21
Download TM PDF Download SW PDF

Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 2: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 1 

Meeting 6: Meet & Math! 

● Tuesday 9:00 AM - 9:50 AM ○ Place: UCI NS 2 1201 (Marco Forester comes)

● Tuesday 2:45 PM - 3:45 PM ○ Place: SANTA ANA : Carr Intermediate School

● Wednesday: 2:00 PM - 2:45 PM ○ Place 1: UCI, NS2 1201 (Lathrop comes) ○ Place 2: UCI, PSLC 1400 : (Villa comes) 

Tuesday Morning (50 minutes) February 12

● Crash course: 8:45 - 9:00 in the same room ● Activity 1 : 45 minutes ● Weekly Youth Survey : 5 minutes

Wednesday Afternoon (80 minutes) February 13

● Activity 1 : 40 minutes ● Activity 2 : 20 minutes ● Stock market Game : 20 minutes ● Weekly Youth Survey : 5 minutes

Start at 3:35 Tuesday Afternoon (50 minutes) February 12

● Activity 1 : 45 minutes ● Weekly Youth Survey : 5 minutes

 

Page 3: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 2 

ACTIVITY 1: CHOCOLATE Time: 40 minutes 

Page 4: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 3 

Page 5: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 4 

Page 6: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 5 

Page 7: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 6 

 

ACTIVITY 1: CHOCOLATE 

Description  In this task, students take on a project of designing chocolate boxes with certain goals                             in mind. During this project, students will develop spatial reasoning and finding area                         strategies (including predictions and estimations), develop counting strategies for                 pairs and triples, and will explore combinatorics of different shapes that can be made,                           recognizing when two shapes that seem different are really “the same” (under a rigid                           motion such as a rotation). 

Learning Goals 

● I can successfully estimate how much of the area of a region is filled out by a                                 certain part of it, and explain my reasoning. 

● I can count the number of objects using strategies such as counting simple                         objects and multiplying. 

Materials  ● Student Workbook ● Tokens for flavors 

Set-up  ● Have students read the problem individually. ● Once this is done, ask one or more students to explain the problem using their                             

own words . ○ Guide them to be precise in their explanation (but that does not mean                         

using the same words as the statement, in fact, encourage students to                       use their own words). 

● Encourage kids to work in groups of 2 or 3. If desired, and depending on your                               group, you may also do part of the activity all together, leading with questions. If                             that is the case, make sure to ask questions to all kids, and not just 1 or 2. 

My solution  In this space, write your solution to the problem (working out details, not just the final                               answers). Use as many visual representations as possible! Also, write discussion                     questions: these are questions that help students, at the end, consolidate the math                         learning.  

My solution 

 

           

Page 8: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 7 

                     

 

My discussion questions (some examples are included)  

● How would this problem change if we had only five numbers 1-5? How about                           numbers 1-10? Explain your thoughts.  

● _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   

 

● _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                   

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   

 

Productive discussion 

This section gives you examples of prompts, cues and questions that you may ask                           students during or at the end of the problem solving process.  Before you continue, please watch: 

Page 9: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 8 

 

Communication in the Teaching and Learning of Math More Math 192 Series Videos: ( www.math.uci.edu/mathceo/teachingvideos.php ) 

 ● If some groups are not able to “start” (overwhelmed) 

○ “Can you give some examples of superflavors that you can think of? How                         can you represent them?” 

■ It is important that students understand the objects that we are                     counting in the problem and how to express them. They should                     generate plenty of examples.  

● If you see two students who seem shy or are working in isolation ○ “Hey Alan and Bianca, I see that you are working alone, maybe you want                           

to work together for a while? I think you can learn a lot from each other”                               “Melissa, I think you can give Nora great advice in this part!” 

■ Don’t force them to pair up: instead, you should invite them to do                         so and provide at least one reason for it .  

● If you see a student working in isolation who seems quite comfortable figuring                         out the problem 

○ “Linda, would you like to present (all or part) of your solution to these                           students and take questions from them” ; “I see that you have the                         answers, but it’s also important that you can talk and convince others”  

■ This can be especially useful to spark communication skills in                   students who do not see themselves as “good communicators”                 but are confident in math.  

● Scaffolding / testing for understanding ○ “Is CVO the same as VCO, as superflavors? Why or why not? Convince                         

me!” ■ It’s important that students realize that they are choosing a set of                       

2 numbers, and so that the order does not matter.  

● If you see a wrong solution ○ “I’m curious why you got this many options. 

■ Notice the positive language, non-judgemental, but critical in a                 good way. It’s important to inspect the process and not just say                       that the answer is wrong and correct it (which is tempting but will                         not result in meaningful learning from the student, since you will                     not reach the “source of the mistake”). 

Teaching  tips 

● It’s a good idea to begin this activity with some discussion about the problem, in which every student can contribute a little bit. Challenge students to explain the problem in their own words, and to define the key concepts such as superflavor, and give the restrictions for placing chocolates in the boxes. 

● In part B, you may also encourage kids on using the result in A to find the                                 answer to how many superflavors in total there are. You may ask: from the                           computation in A, which superflavors we did not count? (those NOT having C                         

Page 10: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 9 

nor V). What is a good way to count them? (Students should realize that there                             are not too many; there are only 4 of them.)  

 

Solutions (1 CHOCOLATE) 

 A) Find the number of superflavors that contain cinnamon or vanilla, and list them. Don’t forget to list                                 

the superflavors that contain both cinnamon and vanilla.  Solution: recall that there are 6 ingredients: C : Cinnamon V : Vanilla O : Orange H : Hazelnut P : Pistachio S : Strawberry  Each superflavor has 3 such ingredients (and the order in which we use them is not important:                                 for example CVO is the same superflavor as VOC or COV).  To list the total number of superflavors that contain C or V, we can create the following 3 groups:  GROUP 1: Superflavors that have both C and V GROUP 2: Superflavors that have C but NOT V GROUP 3: Superflavors that have V but NOT C  Since these 3 groups cannot share a common superflavor and these 3 groups are really all                               options of superflavors according to the question, then we can find the number of superflavors                             in each group, and add them, to find the answer.  GROUP 1: since we choose C and V, there is now a choice of 1 last ingredient from 4 options (O,                                         H, P, S). This gives 4 superflavors: CVO, CVH, CVP and CVS.  GROUP 2: since we choose C, there is now a choice of 2 ingredients to complete the superflavor.                                   Since V is forbidden, we have a stock of 4 ingredients: O, H, P, S. We have 6 choices: OH, OP, OS,                                           HP, HS and PS. Which gives: COH, COP, COS, CHP, CHS and CPS.   GROUP 3: This is the same reasoning as in GROUP 2: there are 6 options.  So there are 16 (4+6+6) superflavors that contain C or V (or both).  

 

Page 11: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 10 

  

B) i) Do you agree with Lucy’s idea? Why or why not? Solution: Yes, Lucy’s idea is valid and will work well. The reason why this works is that every                                   superflavor will either be in the first list (if it contains vainilla) or in the second one (if it does not)                                         and no superflavor can be in both lists (since if its in one list, then it won’t be in the other). This                                           way, when we do the math and add, we are counting all superflavors, and we are not counting                                   them twice.  Note: It is important to let students elaborate an explanation of this in their own words. Don’t                                 allow them to just say. Yes, it is obvious. Even if students seem to genuinely believe that Lucy is                                     right, the skill here for students is to critique the reasoning of others and find a way to support                                     arguments. This is not necessarily an easy task, and requires practice.  ii) Use the strategy behind the conversation, to find the total number of superflavors.  Solution : X = number of superflavors that contain vainilla: 10 (from the solution in A) Y = number of superflavors that do not contain vainilla: this can be found in several different                                 ways: one can think that we now have only 5 ingredients available (as “vanilla has been                               forbidden”. To choose a superflavor one can, instead of saying which 3 ingredients will be used,                               say which 2 ingredients will not be used (from C, S, P, O, H). There are 5x4/2 = 10 ways to do                                           that: (CS, CP, CO, CH, SP, SO, SH, PO, PH, OH). So Y = 10  

Page 12: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 11 

So adding, one gets that there are 20 superflavors in total.   

C) What is the maximum number of chocolates that we can fit in a box?  Solution : recall that chocolate sizes range from 1 to 4 hexes. By counting, we see that there are                                   30 complete hexes inside the chocolate box. So the maximum number of chocolates that can fit                               the box is 30 (all as small as possible).  

D) How many ways are there to fill the box completely if we only use chocolates of size 2-hexes                                   and 3-hexes?  Solution : To answer this question, we can list all options in terms of how many size-2                               chocolates, in increasing order:  

● Zero 2-size chocolates: this means 10 3-size chocolates ● 3 2-size chocolates: this means using also 8 3-size chocolates ● 6 2-size chocolates and 6 3-size chocolates ● 9 2-size chocolates and 4 3-size chocolates ● 12 2-size chocolates and 2 3-size chocolates ● 15 2-size chocolates and zero 3-size chocolates 

 So there are 6 ways to do this (in terms of the quantities of each size, and not on the geometric                                         configuration, of course). Note that the number of 2-size chocolates must be a multiple of 3,                               because we need to fill out a total of 30 hexes and so the number of hexes to be filled out by                                           3-sized chocolates must be a mutiple of 3.  For example: if we chose 5 2-sized chocolates, that would yield 10 hexes (not a multiple of 3),                                   and so 30 - 10 = 20 (also not a multiple of 3), which cannot be covered by an integer number of                                           3-sized hexes.  

E) Find at least two different ways to fill out the box completely using a total of 8 chocolates.                                   Indicate how many chocolates of each size you use.   Solution : Since there are 30 hexes in total and we need to fill out the chocolate box completely,                                   essentially we are looking at finding four positive integers adding up to 8, to fill the parentheses                                 in the following expression, so that it equals 30:  1( ) + 2( ) + 3( ) + 4( )  There are several ways to do this, which we can list as rows of the table that appears in the                                       problem:   

Page 13: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 12 

# of chocolates of size 1 hex 

# of chocolates of size 2 hexes 

# of chocolates of size 3 hexes 

# of chocolates of size 4 hexes 

0  0  2  6 

0  1  0  7 

 Note that having 5 chocolates of size 4 (or less) is impossible here, since you would then need 3                                     chocolates of size 3 or less to cover 10 hexes, which is impossible since 9 < 10. So only these                                       two ways are possible  

F) If we fill the box completely with chocolates, approximately what percentage of the area of the box will be filled? Estimate and justify your answer. 

 

  Solution : There are several ways to make this estimation. One such way is the following: for                               each incomplete hex inside the box, we give a value of 0, 1, 2, 3, 4 or 5 depending on whether we                                           estimate it to be close to 20%, 40%, 60%, 80% or 100% of the hex. In other words, how much of                                         the hex is complete. For example, a hex that has very little of it inside the box would get a 0 (or                                           maybe a 1). This is not “exact science” so to speak, but it does not matter.  Values:  > Top center hex: 5 > Bottom center: 3 

Page 14: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 13 

> Right hexes (12 of them): 2, 1, 2, 1, 2, 1, 4, 5, 5, 6, 2, 0 > Left hexes (12 of them): by symmetry, we get the same values: 2, 1, 2, 1, 2, 1, 4, 5, 5, 6, 2, 0  We add these 26 values: 5+3+ 2x(2+1+2+1+2+1+4+5+5+6+2+0) = 8 + 2x(31) = 70.  So the joint area “contribution” of these incomplete hexes is 70/5 (we divide by 5 since that was                                   the scale we chose), which is 14.  Since there are 30 full hexes, then an area of 30 out of 44 is filled up, which is close to 30/45 or                                             2/3. So 65% would be a good estimation. 

              

Page 15: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 14 

ACTIVITY 2: SIDEWALK STONES Time: 20 - 30 minutes 

 

 

  

Page 16: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 15 

ACTIVITY 2: SIDEWALK STONES 

Description  In this task, students are given the first few instances of a geometric pattern that is                               growing, having white and black squares. The area is also growing. Students need to                           analyze this pattern and find expressions, for the general case, for the number of white                             and black squares. 

Materials  ● Student workbook 

Set-up  You may keep the same groups as before. But this time, allow for 2 minutes of individual work for question A). 

My solution  In this space, write your solution to the problems (working out details, not just the final                               answers). Use as many visual representations as possible! Also, write discussion                     questions: these are questions that help students, at the end, consolidate the math                         learning. 

My solution 

 

                            

Page 17: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 16 

     

 

My discussion questions (some examples are included)  

● What are some ways in which we can create new “tied” situations, from the                           original ones? Explain.  

● _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                     

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                     

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 

● _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                     

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _                                                                                                     

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Productive discussion 

This section gives you examples of prompts, cues and questions that you may ask                           students during or at the end of the problem solving process.  

● If some groups are not able to “start” (overwhelmed) ○ “Describe the first figures. What do you see? What do you notice? 

■ This can help you find out to what extent the students                     comprehend the situation and the pattern growth, and go from                   there.  

● If you see two students who seem shy or are working in isolation ○ “Hey Alan and Bianca, I see that you are working alone, maybe you want to                             

work together for a while? I think you can learn a lot from each other”  ■ At this point, you may choose to keep the same groups from the                         

previous activity, but you may choose to form new groups                   strategically (to prevent some distractions, or to pair students of                   different mathematical backgrounds).  

● If you see a student working in isolation who seems quite comfortable figuring                         out the problem 

○ “Linda, would you like to present (all or part) of your solution to these                           students and take questions from them” ; “I see that you have the answers,                           but it’s also important that you can talk and convince others”. 

○ I see that you made some interesting discoveries related to how the                       number of squares increases. Please share it! 

Page 18: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 17 

■ Insist on this, but still be very gentle about it. If the discussion in                           activity 1 was “dominated” by only a few students, focus on other                       students. Don’t let anyone behind!  

● Scaffolding / testing for understanding ○ “Come up with some values of ‘forces’ of each animal that would balance                         

the first picture” ■ Although trial and error may not be the ideal way to solve the                         

problem, using this strategy in the beginning may be helpful for                     students.  

● If you see a wrong solution ○ “I’m curious why you got this number of squares. Guide me through it! I                           

want to understand what you were thinking. Can you please check you                       formula in the first few cases?” 

■ Notice the positive language, non-judgemental, but critical in a                 good way. It’s important to inspect the process and not just say                       that the answer is wrong and correct it (which is tempting but will                         not result in meaningful learning from the student, since you will                     not reach the “source of the mistake”. 

 

Teaching tips  ● It is really helpful to encourage students to describe the patterns in their own                           words, providing some help along the way. It will help you see any                         misconceptions students may have, and will help students develop                 mathematical language useful for describing patterns. You can provide some                   models for talking about patterns. Make sure students use precise terms, which                       may not be formal at first. 

● It may be helpful to ask students to draw pattern 4 or even 5. Also you may ask                                   students to sketch how, say, pattern 20 would look like (so not draw the exact                             picture, as it would take too long to draw each small square), but to describe the                               size of each corner square, and the size of the center square, sketching the                           picture. 

● Encourage students to describe what they notice in the pictures, so that they can                           recognize the different attributes of the shape: the size or area of the corner                           squares, the side length of the center square, the total grey area inside, the total                             area of the corners, etc. This should lead to students making a table to keep                             track of these values and finding patterns. 

○ When students make the table, press them for details on the relation                       between a row and the next one, and also to relate different columns, as                           the values in some columns will directly depend on the values on other                         columns. 

   

Page 19: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 18 

 

Solutions (2: SIDEWALK STONES) 

 2) FIGURE OUT THE NUMBER OF THE PATTERN WITH 841 GRAY SQUARES  

  Solution: We present two different possible methods:  Method 1:   

● Pattern 1 has a center gray square of side 3 and 4 corner gray squares of side 1 ● Pattern 2 has a center gray square of side 5 and 4 corner gray squares of side 2 ● Pattern 3 has a center gray square of side 7 and 4 corner gray squares of side 3 ● ... 

 We notice that the side of the corner gray squares grows by 1 square, and it is equal to the                                       corresponding number of the pattern.   In contrast, the side of the center gray square is always an odd number and it grows by 2 each                                       time. (In other words, and using variables to be precise, it is of the form 2 n +1, where n is the                                       number of the pattern).  To put all this information together, we can make a table where we list the following values:  

Number of pattern 

Side of corner gray square 

Side of center gray 

square 

Area of center gray 

square 

Total area of the four corner gray 

squares 

Total “grey” area 

Page 20: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 19 

1  1  3  32 = 9   4 × 12 = 4   9 + 4 = 13 

2  2  5  552 = 2   64 × 22 = 1   25 + 16 = 41 

3  3  7  972 = 4   64 × 32 = 3   49 + 36 = 85 

 So far, the information in the first 3 columns can be read off from the data. The information                                   that appears in the other columns can be computed.   To fill out new rows of the table (patterns 4, 5, 6, etc.), students must notice that columns 1                                     and 2 grow by 1 and column 3 grows by 2. This will help them compute the remaining                                   columns.   To get all the way to 841 total gray squares, they must arrive to pattern 10, where we get:   

Number of pattern 

Side of corner gray 

square 

Side of center gray 

square 

Area of center gray 

square 

Total area of the four 

corner gray squares 

Total “grey” area 

10  10  21  1 412 2 = 4   004 0× 1 2 = 4   441 + 400 = 841 

 Of course students don’t really need to fill out all rows up to pattern 10; they can estimate that                                     they will get to 841 in a large pattern, say 12, then see that they got a larger number, and go                                         down. This tracking ability is important and should be stressed out: no need to go 1 by 1.  Method 2  In method 2, we use algebra. Do not use or illustrate this method, unless the students are 8                                   graders or very advanced students that are prepared for this type of formal reasoning. Or, you                               may also explore this method after doing the table in method 1  Essentially, what we do here is generalize the table in method 1:  

Number of pattern 

Size of corner gray 

square 

Size of center gray 

square 

Area of center gray 

square 

Total area of the four corner gray squares 

Total “grey” area 

N  N  2N + 1  2N 1)( + 2   4 × N 2   +2N 1)( + 2

Page 21: Download SW PDFcertain part of it, and explain my reasoning. ... I f yo u s e e a s t u d e n t w o r k i n g i n i s o l a t i o n w h o s e e m s q u i t e c o m f o r t a b l e

UCI MATH CEO - WINTER 2019 MEETING 6 20 

4 × N 2  

 

We compute: (this computation can help if one wants to use    N N (2N )+ 1 2 + 4 × N2

= 8 2 + 4 + 1                    quadratic formula). Note that his answers Question 1.  Set this expression equal to 841 and find for which positive integer N, the equation is true.  Using trial and error or using the quadratic formula, we get N=10.  3) FIGURE OUT THE NUMBER OF WHITE SQUARES  Method 1  

● For Pattern 1, the side of the big square is 5 (1+3+1) ● For Pattern 2, the side of the big square is 9 (2+ 5+2) ● For Pattern 3, the side of the big square is 13 (3+ 7+3) 

 Notice how this number grows by 4 at each step. That way, we can predict these values:  Pattern 4: 17 Pattern 5: 21 Pattern 6: 25 Pattern 7: 29 Pattern 8: 33 Pattern 9: 37 Pattern 10: 41  So the total area at step (pattern) 10 is .1 6814 2 = 1  We subtract the number of gray squares (841). We get 840.   Method 2 For pattern n, the side of the big square is (2n+1) + n + n = 4n+1, so the total area is .4n )( + 1 2   When N=10, the total area is .1 6814 2 = 1  Again, subtract the number of gray squares (841). You get 840.