53
Dr. Hugh Blanton ENTC 3331

Dr. Hugh Blanton ENTC 3331 Gradient, Divergence and Curl: the Basics

Embed Size (px)

Citation preview

Dr. Hugh Blanton

ENTC 3331

Gradient, Divergence and Curl: the Basics

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 3

• We first consider the position vector, l:

• where x, y, and z are rectangular unit vectors.

zyxl ˆˆˆ zyx

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 4

• Since the unit vectors for rectangular coordinates are constants, we have for dl:

dzdydxd zyxl ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 5

• The operator, del: is defined to be (in rectangular coordinates) as:

• This operator operates as a vector.

zyx

zyx ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 6

Gradient Gradient

• If the del operator, operates on a scalar function, f(x,y,z), we get the gradient: 

z

f

y

f

x

ff

zyx ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 7

• We can interpret this gradient as a vector with the magnitude and direction of the maximum change of the function in space. • We can relate the gradient to the

differential change in the function: 

dzz

fdy

y

fdx

x

fdf

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 8

Directional derivatives:

aTdl

dTlˆ

lal

ddl ˆ

ldfdzz

fdy

y

fdx

x

fdf

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 9

• Since the del operator should be treated as a vector, there are two ways for a vector to multiply another vector: • dot product and • cross product.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 10

Divergence Divergence

• We first consider the dot product:• The divergence of a vector is defined to be:

• This will not necessarily be true for other unit vectors in other coordinate systems.

z

A

y

A

x

A

AAAdzz

dyy

dxx

zyx

zyx

zyxA ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 11

• To get some idea of what the divergence of a vector is, we consider Gauss' theorem (sometimes called the divergence theorem).

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 12

Gauss' Theorem (Gau’s Theorem Gauss' Theorem (Gau’s Theorem

• We start with:

dydzdxz

A

y

A

x

AdV zyx

A

dxdydzz

Adxdzdy

y

Adydzdx

x

AdV zyxA

Surface Areas

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 13

• We can see that each term as written in the last expression gives the value of the change in vector A that cuts perpendicular through the surface.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 14

• For instance, consider the first term:

• The first part:

• gives the change in the x-component of A

dydzdxx

Ax

dxx

Ax

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 15

• The second part,

• gives the yz surface (or x component of the surface, Sx) where we define the direction of the surface vector as that direction that is perpendicular to its surface.

dydz

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 16

• The other two terms give the change in the component of A that is perpendicular to the xz (Sy) and xy (Sz) surfaces.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 17

• We thus can write:

• where the vector S is the surface area vector.

S S

ddddV SASASAA

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 18

• Thus we see that the volume integral of the divergence of vector A is equal to the net amount of A that cuts through (or diverges from) the closed surface that surrounds the volume over which the volume integral is taken. • Hence the name divergence for

A

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 19

• So what?• Divergence literally means to get farther

apart from a line of path, or• To turn or branch away from.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 20

• Consider the velocity vector of a cyclist not diverted by any thoughts or obstacles:

Goes straight ahead at constant velocity.

(degree of) divergence 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 21

Now suppose they turn with a constant velocity

diverges from original direction

(degree of) divergence 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 22

Now suppose they turn and speed up.

diverges from original direction

(degree of) divergence >> 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 23

Current of water

No divergence from original direction

(degree of) divergence = 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 24

Current of water

Divergence from original direction

(degree of) divergence ≠ 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 25

E-field between two plates of a capacitor.

Divergenceless

+

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 26

-field inside a solenoid is homogeneous and divergenceless.

I

divergenceless solenoidal

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 27

CURL

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 29

• Two types of vector fields exists:

+

+E

Electrostatic Field where the field lines are open and there is circulation of the field flux.

β

Magnetic Field where the field lines are closed and there is circulation of the field flux.

circulation (rotation) = 0 circulation (rotation) 0

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 30

• The mathematical concept of circulation involves the curl operator.• The curl acts on a vector and generates

a vector.

zyx BBBzyx

zyx

B

ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 31

• In Cartesian coordinate system:

zyx BBBzyx

zyx

B

ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 32

• Example

zyx BBBzyx

zyx

B

ˆˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 33

• Important identities:

0 V for any scalar function V.

BABA

0 A

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 34

Stoke’s TheoremStoke’s Theorem

• General mathematical theorem of Vector Analysis:

Css

ddsd lBBsB

Any surfaceClosed

boundary of that surface.

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 35

• Given a vector field

• Verify Stoke’s theorem for a segment of a cylindrical surface defined by:

r/cosˆ zB

30

,23

,2

z

r

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 36

y

x

z

rn ˆˆ

Cs

dd lBsB

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 37

zr BrBBzr

r

r

zφr

B

ˆˆˆ1

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 38

zr BrBBzr

r

r

zφr

B

ˆˆˆ1

z

BB

rz

1

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 39

zr BrBBzr

r

r

zφr

B

ˆˆˆ1

z

B

r

B

z

BB

rrzz φr ˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 40

zr BrBBzr

r

r

zφr

B

ˆˆˆ1

rrzz B

rr

Bz

z

B

r

z

BB

rr

1ˆˆ

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 41

• Note that has only one component:

rrzz B

rr

Bz

z

B

r

z

BB

rr

1ˆˆ

rBz /cos

B

22

cosˆ

sinˆ

cos

ˆ

cos1ˆ

rrrrr

r

φrφr

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 42

3

0

2

322

ˆcosˆ

sinˆ

zdzrd

rr

rφr

sB

ds

The integral of over the specified surface S isB

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 43

4

303

4

1

4

1

2

10

2

1cos

2

1

cos2

1sin

3

0

3

0

3

0

2

3

3

0

2

3

3

0

2

3

zzz

zz

dzdzdz

dzdzdr

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 44

y

x

z

rn ˆˆ

Cs

dd lBsBa

b

c

d

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 45

C

d lB

The surface S is bounded by contour C = abcd.

The direction of C is chosen so that it is compatible with the surface normal by the right hand rule.r̂

a

d da

d

c cd

c

b bc

b

a ab

C

dBdB

dBdBd

ll

lllB

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 46

a

d

d

c

c

b

b

a

dzzr

zrdφr

z

dzzr

zrdφr

z

ˆcosˆˆ

cosˆ

ˆcosˆˆ

cosˆ

0

3

3

2

3

0

2

3

ˆcosˆˆ

cosˆ

ˆcosˆˆ

cosˆ

dzzr

zrdφr

z

dzzr

zrdφr

z

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 47

0

3

3

2

3

0

2

3

ˆcosˆˆ

cosˆ

ˆcosˆˆ

cosˆ

dzzr

zrdφr

z

dzzr

zrdφr

z

0

3

3

cosˆˆ

cosˆ dzz

rzdzz

rz

0

3

3

0

0

3

3

0 23

cos

22

cos

23

cos

22

cosdzdzdzdz

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 48

4

3

3023

cos

23

cos

23

cos0

3

0

3

zdz

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 49

CurlCurl

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 50

dzz

fdy

y

fdx

x

fdf

dzz

fdy

y

fdx

x

fdf

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 51

curl or rot

• place paddle wheel in a river• no rotation at

the center• rotation at the

edges

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 52

• the vector un is out of the screen• right hand rule s is surface

enclosed within loop• closed line integral

Dr. Blanton - ENTC 3331 - Gradient, Divergence, & Curl 53

Electric Field LinesElectric Field Lines

Rules for Field Lines

1. Electric field lines point to negative charges

2. Electric field lines extend away from positive charges

3. Equipotential (same voltage) lines are perpendicular to a line tangent of the electric field lines