49
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: t test of a hypothesis relating to a regression coefficient Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 2). [Teaching Resource] © 2012 The Author This version available at: http://learningresources.lse.ac.uk/128/ Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms. http://creativecommons.org/licenses/by-sa/3.0/ http://learningresources.lse.ac.uk/

Dougherty - Hyp Testing

Embed Size (px)

DESCRIPTION

Dougherty

Citation preview

  • Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: t test of a hypothesis relating to a regression coefficient

    Original citation:

    Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 2). [Teaching Resource]

    2012 The Author

    This version available at: http://learningresources.lse.ac.uk/128/

    Available in LSE Learning Resources Online: May 2012

    This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms. http://creativecommons.org/licenses/by-sa/3.0/

    http://learningresources.lse.ac.uk/

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    0

    The diagram summarizes the procedure for performing a 5% significance test on the slope coefficient of a regression under the assumption that we know its standard deviation.

    1

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    0

    This is a very unrealistic assumption. We usually have to estimate it with the standard error, and we use this in the test statistic instead of the standard deviation.

    2

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    0

    Because we have replaced the standard deviation in its denominator with the standard error, the test statistic has a t distribution instead of a normal distribution.

    3

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    0 0

    Accordingly, we refer to the test statistic as a t statistic. In other respects the test procedure is much the same.

    4

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

    5% significance test: reject H0: 2 = 2 if t > tcrit or t < tcrit

  • 5

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    We look up the critical value of t and if the t statistic is greater than it, positive or negative, we reject the null hypothesis. If it is not, we do not.

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    5% significance test: reject H0: 2 = 2 if t > tcrit or t < tcrit

    0 0

  • 6

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    Here is a graph of a normal distribution with zero mean and unit variance

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    normal

  • 7

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    A graph of a t distribution with 10 degrees of freedom (this term will be defined in a moment) has been added.

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    normal t, 10 d.f.

  • 8

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    When the number of degrees of freedom is large, the t distribution looks very much like a normal distribution (and as the number increases, it converges on one).

    normal t, 10 d.f.

  • 9

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    Even when the number of degrees of freedom is small, as in this case, the distributions are very similar.

    normal t, 10 d.f.

  • 10

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    Here is another t distribution, this time with only 5 degrees of freedom. It is still very similar to a normal distribution.

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    normal

    t, 5 d.f. t, 10 d.f.

  • 11

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    So why do we make such a fuss about referring to the t distribution rather than the normal distribution? Would it really matter if we always used 1.96 for the 5% test and 2.58 for the 1% test?

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    normal t, 10 d.f. t, 5 d.f.

  • 12

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    The answer is that it does make a difference. Although the distributions are generally quite similar, the t distribution has longer tails than the normal distribution, the difference being the greater, the smaller the number of degrees of freedom.

    0

    0.1

    0.2

    0.3

    0.4

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    normal t, 10 d.f. t, 5 d.f.

  • 13

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    As a consequence, the probability of obtaining a high test statistic on a pure chance basis is greater with a t distribution than with a normal distribution.

    normal

    0

    0.1

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    t, 10 d.f. t, 5 d.f.

  • 14

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    This means that the rejection regions have to start more standard deviations away from zero for a t distribution than for a normal distribution.

    normal

    0

    0.1

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    t, 10 d.f. t, 5 d.f.

  • 15

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    The 2.5% tail of a normal distribution starts 1.96 standard deviations from its mean.

    normal

    0

    0.1

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-1.96

    t, 10 d.f. t, 5 d.f.

  • 16

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    The 2.5% tail of a t distribution with 10 degrees of freedom starts 2.33 standard deviations from its mean.

    normal

    0

    0.1

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-2.33

    t, 10 d.f. t, 5 d.f.

  • 17

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    That for a t distribution with 5 degrees of freedom starts 2.57 standard deviations from its mean.

    normal

    0

    0.1

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6-2.57

    t, 10 d.f. t, 5 d.f.

  • 18

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    For this reason we need to refer to a table of critical values of t when performing significance tests on the coefficients of a regression equation.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 19

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    At the top of the table are listed possible significance levels for a test. For the time being we will be performing two-sided tests, so ignore the line for one-sided tests.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 20

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    Hence if we are performing a (two-sided) 5% significance test, we should use the column thus indicated in the table.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 21

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    The left hand vertical column lists degrees of freedom. The number of degrees of freedom in a regression is defined to be the number of observations minus the number of parameters estimated.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

    Number of degrees of freedom in a regression = number of observations number of parameters estimated.

  • 22

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    In a simple regression, we estimate just two parameters, the constant and the slope coefficient, so the number of degrees of freedom is n - 2 if there are n observations.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 23

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    If we were performing a regression with 20 observations, as in the price inflation/wage inflation example, the number of degrees of freedom would be 18 and the critical value of t for a 5% test would be 2.101.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 24

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    Note that as the number of degrees of freedom becomes large, the critical value converges on 1.96, the critical value for the normal distribution. This is because the t distribution converges on the normal distribution.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    5% significance test: reject H0: 2 = 2 if t > tcrit or t < tcrit

    0 0

    Hence, referring back to the summary of the test procedure,

    25

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    5% significance test: reject H0: 2 = 2 if t > 2.101 or t < 2.101

    0 0

    we should reject the null hypothesis if the absolute value of t is greater than 2.101.

    26

  • 27

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    If instead we wished to perform a 1% significance test, we would use the column indicated above. Note that as the number of degrees of freedom becomes large, the critical value converges to 2.58, the critical value for the normal distribution.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • 28

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    For a simple regression with 20 observations, the critical value of t at the 1% level is 2.878.

    t Distribution: Critical values of t

    Degrees of Two-sided test 10% 5% 2% 1% 0.2% 0.1% freedom One-sided test 5% 2.5% 1% 0.5% 0.1% 0.05%

    1 6.314 12.706 31.821 63.657 318.31 636.62 2 2.920 4.303 6.965 9.925 22.327 31.598 3 2.353 3.182 4.541 5.841 10.214 12.924 4 2.132 2.776 3.747 4.604 7.173 8.610 5 2.015 2.571 3.365 4.032 5.893 6.869 18 1.734 2.101 2.552 2.878 3.610 3.922 19 1.729 2.093 2.539 2.861 3.579 3.883 20 1.725 2.086 2.528 2.845 3.552 3.850 600 1.647 1.964 2.333 2.584 3.104 3.307 1.645 1.960 2.326 2.576 3.090 3.291

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    s.d. of b2 known

    discrepancy between hypothetical value and sample estimate, in terms of s.d.:

    s.d.

    022 bz

    5% significance test: reject H0: 2 = 2 if z > 1.96 or z < 1.96

    s.d. of b2 not known

    discrepancy between hypothetical value and sample estimate, in terms of s.e.:

    s.e.

    022 bt

    1% significance test: reject H0: 2 = 2 if t > 2.878 or t < 2.878

    0 0

    So we should use this figure in the test procedure for a 1% test.

    29

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    We will next consider an example of a t test. Suppose that you have data on p, the average rate of price inflation for the last 5 years, and w, the average rate of wage inflation, for a sample of 20 countries. It is reasonable to suppose that p is influenced by w.

    30

    Example: uwp 21

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    31

    Example: uwp 21

    You might take as your null hypothesis that the rate of price inflation increases uniformly with wage inflation, in which case the true slope coefficient would be 1.

    1:;1: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    32

    Example: uwp 21

    Suppose that the regression result is as shown (standard errors in parentheses). Our actual estimate of the slope coefficient is only 0.82. We will check whether we should reject the null hypothesis.

    )10.0()05.0(82.021.1 wp

    1:;1: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    33

    Example:

    .80.110.0

    00.182.0)(s.e. 2022

    bb

    t

    uwp 21

    We compute the t statistic by subtracting the hypothetical true value from the sample estimate and dividing by the standard error. It comes to 1.80.

    )10.0()05.0(82.021.1 wp

    1:;1: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    34

    Example:

    .80.110.0

    00.182.0)(s.e. 2022

    bb

    t

    18freedom of degrees;20 n

    uwp 21

    There are 20 observations in the sample. We have estimated 2 parameters, so there are 18 degrees of freedom.

    )10.0()05.0(82.021.1 wp

    1:;1: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    35

    Example:

    )10.0()05.0(82.021.1 wp

    .80.110.0

    00.182.0)(s.e. 2022

    bb

    t

    18freedom of degrees;20 n101.2%5,crit t

    1:;1: 2120 HHuwp 21

    The critical value of t with 18 degrees of freedom is 2.101 at the 5% level. The absolute value of the t statistic is less than this, so we do not reject the null hypothesis.

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    36

    uXY 21

    In practice it is unusual to have a feeling for the actual value of the coefficients. Very often the objective of the analysis is to demonstrate that Y is influenced by X, without having any specific prior notion of the actual coefficients of the relationship.

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    37

    uXY 21

    In this case it is usual to define 2 = 0 as the null hypothesis. In words, the null hypothesis is that X does not influence Y. We then try to demonstrate that the null hypothesis is false.

    0:;0: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    38

    )(s.e.)(s.e. 22

    2

    022

    bb

    bb

    t

    uXY 21

    For the null hypothesis 2 = 0, the t statistic reduces to the estimate of the coefficient divided by its standard error.

    0:;0: 2120 HH

  • t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    39

    )(s.e.)(s.e. 22

    2

    022

    bb

    bb

    t 0:;0: 2120 HH

    uXY 21

    This ratio is commonly called the t statistic for the coefficient and it is automatically printed out as part of the regression results. To perform the test for a given significance level, we compare the t statistic directly with the critical value of t for that significance level.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    40

    Here is the output from the earnings function fitted in a previous slideshow, with the t statistics highlighted.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    41

    You can see that the t statistic for the coefficient of S is enormous. We would reject the null hypothesis that schooling does not affect earnings at the 0.1% significance level without even looking at the table of critical values of t.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    42

    The t statistic for the intercept is also enormous. However, since the intercept does not hve any meaning, it does not make sense to perform a t test on it.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    43

    The next column in the output gives what are known as the p values for each coefficient. This is the probability of obtaining the corresponding t statistic as a matter of chance, if the null hypothesis H0: = 0 is true.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    44

    If you reject the null hypothesis H0: = 0, this is the probability that you are making a mistake and making a Type I error. It therefore gives the significance level at which the null hypothesis would just be rejected.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    45

    If p = 0.05, the null hypothesis could just be rejected at the 5% level. If it were 0.01, it could just be rejected at the 1% level. If it were 0.001, it could just be rejected at the 0.1% level. This is assuming that you are using two-sided tests.

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    46

    In the present case p = 0 to three decimal places for the coefficient of S. This means that we can reject the null hypothesis H0: 2 = 0 at the 0.1% level, without having to refer to the table of critical values of t. (Testing the intercept does not make sense in this regression.)

  • . reg EARNINGS S

    Source | SS df MS Number of obs = 540

    -------------+------------------------------ F( 1, 538) = 112.15

    Model | 19321.5589 1 19321.5589 Prob > F = 0.0000

    Residual | 92688.6722 538 172.283777 R-squared = 0.1725

    -------------+------------------------------ Adj R-squared = 0.1710

    Total | 112010.231 539 207.811189 Root MSE = 13.126

    ------------------------------------------------------------------------------

    EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

    -------------+----------------------------------------------------------------

    S | 2.455321 .2318512 10.59 0.000 1.999876 2.910765

    _cons | -13.93347 3.219851 -4.33 0.000 -20.25849 -7.608444

    ------------------------------------------------------------------------------

    t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

    47

    It is a more informative approach to reporting the results of test and widely used in the medical literature. However in economics standard practice is to report results referring to 5% and 1% significance levels, and sometimes to the 0.1% level.

  • Copyright Christopher Dougherty 2011.

    These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author.

    The content of this slideshow comes from Section 2.6 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oup.com/uk/orc/bin/9780199567089/.

    Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course 20 Elements of Econometrics www.londoninternational.ac.uk/lse.

    11.07.25