33
Soft colloidal microgels as bio-functional materials: From mouth to gut Dr. Anwesha Sarkar Associate Professor of Food Colloids

Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Soft colloidal microgels as bio-functional materials: From mouth to gut

Dr. Anwesha SarkarAssociate Professor of Food Colloids

Page 2: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Soft colloidal microgels

Karg, Ritchering et al. (2019) Langmuir, Volume 35, Pages 6231-6255.

Thorne et al. (2011) Coloid Polm Sci Volume 289, Pages 625-646

Heyes & Brańka (2009). Soft Matter, Volume 5, Pages 2681-2685.

• Cross-linked polymeric discrete gel particle

• Diameter: nm to few μm

• Swollen by a solvent

• Physical nature fall between hard spheres and ultra-soft solids (dilute polymer solutions)

2

Page 3: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Soft colloidal microgels - applications

Andablo-Reyes, Sarkar et al. (2019), Soft Matter, Volume 15, Pages 9614-9624

Karg, Ritchering et al. (2019) Langmuir, Volume 35, Pages 6231-6255.

• Fat replacement – lubricants/ viscosity modifiers

• Saturated fat replacement

• Act as Pickering stabilizers

• Ability to delay fat digestion

nm to µm

Water

Biopolymer (protein, starch)

Microgel paticles in food applications

Emulsion droplets

Microgel particles

Emulsion microgel particles

3

Page 4: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Case studies on microgels: mouth to gut

Whey protein microgelparticles (WPM)

1

Emulsion microgelparticles (starch)

2

Fusion of WPM at the interface

3

4

Page 5: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Sarkar, Andablo-Reyes et al. (2019) Current Opinion in Colloid and Interface Science, Volume 39, Pages 61-75.

Laguna and Sarkar (2017). Tribology – Materials, Surfaces & Interfaces, Volume 11, Pages 116-123.

Stokes et al. (2013). Current Opinion in Colloids and Interface Science, , Volume 18, Pages 349-359.

In mouth lubrication

TribologyRheology

Bulk property

Surface property

0.1-100 µm µm-nm>100 µm

5

Page 6: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Why oral lubrication?

• Oral lubrication (1/μ) has been linked to creamy, smooth, slippery perception

• μ has been linked to ‘rough’, astringent perception

6

Page 7: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

How is oral lubrication measured?

Friction force (F) = μ × L Boundary

regimeFr

icti

on

co

effi

cien

t (μ

)

Viscosity (η) × Speed (V) × Load (L)

Stribeck curve

Hydrodynamic

regime

Mixed regime

regime

L

Disc

Ball

Tribometer (ball-on-disc)

Food

Upper palate

Tongue

Tongue-palate

V (Speed)

L (Load)

Sarkar, Andablo-Reyes et al. (2019) Current Opinion in Colloid and Interface Science, Volume 39, Pages 61-75.

7

Page 8: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Bio-relevance in tribology?Dry tongue Wet tongue

Soft: PDMS surface

Wettability

8

Page 9: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

PDMS – HB/ HL+M

HB = 108°

HL+M = 47°

HL = 63°(after O2 plasma treatment,

3 days)

PDMS ball

(Ra < 50 nm, E=2.4 MPa)

PDMS tribopairsBovine submaxillary

mucin

PDMS disc

Laguna and Sarkar, (2017). Food and Function; Tribology - Materials, Surfaces & Interfaces, Volume 11, Pages 116-123

Sarkar et al., (2019). Advances in Colloid and Interface Science, Volume 273, Article Number 101034

1

2

Designing bio-relevant surfaces

9

Page 10: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Torres … Sarkar (2018). ACS Applied materials & Interfaces, Volume 10, Pages 26893-26905

Sarkar et al. (2017). Langmuir, Volume 33, 51, Pages 14699-14708

Microgels: Oral Lubrication mechanism?

Whey protein microgelparticles (WPM)

1

Emulsion microgelparticles (starch)

2

10

Page 11: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

shear rate/ s-1

10-4 10-3 10-2 10-1 100 101 102 103

/ P

a s

10-3

10-2

10-1

100

101

102

103

104

Glycerol

f = 80 vol%, ▼ 25 ○C, ∆ 37 ○C

f = 10 vol%, + 25 ○C, × 37 ○C

Viscosity of WPMWPM EMP

Whey protein microgel particle (WPM)

(Dh ~ 365 nm, -36.5 mV, pH 7)

11

Page 12: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Shear rate increasing from 0.1 to 50 s-1

Shear rate decreasing from 50 to 0.1 s-1

• WPM particles - wide ranging h values as a function of shear history

• High values of h persist after subjection to fairly high shear rates (50 s-1)even though the systems are highly shear thinning

• Thus, the particles may aggregate or interpenetrate as a function of shearand volume fraction, but they are certainly not destroyed – high resilience

Viscosity of WPM

shear rate/ s-1

10-4 10-3 10-2 10-1 100 101 102 103

/ P

a s

10-3

10-2

10-1

100

101

102

103

104

𝜂 = 𝐾𝑑𝛾

𝑑𝑡

𝑛−1

10 vol%, ×

20 vol%, ○

50 vol%, ∆

60 vol%, ◊

75 vol%, □

80 vol%, ∆

WPM EMP

12

Page 13: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

f = 10 vol%

Smooth HB PDMS tribopairs (●)

HL+M-coated PDMS tribopairs (□)

Stribeck curve of phosphate buffer is represented by ▲

f = 80 vol%

Friction coefficients of WPMWPM EMP

13

Page 14: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Boundary, U=3 mm/s (●)

Mixed regime, U= 100 mm/s (○)

Friction force in HB surfaces

Upper palate

Tongue

• Spherical WPM particles - aqueous “ball bearings” similar to oil droplets

• Tribology - strongly dictated by the volume fraction entrained within contacts

Sarkar et al., (2017). Langmuir

Liu et al., (2016). Food Hydrocolloids

Gabriele et al. (2010). Soft Matter

WPM EMP

14

Page 15: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Boundary, U=3 mm/s (■)

Mixed regime, U= 100 mm/s (□)

Friction force in HL+M surfaces

30 μm 3 μm

Dh= 365 nm

After tribology

Dh= 380 nm

WPM EMP

15

Page 16: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

• WPM particles shear thin and show good lubricating performance in the boundary as well as mixed lubrication regimes

• Hydrophobic moieties of WPM particles -effective adsorption to HB PDMS surfaces

• Hydrophilic moieties formed a true hydration layer i.e. “surface separators”.

• Potential Applications: Fat mimetics

f ≥ 65%

WPM

Hydrophobic

Hydrophobic

Hydrophilic

f ≈ 10%

f ≈ 10%

WPM as a potential fat replacerWPM EMP

16

Page 17: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Microgels: Oral Lubrication mechanism?

Whey protein microgelparticles (WPM)

1

Emulsion microgelparticles (starch)

2

Torres … Sarkar (2018). ACS Applied materials & Interfaces, Volume 10, Pages 26893-26905

Sarkar et al. (2017). Langmuir, Volume 33, 51, Pages 14699-14708

17

Page 18: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Torres … Sarkar (2018). ACS Applied materials & Interfaces, Volume 10, Pages 26893-26905

Torres……Sarkar et al., (2017). Carbohydrate Polymers, Volume 178, Pages 86-94

Torres……Sarkar et al., (2017). Food Hydrocolloids, Volume 71, Pages 47-59

Torres……Sarkar et al., (2016). Trends in Food Science and technology, Volume 55, Pages 98-108

EMP for fat reductionEmulsion microgel particles (EMP)

Oil droplets stabilised

by OSA starch

Starch gel particle

(Young modulus ~ 1 kPa)

Oil droplets

WPM EMP

18

Page 19: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Lubrication - emulsion dropletsArtificial saliva: salivary buffer (pH 6.8) + 75 U mL-1 α-amylase Time 0 s

Emulsion (20 wt%oil) Emulsion (20 wt% oil) + salivaoil

Emulsion + saliva

Emulsion

Larger extent of droplet coalescence

lower friction

Emulsion destabilisation

WPM EMP

19

Page 20: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

EMP on amylase additionArtificial saliva: salivary buffer (pH 6.8) + 75 U mL-1 α-amylase Time 0 s

AA

BB

CC

DD

0 s α-amylase 60 s α-amylase

60 vol%

emulsion microgel particles

No free oil or cream layer

+buffer (30 vol%)

+ α-amylase

WPM EMP

20

Page 21: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Lubrication on shear & enzyme

Without saliva With saliva

0 wt% oil 10 wt% oil5 wt% oil 15 wt% oil

WPM EMP

21

Page 22: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Theory behind lubrication

+ α-amylase

𝛿

𝑅=

𝑎

𝑅

2−

4

3𝜋 1−𝜐2𝑎

𝑅

3𝑓

𝑎

𝑅with 𝑓

𝑎

𝑅=

2 1+𝜐

4+𝑎

𝑅

2 3/2 +1−𝜐2

4+𝑎

𝑅

2 1/2

Lubricant typeR

(μm)

WL

(%)

𝜹

𝑹∗

η at

0.01 s-1

(Pa s)

Wp

(N)

Fd

(N)

Emulsion + buffer

(20 wt% oil)0.08 86 0.72 0.1

1.3

10-8 9.1 10-9

15 wt% starch particles

(30 vol%)15 29 18.7 3.5

1.5

10-4 2.9 10-5

Emulsion microgel

particles (30 vol%)15 86 12.7 200

4.5

10-4 1.7 10-3

a : radius of contact

WL : normal force supported by the lubricant

R* : reduced radius

v : Poisson’s ratio

Wp : normal force per particle

Fd : drag force

η: viscosity

Relative indentation (𝛿

𝑅) in the contact zone at 3 mm s-1 – Hertz Theory

deformation factor

WPM EMP

22

Page 23: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

EMP for fat reduction purposes

• Starch-based EMP provides excellent lubrication yet protectsthe oil droplets from complete coalescence (via shear and α-amylase).

• The EMPs can serve as unique delivery system for lipophilliccompounds/ saturated fat reduction

WPM EMP

23

Page 24: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Surface roughness: 3D Printing

Conclusions from mouth case studies

• Soft tribology offers a great opportunity to understand oral lubrication mechanisms of microgels and other fat mimetic particles

• Microgels shows promise for lowering friction coefficient in soft contacts, highly dependent upon volume fraction of microgels and oil content

• Lubrication is a systems property, so work is ongoing on designing bio-relevant surfaces to better replicate human tongue and palate with accurate surface roughness & modulus

24

Page 25: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Final case study on use of microgels - gut

Whey protein microgelparticles (WPM)

1

Emulsion microgelparticles (starch)

2

Fusion of WPM at the interface

3

25

Page 26: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Sarkar et al., (2019). Advances in Colloid and Interface Science, Volume 263, Pages 195-211

Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247

Orogenic displacement of interfacial film

Bile salts

pH 7

Lipase-colipase,

Trypsin,

Chymotrypsin

Intestine

Lipid digestion is an interfacial process

26

Page 27: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

oil

water

E =r2 (1-cos)2

e.g. θ ~30○, r =10 nm, =32mN/m

Desorption energy ~ 10, 000kBT

Hypothesis: Microgel particles at O/W interface will not get displaced by bile salts and eventually delay lipid digestion

Binks, (2002). Current Opinion in Colloid & Interface Science, Volume 7, Pages 21-41.

Oil

θ

r

Hypothesis microgels at the interface

27

Page 28: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

+ 20 wt% sunflower oil

WPM (1 wt%, pH 7.0,

20 mM PBS)

Heat 90○C

Scale 20 µm

Emulsions d43

(μm)

Adsorption

efficiency

(%)

Surface

coverage

(mg/ m2)

WPM 42.9 33 14.0

HT WPM 42.8 55 23.6

HT-WPM emulsion

Oil

HT-WPM emulsion (fused)2

Fused network

WPM emulsion

Oil

WPM emulsion (intact)1

WPM

Interfacial tuning

28

Page 29: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

0

10

20

30

40

50

0 30 60 90 120 150 180

% F

FA

Digestion time (min)

Lipid

LipidWNaOHNaOH

W

MMVFFA

2100%

tdnd

Dk

dt

d

M

denMax

en

en

w

1

2

6

2

0

0

0

3

0

wenen

Max

en

MnkD

dt

62ln 0

2

021

Intestinal digestion

29

Page 30: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

Interface k (μmol s-1 m-2) Φmax (%) t1/2

(min)

Protein 46 2.8

WPM 0.62 20 16.52

HT-WPM 0.18 16 44.44WPMBile

Lipase

Pickering emulsion

Oil

Heat treated (fused) Pickering emulsion

HT-WPM

Delaying lipid digestion - tuning interface

WPM: Gap dimension between the WPM particles, arranged on the

triangular lattice, is 3 − 1 𝑑0/2

≈ 110 nm, for particles of size d0 = 300 nm >>> 2.5 nm lipase/colipase

30

Page 31: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

• Engineering O/W interface with microgel-based Pickering stabilizers and tuning them with thermal treatment has implications on delaying digestion if gastric digestion is bypassed.

• Use of non-proteinaceous biopolymeric particles or suitable coating at interface is needed to avoid digestion during gastric regime.

Conclusions from the gut case study

31

Page 32: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

• Soft colloidal microgels are unique systems with fascinating bio-functionalities that distinguish them from classical colloids.

• Combination of deformability and penetrability – make them versatile in broad area of biological applications

• Shear thinning properties, lubrication aspects, performance at interface, encapsulating agent: key area for food applications

Overall summary: Microgel Bio-functionality

32

Page 33: Dr. Anwesha SarkarAdvances in Colloid and Interface Science, Volume 263, Pages 195-211 Mackie et al. (2000), Langmuir, Volume 16, Pages 2242-2247 Orogenic displacement of interfacial

The European Research Council is acknowledged for its financial support (Funding scheme, ERC Starting Grant 2017, Project N○ 757993, LubSat) for this work

Acknowledgements

33