserepresentPearsonProductMomentcorrelations,statisticallysignificantatleastatthe95%confidenceinterval.Insomecases,wealsoemployedR‐modefactoranalysis,astatisticalmethodtoinvestigateinter‐relationshipsbetweenanalytesinacorrelationmatrix.

Au, As, Ag and Hg in Till  

Goldcontentsintheclayfractionrangefromlessthandetection(0.5ppb)to294ppb(average=5.1±11ppb,n=704).Goldcontentsintheclayfractionshowhighlyanomalousvaluesaroundthe98thpercentile(10ppb),althoughthereisalsoasubtlechangeinslopearoundthe90thpercentile,or8ppb(Figure6a).Inthesiltplusclay‐sizefraction,Aucontentsrangefrombelowdetection(2ppb)upto635ppb.Forthesiltplusclay‐sizefraction,anomalousAucontentsoccurabovethe80thpercentile(~8ppb;Figure6a);mostsamplesbelowthisthresholdwerebelowthedetectionlimitbythismethod(2ppb).AnomalousAucontentsoccurinthenortheasternandnorthwesternpartsofthemapareaforbothsizefractions(Figures7a,b),largelycoincidentwithknownAushowings.TherearealsoanomalousAucontents,inparticularinthesiltplusclay‐sizefraction,tothesouth,andtoalesserextent,totheeastofCarpLake.TherearenoknownAushowingshere.FortheclayfractionAushowsthebestcorrelationwithCu(r=0.410).ThehighestAucontentbybothmethodsoccursinthesamesample(Figures7aand7b)indicatingthatthisanomalousvalueisnottheresultofthenuggeteffect,consistentwiththisalsobeingthesamplewiththehighestAscontentsbybothmethods(Figures7cand7d).Alltillsamplesprocessedforheavyminerals(n=152)containvisiblegold(Figure8a).Notsurprisingly,thedistributionofAubyINAAontheheavymineralconcentratesmimicsthegoldgraindistribution(Figure8b)alongwiththesilt+clayfractionanalyzedbyINAA(Figure7b).FortheINAAanalysesoftheHMCs,goldrangesfrombelowdetection(5to42ppbdependingonthesample)to2,630ppb.Goldcontentsshowclearlyanomalousvaluesaroundthe95thpercentile(~750ppb),althoughthereisalsoasubtlechangeinslopearoundthe80thpercentile(~400ppb).

Page 18: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1518

Page 19: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1519

Page 20: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1520

ArsenicistypicallyconsideredapathfinderelementforAu.Inthisstudy,thresholdAscontentsintillare32and26ppm,atthe95thand98thpercentilesfortheclayandsiltplusclay‐sizefractions,respectively(Figure6a).Arseniccontentsareanomalousinboththenortheasternandnorthwesternsectionsofthestudyarea(Figures7c,d),largelycoincidentwithAuanomalies.However,AscontentsdonotappeartobeanomaloussouthofCarpLake;incontrast,thereareanomalousAscontentsinthewest‐centralpartofthestudyarea,primarilyinthesiltplusclay‐sizefraction.AuandAsshowamoderatepositivecorrelation(r=0.372)fortheclayfractionbasedontheR‐modefactoranalysis,statisticallysignificantatthe99.9%confidenceinterval.Bycontrast,thestatisticalcorrelationbetweenAsandAuforthesiltplusclay‐sizefractionispoor(r=0.112),despitetheevidentspatialassociation(Figures7b,d).Figure7(Next18pages):Proportionaldotmapsofselectedelementsfromtillgeochemicalanalyses,centralBritishColumbia:a)Aucontents(clay‐sizedfraction)byinductivelycoupledplasma–massspectrometry(ICP‐MS);b)Aucontents(clayplussilt–sizedfraction)byinstrumentalneutronactivationanalysis(INAA);c)Ascontents(clay‐sizedfraction)byICP‐MS;d)Ascontents(clayplussilt–sizedfraction)byINAA;e)Agcontents(clay‐sizedfraction)byICP‐MS;f)Hgcontents(clay‐sizedfraction)byICP‐MS;g)Cucontents(clay‐sizedfraction)byICP‐MS;h)Mocontents(clay‐sizedfraction)byICP‐MS;i)Sbcontents(clay‐sizedfraction)byICP‐MS;j)Pbcontents(clay‐sizedfraction)byICP‐MS;k)Bicontents(clay‐sizedfraction)byICP‐MS;l)Zncontents(clay‐sizedfraction)byICP‐MS;m)Cdcontents(clay‐sizedfraction)byICP‐MS;n)Lacontents(clayplussilt–sizedfraction)byINAA;o)Lacontents(clay‐sizedfraction)byICP‐MS;p)Crcontents(clay‐sizedfraction)byICP‐MS;q)Sbcontents(silt+claysizedfraction)byINAA;r)Thcontents(silt+claysizedfraction)byINAA.SizeofdotsareproportionaltothecontentwithAu‐ICPandAu‐INAAbeingrepresentedbylogplots.DataareoverlaidonthebedrockgeologymappresentedinFigure2.

Page 21: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1521

Page 22: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1522

Page 23: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1523

Page 24: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1524

Page 25: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1525

Page 26: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1526

Page 27: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1527

Page 28: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1528

Page 29: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1529

Page 30: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1530

Page 31: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1531

Page 32: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1532

Page 33: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1533

Page 34: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1534

Page 35: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1535

Page 36: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1536

Page 37: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1537

Page 38: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1538

Page 39: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1539

Arseniccontentsintheheavymineralfractionrangefrom9to414ppmandshowclearlyanomalousvaluesaroundthe95thpercentile(60ppb)(Figure6a).ThespatialdistributionofAscontentsmimicthoseofgoldandmostanomalousvaluesareinthenortheastpartofthestudyareawithslightlylowervaluesinthenorthwest(Figure8c).Silvercontentsfortheclayfractionrangefromlessthandetection(0.1ppm)to1.1ppm(average=0.21±0.14ppm,n=520),withanomalousvalues>0.5ppm(~95thpercentile;Figure6a).Silvershowsamoderatelypositive,statisticallysignificantcorrelation(r=0.313)withAu,withanomalousvaluesinthenortheasternandnorthwesternpartsofthestudyarea(Figure7e),beingcoincidentwiththeAuanomalies.Silverforthesiltplusclay‐sizefractionandtheheavymineralfractionwasbelowdetectionlimitforallsamples.Mercurywasonlydetectedintheclayfraction,althoughheavymineralconcentratedata(seebelow)indicatesmanysampleshavesignificantquantitiesofcinnabargrains.Intheclayfraction,Hgrangesfrom0.02to1.0ppm(average=0.29±0.13ppm).Inthecumulativefrequencyplottherearenomajorbreaksinslope,consistentwithaclosetonormaldistribution(Figure6a).Settingthethresholdatthe95thpercentile(0.51ppm),anomalousHgcontentsoccurinthewest‐centralportionofthestudyarea(Figure7f),northofthetwoknownHgshowings.SeveralanomalousHgcontentsoccurinthenortheasternandnorthwesternpartsofthestudyarea,coincidentwithAu,AsandAganomalies.Mercuryvaluesdonot,however,statisticallycorrelatewellwithAuvalues(r=0.083),butdostatisticallycorrelatemoderatelywithAsvalues(r=0.360).Cinnabarcountsrangefrom0to400grains.Anomalouscinnabargraincounts(>60grains)occurinthewesternpartofthestudyarea,andmarkthestartofatrendofdecreasingvaluestothesoutheast(Fig.8e).Becauseofthelargenumberofcinnabargrainsidentified,the2009and2010sampleswerealsoanalyzedforHgbyINAA;unfortunately,becauseofdetectionlimitissuesduetointerferencewithotherelements,only14sampleshavevaluesabovedetection.Thesesamplesareonthewestandeastsideofthestudyareaanddomimichighsinthecinnabargraincounts(Fig.8f).

Cu, Mo and Sb in Till 

Copperwasanalyzedonlyfortheclayfractionsamplesandrangesfrom33to408ppm(average=125±38ppm).Basedonthecumulativefrequencyplot,Cucontentsintheclayfractionareanomalousatthe90thpercentile(165ppm;Figure6a).AnomalousCucontentsoccurinthenorthwesterncornerofthestudyarea,withsmalleranomaliesinthenortheasternFigure8(next10pages):Proportionaldotmapsofselectedelementsandmineralsfor<0.25mmfractionoftillheavymineralseparatesforINAAgeochemicalanalysesalongwithselectedgraincounts.a)Goldgraincounts,b)Au,c)As,d)Sb,e)cinnabar,f)Hg,g)Ce,h)Th,i)Cr,andj)pyrite.SizeofdotsareproportionaltothecontentwithAu,Cinnabar,andpyritegrains,andAu,As,andThbeingrepresentedbylogplots.DataareoverlaidonthebedrockgeologymappresentedinFigure2.

Page 40: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1540

Page 41: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1541

Page 42: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1542

Page 43: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1543

Page 44: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1544

Page 45: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1545

Page 46: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1546

Page 47: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1547

Page 48: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1548

Page 49: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1549

Page 50: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1550

corner(Figure7g).ThereisapositiveconcentrationcorrelationbetweenCuandanumberofotheranalytessuchasFe(r=0.712),Sc(r=0.654),V(r=0.656),As(r=0.538),Au(r=0.410),Co(r=0.341)andMo(r=0.313).TheseelementassociationsindicatethatCuintheclayfractionofthetillinthenorthwesternandnortheasternpartsofthestudyareaisassociatedwithCu‐Aumineralization.Molybdenumwasanalyzedforbothsizefractions.AllclaysamplesreturnedMocontentsabovethedetectionlimit,rangingfrom0.3to12ppm(average=1.74±1.12ppm).Bycontrast,thesiltplusclay‐sizefractionhadonly137samplesabovedetectionlimit(1ppm),rangingfrom3to28ppm.Fortheclayfraction,theanomalousthresholdisaroundthe97thpercentile(3.5ppm;Figure6a),whereasforthesiltplusclay‐sizefraction,allsampleswithdetectableMocanbeconsideredanomalousatthe85thpercentile(≥3ppm;Figure6a).Thetwosizefractionsshowdifferentspatialrelationships.Fortheclayfraction,anomalousMocontentsoccurmainlyinthenortheasternsectionofthestudyarea;Mocontentsarenotanomalousinthenorthwesternsection(Figure7h).ThehighestMocontentisforasampleinthewest‐centralpartofthestudyarea.Bycontrast,thesiltplusclay‐sizefractionhasanomalousMocontentsscatteredovermuchofthestudyarea,withthemostconsistentlyelevatedcontentsintheeast‐centralandsouthernareas.Notably,Mocontentsinthesiltplusclay‐sizefractionarebelowdetectionforthenorthwesternareawherehighCu,AuandAsvaluesoccur.Antimonywasmeasuredforbothsizefractions,withclaycontentsrangingfrom0.1to5.6ppm(average=0.80±0.48ppm),andclay+siltcontentsrangingfrom0.5to13.1ppm(average=1.84±0.87ppm).Thresholdvaluesarearoundthe95thpercentileforbothfractions,at1.5and2.7ppmfortheclayandsiltplusclay‐sizefractions,respectively(Figure6a).Spatially,thetwosizefractionsshowsimilardistributions,withthemostanomalouscontentsoccurringinthenortheasternsectionofthestudyarea(Figure7i).AntimonyisalsoacommonpathfinderelementofporphyryCu‐AuandVMSmineralization.Antimonyintheheavymineralfractionrangesfrom1.2to26.3ppm,andisanomalousatthe90thpercentile(~7ppm)(Figure6a).ThetwohighestvaluesintheheavymineralfractionaretothesoutheastandnortheastofCarpLake,withintermediatevaluesinthenorthwest,thezoneofpotentialporphyryCu‐Austylemineralization.

Pb, Bi, Zn and Cd in Till 

Leadwasonlyanalyzedintheclayfraction,andrangesfrom6.6to64ppm(average=15.0±5.21ppm).Leadshowsanearnormaldistribution,althoughthereisasubtleinflectioninthecumulativefrequencyplotnearthe85thpercentile(Figure6a);settingthethresholdvalueatthe95thpercentilegivesanomalousPbat>24ppm.ThestrongestcorrelationswithPbareshownbyK(r=0.591),La(r=0.501),Bi(r=0.668),Th(r=0.720)andU(r=0.621).ThespatialdistributionofanomalousPbconcentrationsisdistinctfromtheothercommodity‐relatedelements,withthehighestPbcontentsinthenorth‐centralpartofthemaparea,betweenthenortheasternandnorthwesternareasthatareanomalousinAu,CuandAs(Figure7j).Bismuth(Figure7k)showsasimilarspatialdistributiontoPb,alongwithU,Th

Page 51: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1551

andtherareearthelements(REE).Bismuthrangesfromlessthandetection(0.1ppm)to2.7ppm(average=0.33±0.26ppm),withathresholdaroundthe95thpercentile(0.8ppm;Figure6b).ZncontentswereanalyzedinbothsizefractionsandCdwasonlyanalyzedintheclayfraction.Zinccontentsinclayrangefrom83to531ppm(average=187±41ppm)comparedto60to400ppmintheclay+silt(average=167±49ppm,witharound280samplesbelowdetection).CadmiumshowssimilarspatialdistributiontoZn,andrangesfrom0.1to4.0ppm(average=0.75±0.48ppm).Bothmetalsshowthelargestanomalies(thresholdatthe95thpercentile=245ppmZnforclay,250ppmZnforclay+siltand1.6ppmCdforclay;Figure6b)alongtheeasternsideofthemaparea(Figure7l,m),althoughCdalsoshowsseveralanomalousvaluesinthewest‐centralportionofthestudyarea.BothZnandCdhavestrongpositivecorrelationswithMo(r=0.743and0.586,respectively),As(r=0.421and0.364,respectively)andSb(r=0.464and0.334,respectively),aswellaswitheachother(r=0.719).AlthoughZncorrelatespoorlywithmajorelements,CdisstronglycorrelatedwithCa(r=0.595).

Rare Earth Elements, U, Th, K, Ca, Mg, Na, Cr, Hf, Co, Mn and Ni in Till 

BoththebasaltillgeochemicalresultsandtheINAAdeterminationsontheheavymineralfractionshowthatvaluesforrareearthelements(REE),U,Th,K,Ca,Mg,Na,Ni,andCr(onlyLa,ThandCrshowninFigure7asexamples)havespatialrelationshipsthatareconsistentwithchangesinthedominantunderlyingbedrocklithology(e.g.,Figures7n,o,p).Thus,incompatibleelementsthatareenrichedinfelsicrocks(i.e.,theREE,U,Th,KandHf)areelevatedinthenorthernpartofthestudyareacoincidentwiththeWolverinemetamorphiccomplex,whichcontainsfelsicrockssuchasgraniticpegmatite,granite,granodioriteandrhyolite(Struik,1994).InthelargeHMCsamplesfromthisareaofthemap,>33%oftheclaststhatare>2mmaregranitoid,indicatingagreaterprevalenceofalkalicvolcanicrocksandassociatedlatestageintrusiverocks.NickelandCrcontentsarehighestinthesouth‐southwestportionofthestudyareawheremaficandvolcaniclasticrocksoftheQuesnelTerraneoccur(Struik,1994).Conversely,whereasCoshowsastrongcorrelationwithMnintheclayfraction,CrandNi,whicharestronglyadsorbedbyMnoxidesandoxyhydroxides(NicholsonandEley,1997;Leybourneetal.,2003),showdistributionpatternsthatfollowthemajormaficvolcanicbedrockunitsinthesouthernpartofthestudyarea(Figure7p).HighTa,CeandThcontentsinthenorthtonortheastsuggestmorefelsicrocks,likelythegraniticpegmatite,granite,granodioriteandrhyoliteand/ormoreenrichedmaficrocks;whereashighCrcontentsinthesouthindicatesmoreprimitivemaficrocks(Figures7g,h,i,j).

Heavy Mineral Concentrates: visible gold, pyrite and cinnabar 

Alltillsamplesprocessedforheavyminerals(n=152)containvisiblegoldgrains.Thenumberofgoldgrainsper~10kgofsamplerangesfrom1to91(Figure8a)andthecalculatedAucontentsrangefrom1to23,491ppb.Intotal,1584goldgrainswereclassifiedonthebasisofsizeandmorphology.Goldgrainmorphologiesaresubdividedintothreegroups:pristine,modifiedandreshaped,basedontheclassificationschemeofDilabio(1990).Themajorityof

Page 52: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1552

goldgrainsinthisstudyareclassifiedasreshaped(82.5%),withlesscommonmodifiedgrains(14%)andrarepristinegrains(3.5%).Thethresholdvalueforthetotalnumberofgoldgrainsisaround12–15(80–85thpercentile),basedonchangesinslopeofaprobabilitydistribution.Althoughtheyareonlyestimates,graincountsofpyriteandcinnabarareuseful.Pyritecountsrangefromzerotoahighof~10000grains.Mostofthetillsampleswithelevatedpyritegraincounts(whereanomalousvaluesareapproximately>50grains)occurintheeasternandsouthernpartsofthestudyarea(Figure8b),distinctlysouthoftheareawithanomalousmetalvalues(northeasterncornerofthestudyarea;Figures7a–i,k–m).Bycontrast,cinnabarcountsrangefrom0to400,withanomalouscinnabargraincounts(approximately>60grains)inthewesternpartofthestudyarea,withatrendofdecreasingvaluestothesoutheast(Figure8c).

TILL GEOCHEMICAL EXPLORATION

Precious and base metal veins 

Inthenortheasternpartofthestudyarea,thereareanumberofAuandCu‐Aushowings,aswellastwosmallpast‐producingplacerdeposits(discussedpreviously).Historicgoldrecoveredfromtheplacerdepositswasdescribedaswirytoangular(MINFILE093J007),suggestingthattheplacergoldhadnotbeentransportedfarfromsource.Samplesoftheclayfractionwereanalyzedbyaqua‐regiadigestionfollowedbyICP‐MS,whereasthesiltplusclay‐sizefractionwasanalyzedbyINAA,thustheICP‐MSresultswillbelessbiasedbythenuggeteffect.Goldintheclayfractionoccurseitherasclay‐sizedgoldgrains,mostlikelyaresultofglacialcomminutionand/orsmall‐scalehydromorphicgolddispersionandadsorptiontoclayandoxyhydroxidemineralsurfacesintheclayfraction.Otherthanasmallnumber(~3)ofhighlyanomalousAuvaluesintheICP‐MSresults,thereisarelativelystrongcorrelation(r=0.410)betweenCuandAu;thissuggeststhatmuchoftheAuisassociatedwithCu‐sulphideminerals.Thepathfinderelementalassociationspresentedhere(i.e.,Sb,As,Se,Tl,Cd,Zn)areconsistentwiththisstyleofmineralization(Taylor,2007).Thisassociationiscoherentwithdescriptionsofmanyoftheshowingsinthenortheasternsectionofthestudyarea;showingsofquartzveinswithAu,Cu±Agand/orPGE(MINFILE093J007,093J012,093J027,093J037),likelyofepigeneticorigin.Themainclusteroftillsampleswithanomalousvaluesisessentiallyspatiallycoincidentwithmanyoftheshowings.Thedominanticeflowtowardsthenortheastcanbeusedasavectortoguidefurtherprospecting.

Porphyry Cu‐Au 

ThereispotentialforporphyryCu‐Au–stylemineralizationinthestudyareabasedonthepresenceoftheMountMilliganporphyryCu‐Audevelopedprospectincorrelativerockstothenorthwestofthestudyarea.ThetillgeochemicaldatashowselevatedvaluesofCuandAuandanumberofpathfinderelements(e.g.,As,Hg,Sb)inthenorthwesternpartofthestudyarea(Figures7a,b,c,d,f,g,i).Theseanomaloustillsamplesstronglyindicatesourcesofmineralizationup‐ice,towardsthesouthwest.ThereareanumberofCuandCu‐Aushowings

Page 53: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1553

coincidentandup‐iceofthisareaofelevatedgeochemicalvalues(Figure2).Forexample,attheTsilshowing(MINFILE094C180),inthenorthwesterncornerofthestudyarea,therearereportsofoutcropsofintermediatehornblendeandfeldsparporphyriticrocksexhibitingquartz‐carbonatealterationwithpyrite,pyrrhotiteandrarechalcopyriteveins.ThemainclusterofCuandAuanomaliesinthenorthwesternpartofthestudyareadirectlyoverliethemainclusterofCuandAushowingsinthisarea(Figure2).ThehighestheavymineralcontentscorrespondtotheareaidentifiedashavingpotentialporphyryCu‐Austylemineralization(cf.Wardetal.,2011).

Volcanogenic Massive Sulphide Deposits 

Volcanogenicmassivesulfideshowingsoccurtothesoutheastandtothenorthwestofthestudyareaalongthetrendofthemajorbedrockunits.Giventhepresenceextensivevolcanicrocks,thereshouldbesignificantpotentialforVMSmineralizationinthestudyarea,eventhoughtherearenoVMSshowingsordepositslistedinMINFILE.However,thisstudyindicatesthereisrelativelylittlespatialcorrelationbetweenthecommodityelementsassociatedwithVMSmineralization.LeadanomaliesareclearlydistinctfrombothCuandZn.TherelativelylowPbcontentsinthetillinthestudyarea,comparedtootherareasofVMSdeposits(cf.,Halletal.,2003;ParkhillandDoiron,2003),couldberelatedtothreefactors: GiventhepreponderanceofmaficvolcanicrocksinthispartofBC,VMSmineralization,if

present,wouldlikelybelead‐poorgiventhegenerallyjuvenilenatureofthesourceofthevolcanicrocks(Smithetal.,1995;PatchettandGehrels,1998;Dostaletal.,1999;Erdmeretal.,2002;Rossetal.,2005).Furthermore,VMSdepositsassociatedwithoceanfloorandoceanicarcsettingsarelead‐poorcomparedtothoseassociatedwithcontinentalmargins(Franklinetal.,1981;Galleyetal.,2007).

OnlytheclayfractionwasanalyzedforPb,byaqua‐regiadigestionfollowedbyICP‐MS,anditispossiblethatPbispresentinalesslabileformorinacoarsersizefraction.

ItispossiblethatthethicktillunitsofthestudyareahavedilutedthegeochemicalsignatureofunderlyingbedrocklithologiesresultinginsubduedanomaliesforPb.

DespiteanapparentlackofgeochemicalresponseforPbintillsamplesthereisstillpotentialforVMS‐stylemineralizationinthestudyarea.ThegenerallackofspatialcorrelationbetweenanomalousCuandZnmaysimplybeafunctionofVMS‐relatedCuanomaliesbeingmaskedbyanomaliesassociatedwithporphyryCu‐Auandpreciousandbasemetalveinmineralizationorbydilutionduetothicktill.ZincshowspoorcorrelationswithNi,CrandMgindicatingthatanomalousZncontentsinthetillarenotsimplyafunctionofweatheringofmaficvolcanicrocks.InadditiontoanomalousZnalongtheeasternportionofthestudyarea(Figure7l),therearecoincidentanomaliesforCd,BiandTl,suggestingthepotentialforconcealed,presentlyunrecognized,Znmineralization.TheHMCsampleswiththehighestpyritegraincountsarealsofromtheeast‐centralpartofthemaparea(Figure8b),furthersuggestingthepresenceofVMS‐stylemineralizationinthisarea.MoredetailedworkfollowingupthesourceofanomalouspyritegraincountsandZn,Cd,BiandTlcontentsinthetilliswarranted.

Page 54: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1554

Mercury 

PinchiLakemercurymine(MINFILE093K049)islocatedonthePinchifaultapproximately45kmtothenorthwestofthetwoHgoccurrencesinthesouthwesternportionofthestudyarea(Figure2).ThePinchiLakemineoperatedfrom1940to1944and1968to1975,andwasoneofonlytwomercury‐producingminesinCanada(Plouffe,1998).ThetwoHgshowingswithinthestudyareaareassociatedwiththeextensionofthePinchifault,butanomalouscinnabarcountsandHgcontentsintheclayfractionarenotspatiallyassociatedwiththeseshowings(Figures7f,5c).Elevatedcinnabargraincountsoccurtothenorthoftheshowings,suggestingadditionalsourcesoffault‐associatedHgmineralizationupicefromthecinnabargrains.ModeratelyelevatedHgintheclayfractionalsooccursintheareaofhighcinnabargraincounts.Follow‐upworkthatincludesananalysisofthesiltplusclay‐sizefractionusingananalyticalmethodwithlowerdetectionlimitsforHgiswarranted.

HEAVY MINERAL CONCENTRATE GEOCHEMISTRY TheINAAdeterminationsonheavymineralconcentratespresentedhereaddtothepreviouslypublisheddataandbegintobuildacoherentstoryonthepotentialformetallicmineralizationinthestudyarea.ThespatialdistributionofAu,AsandSbcontentsconfirmthepotentialforpreciousandbasemetalveinmineralizationandtoalesserextentporphyryCu‐Auinthenortheastandnorthwestareasofthestudyarea,respectively.Withgreaterthan30sampleshavingAucontentsgreaterthan400ppb,thereisthepotentialformineralizedbedrocktooccurthere.GoldanomaliescommonlycoincidewithanomaliesinotherpathfinderelementssuchasAsandSb.Althoughonlyalimitednumberofvaluesareabovedetectionlimit,thespatialdistributionsofHgvaluesintheheavymineralconcentratesdomimicthecinnabargraincounts.AreaswithelevatedINAAvaluesandgraincountsmaybeassociatedwithfaultssimilartothePinchiLakefault.ElevatedlightREEsandThinthenorthernpartofthestudyareaarecoincidentwith,andlocateddown‐icefrom,granitepegmatite,granite,andgranodioritesuggestingthepossibilityofREEmineralizationbeingassociatedwithfelsicporphyrybodiesinthearea.Ourpreviousstudiesontheclay+siltandclayfractionsofstudyareatillsandthepresenceoflargenumbersofpyrite/marcasitegrainsinsomeoftheHMCsamplessuggestpossibleVMSmineralization(Wardetal.,2011).However,theinherentlimitationsoftheINAAmethod(e.g.,lackofCuandPbdeterminationsandhighdetectionlimitsforZn,Cd,andAg)meanthatINAAdeterminationspresentedhereonheavymineralconcentratesdonotaddanyinsightintothepotentialforVMSstylemineralizationwithinthestudyarea.

CONCLUSIONS InpartoftheQUESTProjectarea,centralBC,approximately760tillsampleshavebeencollectedwherethickglacialdepositscoverbedrock,hinderingbothbedrockmappingandmineralexplorationprograms.ThestudyareaoccurswithintheQuesnelterrane,andisdominatedbymiddletoupperTriassicmaficvolcanicrocksandvolcaniclasticsedimentary

Page 55: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1555

rocksoftheNicolaGroup.TheMountMilliganCu‐Auporphyrydepositoccursjusttothenorthwestofthestudyareaincorrelativerocks,partofanearlinear,northwest‐trendingseriesofCu±Modepositsthatoccurwithinthisterrane.Tillgeochemicaldata(clayandclay+silt)andheavymineralgraincountdataandmetalcontentsofthe<0.25mmfraction,highlightfourareasthatwarrantfurtherwork:1) Inthenorthwesternpartofthestudyarea,thereisalargenumberoftillsampleswith

significantlyanomalousCuandAucontents(andcoincidentbutlesssignificantAsandAganomalies).TheunderlyingrocksarecorrelativewiththosethathosttheMountMilliganCu‐Auporphyrydeposit.ConsistentwiththepotentialforporphyryCu‐Austylemineralization,thereareanumberofshowingsassociatedwithalkalicvolcanicandporphyriticrocks.ThisareaalsohastillsampleselevatedinHf,REE,Th,Ti,FeandV,reflectingFe‐richalkalicigneousrocksintheunderlyingandup‐icebedrock.

2) Inthenortheasternpartofthestudyarea,thereareAu,Cu,As,Ag,SbandCdanomaliesintilloccurnearseveralpreciousandbasemetalveinshowingsandtwosmall‐scalepast‐producingAu(andPt)placermines.

3) Intheeast‐centralportionofthestudyarea,tillsampleshaveelevatedZn,CdandBicontents,aswellashighpyritegraincounts(upto10000grainsina10kgsample).TherearenoknownshowingsormineralizationinthispartofthestudyareabutthetillgeochemicalresultssuggeststhereispotentialforconcealedVMS‐typemineralization.

4) Inthewest‐centralportionandintothecentralportionofthestudyarea,Hgvaluesandelevatedcinnabargraincountssuggestthereisfault‐associatedHgmineralizationup‐ice(i.e.,tothesouthwest),perhapssimilartothePinchiLakemercuryminelocatedtothewestofthestudyarea.

Inthesefourareasincreasedtillsampledensitycouldprovidesomeinsightintocoveredbedrocklithologiesandthepotentialformetallicmineralization.Tillsamplingcanbecomemorechallenging,however,assampledensityincreasesappropriatesamplematerialcanbedifficulttofindandaccesstogoodsamplesitescanbelimited.Insuchcases,prospecting(includinganexaminationofclastsindrift)andtrenchingcouldbecarriedouttofurthertesttheseareas.

ACKNOWLEDGMENTS GeoscienceBCprovidedthemajorityoffundingforthisprojectandtheauthorsextendmanythankstoC.AnglinandC.Sluggettforhelpingtomakethisprojecthappen.TheMountainPineBeetle(MPB)ProgramunderthedirectionofC.Hutton(GSC,NaturalResourcesCanada)facilitatedbyAlainPLouffeprovidedfundingforaportionofthegeochemicalanalysesforsamplestakenin2008.AlainPlouffealsoarrangedforthearchivingofsamplesattheGSC.M.Casola,M.Dinsdale,K.Kennedy,V.Levson,J.McDonald,C.Pennimpede,S.Reichheld,I.SellersandD.Visprovidedableassistanceinthefield.AthoroughreviewbyT.Ferbeyhelpedtogreatlyimprovethemanuscript.

Page 56: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1556

REFERENCES Armstrong, J. E., Crandell, D. R., Easterbrook, D. J. andNoble, J. B. (1965): Late Pleistocene

stratigraphy and chronology in south‐western British Columbia and north‐westernWashington;GeologicalSocietyofAmericaBulletin,v.72,p.321‐330.

Averill, S. A. (2001): The application of heavy indicatormineralogy inmineral explorationwithemphasisonbasemetal indicatorsinglaciatedmetamorphicandplutonicterrains.GeologicalSocietySpecialPublicationsv.185,p.69‐81.

BCGeologicalSurvey(2010):MINFILEBCmineraldepositsdatabase;BCMinistryofForest,MinesandLands,URL<http://minfile.ca/>[August2010].

Bobrowsky,P.T.,Rutter,N.W.(1992):TheQuaternarygeologichistoryoftheCanadianRockyMountains.GeographiephysicetQuaternairev.46,p.5–50.

Clague, J.J. (1989):Chapter1:Quaternarygeologyof theCanadianCordillera; inQuaternaryGeologyofCanadaandGreenland,R.J.Fulton(ed.),GeologyofCanadaSeriesNo.1.,p.17‐96.

Clague J.J., Ward B.C. (2011): Pleistocene glaciation of British Columbia. In Quaternaryglaciations–extentandchronology,acloserlook,EhlersJ,GibbardPL,HughesPD(eds),DevelopmentsinQuaternaryScience15:563–573.

Dreimanis,A.,(1989):Tills:theirgeneticterminologyandclassification.In:Goldthwait,R.P.and Matsch, C. L. Eds.)Genetic Classification of Glacigenic Deposits. A.A. Balkema,Rotterdam.

Dilabio,R.N.W.(1990):Classificationandinterpretationoftheshapesandsurfacetexturesofgoldgrainsfromtill;inCurrentResearch,PartC,GeologicalSurveyofCanada,Paper90‐1C,p.323–329.

Dostal,J.,Gale,V.andChurch,B.N.(1999):UpperTriassicTaklaGroupvolcanicrocks,StikineTerrane,north‐centralBritishColumbia:geochemistry,petrogenesis,andtectonicimplications;CanadianJournalofEarthSciences,v.36,p.1483–1494.

Dreimanis,A.(1989):Tills:theirgeneticterminologyandclassification;inGeneticClassificationofGlacigenicDeposits,R.P.GoldthwaitandC.L.Matsch(ed.),A.A.Balkema,Rotterdam,p.17–83.

Erdmer,P.,Moore,J.M.,Heaman,L.,Thompson,R.I.,Daughtry,K.L.andCreaser,R.A.(2002):ExtendingtheancientmarginoutboardintheCanadianCordillera:recordofProterozoiccrustandPaleoceneregionalmetamorphismintheNicolahorst,southernBritishColumbia;CanadianJournalofEarthSciences,v.39,p.1605–1623.

Ferbey,T.LevsonandV.M.(2010):EvidenceofWestwardGlacialDispersalAlongaTillGeochemicalTransectoftheCopperStarCu+/‐Mo+/‐AuOccurrence,West‐centralBritishColumbia;BCMinistryofEnergyandMinesOpenFile2010‐04

Ferbey,T.Levson,V.M.andLett,R.E.(2012):TillGeochemistryoftheHuckleberryMineArea,West‐CentralBritishColumbia(NTS093E/11);BCMinistryofEnergyandMinesOpenFile2012‐02

Page 57: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1557

Franklin,J.M.,Lydon,J.W.andSangster,D.F.(1981):Volcanic‐associatedmasivesulfidedeposits;EconomicGeology,75thAnniversary,p.485–627.

Galley,A.G.,Hannington,M.andJonasson,I.(2007):Volcanogenicmassivesulfidedeposits;inMineralDepositsofCanada:ASynthesisofMajorDeposit‐Types,DistrictMetallogeny,theEvolutionofGeologicalProvinces,andExplorationMethods,W.D.Goodfellow(ed.),GeologicalAssociationofCanada,SpecialPublicationno.5,p.141–161.

Hall,G.E.M.,Parkhill,M.A.andBonham‐Carter,G.F. (2003):Conventionalandselective leachgeochemical exploration methods applied to humus and B horizon soil overlying theRestigouche VMS deposit, BathurstMining Camp, NewBrunswick; in Massive SulphideDeposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine,W.D.Goodfellow,S.R.McCutcheonandJ.M.Peter(ed.),EconomicGeologyMonograph11,p.763–782.

Hoffman,E.L.(1992):Instrumentalneutron‐activationingeoanalysis;JournalofGeochemicalExploration,v.44,p.297–319.

Holland,S.S.,(1976):LandformsofBritishColumbia–aphysiographicoutline;BritishColumbiaMinistryofEnergy,MinesandPetroleumResources,Bulletin48,p.138.

JacksonJr.,L.E.,Clague,J.J.(Eds.),(1991):TheCordilleranIceSheet,In:GeographiephysiqueetQuaternaire.45,261–377.

LeFort,Darren;Hanley,Jacob;Guillong,Marcel.(2011):SubepithermalAu‐PdmineralizationassociatedwithanalkalicporphyryCu‐Audeposit,MountMilligan,QuesnelTerrane,BritishColumbia,Canada.EconomicGeologyandtheBulletinoftheSocietyofEconomicGeologistsv.106,p.781‐808.

Levson, V.M. (2001): Regional till geochemical surveys in the Canadian Cordillera: samplemedia, methods and anomaly evaluation; in Drift Exploration in Glaciated Terrain;McClenaghan, M.B, Bobrowsky, P.T., Hall, G.E.M. and Cook, S.J., Editors, The GeologicalSociety,SpecialPublicationNo.185,p.45‐68.

Levson,V.M.andGiles,T.R. (1997):Quaternarygeologyandtillgeochemistrystudies in theNechako and Fraser Plateaus, central British Columbia in Interior Plateau GeoscienceProject: Summary of Geological, Geochemical and Geophysical Studies; Diakow, L.J.,Metcalfe,P. andNewell J.,Editors,BritishColumbiaGeologicalSurvey,Paper1997‐2,p.121‐145.

Leybourne,M.I.,Boyle,D.R.andGoodfellow,W.D.(2003):Interpretationofstreamwaterandsediment geochemistry in the Bathurst Mining Camp, New Brunswick: applications tomineral exploration; in Massive Sulphide Deposits of the Bathurst Mining Camp, NewBrunswick, andNorthernMaine,W.D.Goodfellow, S.R.McCutcheon and J.M.Peter (ed.),EconomicGeologyMonograph11,p.741–761.

Logan, J. M., Schiarizza, P., Struik, L. C., Barnett, C., Nelson, J. L., Kowalczyk, P., Ferri, F.,Mihalynuk,M.G.,Thomas,M.D.,Gammon,P.,Lett,R.,Jackaman,W.,andFerbey,T.(2010):BedrockGeologyoftheQUESTmaparea,centralBritishColumbia;.GeoscienceBCReport

Page 58: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1558

2010‐5,BritishColumbiaGeologicalSurveyGeoscienceMap2010‐1andGeologicalSurveyofCanadaOpenFile6476.

Mathews,W.H.(1986):PhysiographicmapoftheCanadianCordillera;GeologicalSurveyofCanada,“A”SeriesMap1710A,scale1:5000000.

McClenaghan,M.B.(2005):Indicatormineralmethodsinmineralexploration;Geochemistry:Exploration,Environment,Analysis,v.5,p.233–245.

McClenaghan,M.B.,Ward,B.C.,Kjarsgaard, I.M.,Kjarsgaard,B.A.,Kerr,D.E. andDredge, L.A.(2002): Indicator mineral and till geochemical dispersal patterns associated with theRanch Lake kimberlite, Lac de Gras region, NWT, Canada; Geochemistry: Exploration,Environment,Analysis,v.2,p.299–320.

Nicholson,K., andEley,M. (1997):Geochemistry ofmanganeseoxides;metal adsorption infreshwater andmarine environments. Geological Society Special Publications v. 119, p.309‐326.

Parkhill,M.A. andDoiron, A. (2003):Quaternary geology of theBathurstMining Camp andimplications for base metal exploration using drift prospecting; in Massive SulphideDeposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine,W.D.Goodfellow,S.R.McCutcheonandJ.M.Peter(ed.),EconomicGeologyMonograph11.

Patchett,P.J.andGehrels,G.E.(1998):ContinentalinfluenceonCanadianCordilleranterranesfromNdisotopicstudy,andsignificanceforcrustalgrowthprocesses;JournalofGeology,v.106,p.269–280.

Paulen,R.C.andBobrowsky,P.T.(2003):MultiphaseflowofLateWisconsiniceintheQuesnelHighlands:piecingtogetherdiscordanticeflowindicators.Programwithabstracts,vol.28,p.132,2003GAC‐MAC‐SEG,Vancouver.

Plouffe, A. (1997): Ice flow and late glacial lakes of the Fraser Glaciation, central BritishColumbia;inCurrentResearch1997‐A,GeologicalSurveyofCanada,p133‐143.

Plouffe,A.(2000):QuaternarygeologyoftheFortFraserandMansonRivermapareas,centralBritishColumbiaGeologicalSurveyofCanada,Bulletin554,p.62.

Ross,G.M.,Patchett,P.J.,Hamilton,M.,Heaman,L.,Decelles,P.G.,Rosenberg,E.andGiovanni,M.K.(2005):EvolutionoftheCordilleranorogen(southwesternAlberta,Canada)inferredfromdetritalmineralgeochronology,geochemistry,andNdisotopesintheforelandbasin;GeologicalSocietyofAmericaBulletin,v.117,p.747–763.

Sacco,D.A.,Ward,B.C.,Maynard,D.,Geertsema,M.andReichheld,S.(2010):Terrainmapping,glacial history and drift prospecting in the northwest corner ofMcleod Lakemap area(part of NTS 093J), central British Columbia; in Geoscience BC Summary of Activities2009,GeoscienceBC,Report2010‐1,p.33‐42.

SanderGeophysicsLimited(2008):Airbornegravitysurvey,QuesnelliaRegion,BritishColumbia;GeoscienceBC,Report2008‐08,121p.

Smith,A.D.,Brandon,A.D.andLambert,R.S.(1995):Nd‐SrisotopesystematicsofNicolaGroupvolcanicrocks,Quesnelterrane;CanadianJournalofEarthSciences,v.32,p.437–446.

Page 59: Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic … · 2019-04-22 · Geoscience BC Report 2013‐15 3 Drift Prospecting for Porphyry Copper‐Gold, Volcanogenic Massive

GeoscienceBCReport2013‐1559

Struik, L.C. (1994): Geology of theMcleod Lakemap area (93J), British Columbia; GeologicSurveyofCanada,Report:2439,18pp.

Taylor BE (2007) Epithermal gold deposits In: GoodfellowWD (ed) Mineral Resources ofCanada: A Synthesis of Major Deposit‐types, District Metallogeny, the Evolution ofGeologicalProvinces,andExplorationMethods.pp113‐139.

Tipper, H.W. (1971): Glacial geomorphology and Pleistocene history of central BritishColumbia;GeologicSurveyofCanada,Bulletin196,89p.

Ward,B.C.,Geertsema,M.,Telka,A.,andMathewes,R.W.(2008):Apaleoecologicalrecordofclimatic deterioration frommiddle to lateWisconsinan time on the Interior Plateau ofBritish Columbia, Canada. 33rd International Geological Congress, August 6–14, 2008,Oslo,Norway.

Ward,B.,Maynard,D.,Geertsema,M.andRabb,T.(2009):Ice‐flowhistory,driftthicknessanddriftprospectingforaportionoftheQUESTProjectarea,centralBritishColumbia(NTS093G,H[westhalf],J);inGeoscienceBCSummaryofActivities2008,GeoscienceBC,Report2009‐1,p.25–32.

Ward,B.C.,Leybourne,M.I.andSacco,D.A.(2011):DriftprospectingwithintheQUESTprojectarea(NTS093J):MineralpotentialforporphyryCu‐Au,VMS,andAu‐CuVeins;inGeoscienceBCSummaryofActivities2011,GeoscienceBC,Report2011‐1,p.73‐96.

Ward,B.C.,Leybourne,M.I.andSacco,D.A.(2012):HeavymineralanalysisfromtillsampleswithintheQUESTProjectArea,centralBritishColumbia(NTS093J);inGeoscienceBCSummaryofActivities2012,GeoscienceBC,Report2012‐1,p69‐78.