3
Downregulation and upregulation From Wikipedia, the free encyclopedia Jump to: navigation , search This article includes a list of references , related reading or external links , but its sources remain unclear because it lacks inline citations . Please improve this article by introducing more precise citations. (August 2009) Downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external variable. An increase of a cellular component is called upregulation. An example of downregulation is the cellular decrease in the number of receptors to a molecule, such as a hormone or neurotransmitter , which reduces the cell's sensitivity to the molecule. This phenomenon is an example of a locally acting negative feedback mechanism. An example of upregulation is the increased number of cytochrome P450 enzymes in liver cells when xenobiotic molecules such as dioxin are administered (resulting in greater degradation of these molecules). Most receptor agonists downregulate their respective receptor(s), while most receptor antagonists upregulate their respective receptor(s). The disequilibrium caused by these changes often causes withdrawal when the long-term use of a medication or drug is discontinued. Upregulation and downregulation can also happen as a response to toxins or hormones. An example of upregulation in pregnancy, is hormones cause cells in the uterus to become more sensitive to oxytocin . Contents 1 Receptor downregulation o 1.1 Mechanism: The Insulin Receptor o 1.2 Cases o 1.3 Reversal

Downregulation and Upregulation

Embed Size (px)

DESCRIPTION

fefe rgerg ege rerg gegwt4wt wrt5y ukjr5 r5u erurtyeg erg

Citation preview

Page 1: Downregulation and Upregulation

Downregulation and upregulationFrom Wikipedia, the free encyclopediaJump to: navigation, search

This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please improve this article by introducing more precise citations. (August 2009)

Downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external variable. An increase of a cellular component is called upregulation.

An example of downregulation is the cellular decrease in the number of receptors to a molecule, such as a hormone or neurotransmitter, which reduces the cell's sensitivity to the molecule. This phenomenon is an example of a locally acting negative feedback mechanism.

An example of upregulation is the increased number of cytochrome P450 enzymes in liver cells when xenobiotic molecules such as dioxin are administered (resulting in greater degradation of these molecules).

Most receptor agonists downregulate their respective receptor(s), while most receptor antagonists upregulate their respective receptor(s). The disequilibrium caused by these changes often causes withdrawal when the long-term use of a medication or drug is discontinued.

Upregulation and downregulation can also happen as a response to toxins or hormones. An example of upregulation in pregnancy, is hormones cause cells in the uterus to become more sensitive to oxytocin.

Contents 1 Receptor downregulation

o 1.1 Mechanism: The Insulin Receptor o 1.2 Cases o 1.3 Reversal

2 See also 3 References 4 External links

Receptor downregulation

Mechanism: The Insulin Receptor

The process of downregulation occurs when there are elevated levels of the hormone insulin in the blood. When insulin binds to its receptors on the surface of a cell, the hormone receptor complex undergoes endocytosis and is subsequently attacked by intracellular lysosomal enzymes. The internalization of the insulin molecules provides a pathway for degradation of the hormone as well as for regulation of the number of sites that are available for binding on

Page 2: Downregulation and Upregulation

the cell surface. At high plasma concentrations, the number of surface receptors for insulin is gradually reduced by the accelerated rate of receptor internalization and degradation brought about by increased hormonal binding. The rate of synthesis of new receptors within the endoplasmic reticulum and their insertion in the plasma membrane do not keep pace with their rate of destruction. Over time, this self-induced loss of target cell receptors for insulin reduces the target cell’s sensitivity to the elevated hormone concentration. The process of decreasing the number of receptor sites is virtually the same for all hormones; it varies only in the receptor hormone complex.

Cases

This process is illustrated by the insulin receptor sites on target cells in a person with type 2 diabetes. Due to the elevated levels of blood glucose in an overweight individual, the β-cells (islets of Langerhans) in the pancreas must release more insulin than normal to meet the demand and return the blood to homeostatic levels. The near-constant increase in blood insulin levels results from an effort to match the increase in blood glucose, which will cause receptor sites on the liver cells to downregulate and decrease the number of receptors for insulin, increasing the subject’s resistance by decreasing sensitivity to this hormone. There is also a hepatic decrease in sensitivity to insulin. This can be seen in