62
Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Embed Size (px)

Citation preview

Page 1: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Chapter 6

Principles of Reactivity:

Energy and

Chemical Reactions

Page 2: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Thermite Reaction

Page 3: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Terminology

Energy• capacity to do work

Kinetic Energy• energy that something has because it is moving

Potential Energy• energy that something has because of its

position or its chemical bonding

Page 4: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Kinetic Energy

Page 5: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Chemical Potential Energy

Page 6: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Chemical Potential Energy

Page 7: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Internal Energy

• The sum of the individual energies of all nanoscale particles (atoms, ions, or molecules) in that sample.

• E = 1/2mc2

• The total internal energy of a sample of matter depends on temperature, the type of particles, and how many of them there are in the sample.

Page 8: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Energy Units

• calorie - energy required to heat 1-g of water 1oC

• Calorie - unit of food energy; – 1 Cal = 1-kcal = 1000-cal

• Joule - 1-cal = 4.184 J = 1-kg*m2/sec2

Page 9: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Law of Conservation of Energy

• energy can neither be created nor destroyed

• the total amount of energy in the universe is a constant

• energy can be transformed from one form to another

Page 10: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

First Law of Thermodynamics

• the amount of heat transferred into a system plus the amount of work done on the system must result in a corresponding increase of internal energy in the system

Page 11: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Thermochemistry Terminology

system => that part of the universe under investigation

surroundings => the rest of the universe

universe = system + surroundings

Page 12: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

System and Surroundings

• SYSTEM–The object under

study

• SURROUNDINGS–Everything outside

the system

Page 13: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Announcement

Learn@UW will be unavailable

on Thursday July 19

from 5:00am until 12:00 noon.

Page 14: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

2 H2 H2(g)2(g) + O + O2(g)2(g) --> -->

2 H2 H22OO(g)(g) + heat and light + heat and light

This can be set up to provide This can be set up to provide ELECTRIC ENERGY in a ELECTRIC ENERGY in a fuel cell..Oxidation:Oxidation: 2 H2 H22 ---> 4 H ---> 4 H++ + 4 e + 4 e--

Reduction: Reduction: 4 e4 e-- + O + O22 + 2 H + 2 H22O ---> 4 OHO ---> 4 OH--

Energy & Chemistry

H2/O2 Fuel CellEnergy, page 288

Page 15: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

ENERGY is the capacity to do work or is the capacity to do work or transfer heat.transfer heat.

HEAT is the form of energy that flows is the form of energy that flows between 2 objects because of their between 2 objects because of their difference in temperature.difference in temperature.

Other forms of energy —Other forms of energy —

• lightlight

• electricalelectrical

• kinetic and potentialkinetic and potential

Energy & Chemistry

Page 16: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

• Positive and negative particles (ions) attract one another.

• Two atoms can bond

• As the particles attract they have a lower potential energy NaCl — composed

of Na+ and Cl- ions.

http://mrsec.wisc.edu/Edetc/pmk/NaCl_alt.html

Potential Energy in the Atomic Scale

Page 17: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

PE + KE = Internal energy (E or U)PE + KE = Internal energy (E or U)

Int. E of a chemical system Int. E of a chemical system depends ondepends on–number of particlesnumber of particles

–type of particlestype of particles

–temperaturetemperature

Internal Energy (E)

Page 18: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Energy Transfer

Energy is always transferred from the hotter to the cooler sample

Heat – the energy that flows into or out of a system because of a difference in temperature between the thermodynamic system and its surroundings

Page 19: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Thermochemistry Terminology

state properties => properties which depend only on the initial and final states

=> properties which are path independent

non-state properties => properties which are path dependent

state properties => E

non-state properties => q & w

Page 20: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Thermochemistry Terminology

exothermic - reaction that gives off energyendothermic - reaction that absorbs

energychemical energy - energy associated with

a chemical reactionthermochemistry - the quantitative study

of the heat changes accompanying chemical reactions

thermodynamics - the study of energy and its transformations

Page 21: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Exothermic Reaction

First-Aid Hotpacks, containing either calcium chloride or magnesium sulfate, plus water

Page 22: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Endothermic Reaction

First-aid cold packs, containing ammonium nitrate and water in separate inner pouches

Page 23: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Enthalpy• heat at constant pressure

qp = H = Hproducts - Hreactants

Exothermic ReactionH = (Hproducts - Hreactants) < 0

H2O(l) -----> H2O(s) H < 0

Endothermic ReactionH = (Hproducts - Hreactants) > 0

H2O(l) -----> H2O(g) H > 0

Page 24: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Enthalpy

H = E + PV

H = E + PV

E = H – PV

Page 25: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

First Law of Thermodynamics

heat => q

internal energy => E

internal energy change =>E

work => w = - P*V

E = q + w

Page 26: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Specific Heat-Specific Heat Capacity

• the amount of heat necessary to raise the temperature of 1 gram of the substance 1oC

• independent of mass

• substance dependent

• s.h.

• Specific Heat of Water = 4.184 J/goC

Page 27: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat

q = m * s.h. * t

where q => heat, J

m => mass, g

s.h. => specific heat, J/g*oC

t = change in temperature, oC,

(always tf – ti)

Page 28: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Molar Heat Capacity

• the heat necessary to raise the temperature of one mole of substance by 1oC

• substance dependent

• C

Page 29: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat Capacity

• the heat necessary to raise the temperature 1oC

• mass dependent

• substance dependent

• C

Page 30: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat Capacity

C = m X s.h.

where C => heat capacity, J/oC

m => mass, g

s.h. => specific heat, J/goC

Page 31: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Plotted are graphs of heat absorbed versus temperature for two systems. Which system has the larger heat capacity?

A, B

Page 32: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat Transfer

qlost = - qgained

(m X s.h. X t)lost = - (m X s.h. X t)gained

Page 33: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat Transfer

Page 34: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE If 100. g of iron at 100.0oC is placed in 200. g of water at 20.0oC in an insulated container, what will the temperature, oC, of the iron and water when both are at the same temperature? The specific heat of iron is 0.106 cal/goC.

(100.g*0.106cal/goC*(Tf - 100.)oC) = qlost

- qgained = (200.g*1.00cal/goC*(Tf - 20.0)oC)

10.6(Tf - 100.oC) = - 200.(Tf - 20.0oC)

10.6Tf - 1060oC = - 200.Tf + 4000oC

(10.6 + 200.)Tf = (1060 + 4000)oC

Tf = (5060/211.)oC = 24.0oC

Page 35: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Melting of Ice

http://mrsec.wisc.edu/Edetc/pmk/ice.html

Page 36: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC?

q = Hice

+ Hfusion

+ Hwater

+ boil.

+ steam

q = Hice + Hfusion + Hwater + boil. + steam

Page 37: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Heat Transfer

Page 38: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*((0.0 – (-15.0))oC))

Mass of the ice specific heat of iceTemperature change

{

Page 39: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*15.0oC)

+ (10.0g*333J/g)

Mass of ice Heat of fusion

Melting of ice occurs at aconstant temperature

Page 40: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*15.0oC)

+ (10.0g*333J/g)

+ (10.0g*4.18J/goC*((100.0-0.00)oC))

Mass of water Specific heat of liquid water

Temperature change of the liquid water

Page 41: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*15.0oC)

+ (10.0g*333J/g)

+ (10.0g*4.18J/goC*100.0oC)

+ (10.0g*2260J/g)

Mass of water Heat of vaporization

Boiling of water occurs at aconstant temperature

Page 42: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*15.0oC)

+ (10.0g*333J/g)

+ (10.0g*4.18J/goC*100.0oC)

+ (10.0g*2260J/g)

+ (10.0g*2.03J/goC*((127.0-100.0)oC))

Mass of steam Specific heatof steam

Temperature change for the steam

Page 43: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE: How much heat is required to heat 10.0 g of ice at -15.0oC to steam at 127.0oC? q = Hice + Hfusion + Hwater + boil. + steam

q = (10.0g*2.09J/goC*15.0oC)

+ (10.0g*333J/g)

+ (10.0g*4.18J/goC*100.0oC)

+ (10.0g*2260J/g)

+ (10.0g*2.03J/goC*27.0oC)

q = (314 )J

+ 3.33X103 + 4.18X103 + 2.26X104 + 548

= 30.96 kJ

Page 44: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Spreadsheet of Previous Problem

10 2.09 15 313.5 314 31 x1010 333 1 3330 3330 333 x1010 4.18 100 4180 4180 418 x1010 2260 1 22600 22600 2260 x1010 2.03 27 548.1 548 54 x10

3096 x10

30.96 x10̂ 3

Page 45: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Coffee Cup Calorimeter

Page 46: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Bomb Calorimeter

Page 47: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE

A 1.000g sample of a particular compound produced 11.0 kJ of heat. The temperature of the calorimeter and 3000 g of water was raised 0.629oC. How much heat is gained by the calorimeter?

heat gained = - heat lostheatcalorimeter + heatwater = heatreaction

heatcalorimeter = heatreaction - heatwater

Page 48: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLE

A 1.000g sample of a particular compound produced 11.0 kJ of heat. The temperature of the calorimeter and 3000. g of water was raised 0.629oC. How much heat is gained by the calorimeter?

heatcalorimeter = heatreaction - heatwater

heat = 11.0 kJ - ((3.000kg)(0.629oC)(4.184kJ/kgoC))

= 3.10 kJ

Page 49: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Example

What is the mass of water equivalent of the heat absorbed by the calorimeter?

#g = (3.10 kJ/0.629oC)(1.00kg*oC/4.184kJ)

= 6.47 x 102 g

Page 50: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Example

A 1.000 g sample of ethanol was burned in the sealed bomb calorimeter described above. The temperature of the water rose from 24.284oC to 26.225oC. Determine the heat for the reaction.

m = (3000. + 647)g H2Oq = m X s.h. X t = (3647g)(4.184J/goC)(1.941oC) = 29.61 kJ

Page 51: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

When graphite is burned to yield CO2, 394 kJ of energy are released per mole of C atoms burned. When C60 is burned to yield CO2 approximately 435 kJ of energy is released per mole of carbon atoms burned. Would the buckyball-to-graphite conversion be exothermic or endothermic?

exothermic, endothermic

Page 52: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Laws of Thermochemistry

1. The magnitude of is directly proportional to the amount of reactant or product.

s --> l H => heat of fusion

l --> g H => heat of vaporization

Page 53: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Laws of Thermochemistry

2. H for a reaction is equal in magnitude but opposite in sign to H for the reverse reaction.

H2O(l) -----> H2O(s) H < 0

H2O(s) -----> H2O(l) H > 0

Page 54: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Laws of Thermochemistry

3. The value of H for the reaction is the same whether it occurs directly or in a series of steps.

Hoverall = H1 + H2 + H3 + · · ·

Page 55: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Hess' Law

• a relation stating that the heat flow in a reaction which is the sum of a series of reactions is equal to the sum of the heat flows in those reactions

Page 56: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

EXAMPLECH4(g) + 2 O2(g) -----> CO2(g) + 2 H2O(l)

CH4(g) -----> C(s) + 2 H2(g) H1

2 O2(g) -----> 2 O2(g) H2

C(s) + O2(g) -----> CO2(g) H3

2 H2(g) + O2(g) -----> 2 H2O(l) H4

---------------------------------------------

CH4(g) + 2 O2(g) -----> CO2(g) + 2 H2O(l)

Hoverall = H1 + H2 + H3 + H4

Page 57: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Standard Enthalpy of Formation

the enthalpy associated with the formation of a substance from its constituent elements under standard state conditions

Page 58: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Calculation of Ho

Ho = c*Hfo

products - c*Hfo

reactants

Page 59: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Example What is the value of Hrx for the reaction:

2 C6H6(l) + 15 O2(g) --> 12 CO2(g) + 6 H2O(g)

from Appendix L Text

C6H6(l) Hfo = + 48.95 kJ/mol

O2(g) Hfo = 0

CO2(g) Hfo = - 393.509

H2O(g) Hfo = - 241.83

Hrx c*Hfoproducts - c*Hf

oreactants

Page 60: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

ExampleWhat is the value of Hrx for the reaction:

2 C6H6(l) + 15 O2(g) --> 12 CO2(g) + 6 H2O(g)

from Appendix L TextC6H6(l) Hf

o = + 48.95 kJ/mol; O2(g) Hfo = 0

CO2(g) Hfo = - 393.509; H2O(g) Hf

o = - 241.83 Hrx c*Hf

oproducts - c*Hforeactants

Hrx 1mol)- 393.509kJ/mol)

+ (6mol)(- 241.83kJ/mol)products

- 2mol)(+ 48.95kJ/mol)

+ (15mol)(0kJ/mol)reactants

= - 6.271 x 103 kJ

Page 61: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Fossil Fuels

natural gascoal petroleum

Page 62: Dr. S. M. Condren Chapter 6 Principles of Reactivity: Energy and Chemical Reactions

Dr. S. M. Condren

Based on 1998 Data