Upload
nuno-geirinhas
View
575
Download
62
Embed Size (px)
The Formwork Experts
Regulations, standardsand tables
Design loadings
Design values for Dokasystem parts
Calculation informationWall formwork
Calculation informationFloor formwork
Tables
DokaCalculation Guide
Auszugslänge zul. axiale Last a. Druck [kN]
L [m] min. L halb. L max. L Zug
6,0 - 7,440,0 40,0 27,8
7,1 - 8,540,0 38,2 24,3
8,4 - 9,840,0 35,6 21,7
9,7 - 11,140,0 31,7 19,0 40
10,8 - 12,240,0 27,8 16,1
11,9 - 13,334,2 24,1 13,4
13,2 - 14,627,1 21,5 12,2
14,5 - 15,920,8 17,5
9,5
12/2002 NK
The Formwork Experts2
© by Doka Industrie GmbHA-3300 Amstetten
Reprinting and reproduction of this Calculation Aids documentation - even in part - is notpermissible without the express permission of Messrs. Doka Industrie GmbH.
DIN Standards are reproduced with the permission of DIN Deutsches Institut für Normunge.V. Where reference is made to a DIN Standard, the most recently issued edition of the
respective Standard, as available from Beuth Verlag GmbH, Burggrafenstrasse 6, D-10787Berlin 30, shall be applicable.
We reserve the right to effect modifications in the interests of technical progress.
The Formwork Experts 3
TablesProfile tables Page 49Characteristic material values Page 62Frequently used formulae Page 66
Calculation information: Floor formworkBeam-forming supports Page 39Dokaflex 20 Page 41Tableforms d2 Page 42Tower frames d2 Page 43Supporting scaffold Aluxo Page 44Supporting scaffold Staxo Page 46
Calculation information: Wall formworkLarge-area formwork: Timber formwork beam Doka H 20 Page 22Steel walings Page 24Column formwork Page 26Supporting construction frames Page 28Struts Page 30Panel stabilisers Page 32Form ties Page 33Climbing formwork Page 34Folding platforms Page 36Shaft platforms Page 38
Design values for Doka system partsFormwork sheathing Page 11Timber beams Page 15Steel components Page 19
Design LoadingsVertical and horizontal loads Page 7Pressure of fresh concrete on vertical formwork Page 9
Regulations, Standards and TablesGeneral remarks Page 5
The Formwork Experts4
The Formwork Experts 5
General remarksRegulations and Standards
DIN 1052 - Structural use of timber / Ouvrages en bois
DIN 1055 - Design loads for buildings / Charges théoriques pour bâtiments
DIN 4420 - Service and working scaffolds / Echafaudages de service
DIN 4421 - Falsework / Echafaudages d'étaiment
DIN 4424 - Telescopic steel props / Montants télescopiques en acier avec un dispositifd'extension
DIN 18.202 - Tolerances in building / Tolerances dimensionelles dans la constructionimmobilière
DIN 18.215 - Timber form boards for concrete and reinforced concrete structures, standarddimension 0.50 m <x> 1.50 m, thickness = 21 mm / Panneaux de coffrage en bois,pour ouvrage en béton et en béton armé, dimensions standard: 0,50 m <x> 1,50m, epaisseur 21 mm
DIN 18.216 - Formwork ties / Tirants de coffrage
DIN 18.217 - Concrete surfaces and formwork surface / Surface de béton et film de coffrage
DIN 18.218 - Pressure of fresh concrete on vertical formwork / Pression de béton fraichementmalaxé sur des coffrages verticaux
DIN 18.800 - Structural steelwork / Construction métalliques
DIN 68791 - Large area shuttering panels of core plywood for concrete and reinforcedconcrete / Panneaux de coffrage à grande surface en contreplaqué latté oulamellé pour béton et béton armé
Accident prevention regulations of "Bauberufsgenossenschaft" employee safety organisation.
Tables
The Doka Calculation Aids contain the principal data needed for using Doka formwork systems.
Please see our brochures for detailed information and "how-to-use" instructions.
For help with special applicational problems, please see the following reference works:
Bautabellen (Construction Tables), Sträußler/KrapfenbauerPublishers: Verlag Jugend und Volk
Stahl im Hochbau (Steel in building construction),Verein Deutscher EisenhüttenleutePublishers: Verlag Stahleisen, Düsseldorf
Stahlbauprofile (Structural steel sections)Verein Deutscher EisenhüttenleutePublishers: Verlag Stahleisen, Düsseldorf
Bautechnische Zahlentafeln (Numerical tables for construction engineering), Wendehorst/MuthPublishers: B.G. Teubner, Stuttgart
Holzbau Taschenbuch (Timber construction pocket book), Halász/ScheerPublishers: Verlag Wilhelm Ernst & Sohn, Berlin
The Formwork Experts6
The Formwork Experts 7
Vertical and horizontal loadsVertical loads
Constant loadsSelf-weight of formwork according to DIN 1055 Part 1 - Design loadings for buildings.For weights of individual parts of the DOKA system, see DOKA brochures.
Effective loads (payloads)a) For supporting scaffolds:
DIN 4421 postulates a payload of 20 % of the self-weight of the fresh concrete on an area of 3.0 x 3.0 m(although not less than 1.5 kN/m² and not more than 5 kN/m²), and of 0.75 kN/m² for remaining areas.
b) For work and safety scaffoldings:As per DIN 4420 Part 1
Concrete loads(As per DIN 1055 Page 1- Design loadings for buildings)
Reinforced concrete 25 kN/m³Addition for fresh concrete 1 kN/m³
26 kN/m³
Horizontal loads
Pressure of fresh concretePressure of fresh concrete on vertical formwork - DIN 18.218
V100
For supporting scaffolds, 1/100 of the vertical loads should be assumed for the base of the formwork.
Wind loadsWind loads as per DIN 1055, Part 4
Wind speed Dynamic Wind pressure w for wall pressure q formwork (Cf = 1.3)
0 to 8 m above ground 28.3 m/s 102 km/h 0.5 kN/m² 0.65 kN/m²8 to 20 m above ground 35.8 m/s 129 km/h 0.8 kN/m² 1.04 kN/m²
20 to 100 m above ground 42.0 m/s 151 km/h 1.1 kN/m² 1.43 kN/m²over 100 m above ground 45.6 m/s 164 km/h 1.3 kN/m² 1.69 kN/m²
To obtain the wind pressure w, multiply the dynamic pressure q by the force coefficient cf (as a rule, thiswill be cf = 1.3 for wall formwork).
Horizontal loadssuch as tension loads from cables, thrust loads etc.
Lateral forces on balustradesHorizontal single load P = 0.3 kNin the most unfavourable position as defined by DIN 4420, Part 1
The Formwork Experts8
Pressure of fresh concrete onvertical formwork DIN 18 218
Consistency ranges Slump a Compaction vMeaning Symbol [cm]
stiff K1 - 1.45 to 1.26
plastic K2 ≤40 1.25 to 1.11
soft K3 41 to 50 1.10 to 1.04
Consistency ranges Slump a Compaction vMeaning Symbol [cm]
stiff KS - ≥1.20
plastic KP 35 to 41 1.19 to 1.08
soft KR 42 to 48 1.07 to 1.02
flowing KF 49 to 60 -
to DIN 1045, Edition1980to DIN 1045, Edition 1972and DIN 18218
Consistency ranges of fresh concrete
September 1980
Prerequisites:
Weight of fresh concrete 25 kN/m³Setting of concrete 5 hTight formworkCompaction with internal vibratorFresh concrete temperature +15°C
Columns
Walls
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.00
10
20
30
40
50
60
70
80
90
100
110
120
130
140
0
1
2
3
4
5
Speed of placing vb [m/h]
Fres
h c
on
cret
e p
ress
ure
p
[kN
/m²]
Hyd
rost
atic
pre
ssu
re h
eig
ht
h [
m]
1.0
1.1
1.2
1.3
1.4
Co
mp
acti
on
acco
rdin
g t
o w
alz
Flow concre
te
K3
K1 5 · vb + 21
K210 · v b
+ 19
17 · vb + 17
14 · v b + 18
The Formwork Experts 9
Pressure of fresh concrete onvertical formwork DIN 18 218
All other prerequisites as per DIN 18218:
Weight of fresh concrete 25 kN/m³Tight formworkCompaction with internal vibrator
Fresh concrete temperature 15 °Cwith setting retarded by 5 h
140
130
120
110
100
90
80
70
60
50
40
30
20
10
00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Walls
Columns
Flow
con
cret
e
K2
K1
K3
Speed of placing vb [m/h]
Fres
h c
on
cret
e p
ress
ure
p [k
N/m
²]
140
130
120
110
100
90
80
70
60
50
40
30
20
10
00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Walls
Columns
Flow
con
cret
e
K3
K2
K1
Speed of placing vb [m/h]
Fres
h c
on
cret
e p
ress
ure
p [k
N/m
²]
140
130
120
110
100
90
80
70
60
50
40
30
20
10
00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Walls
Columns
Flow
concr
ete
K1
K2
K3
Fresh concrete temperature 15 °Cwithout retarding admix
Speed of placing vb [m/h]
Fres
h c
on
cret
e p
ress
ure
p [k
N/m
²]
140
130
120
110
100
90
80
70
60
50
40
30
20
10
00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
K2
K1
K3
Walls
Columns
Speed of placing vb [m/h]
Fres
h c
on
cret
e p
ress
ure
p [k
N/m
²]
Fresh concrete temperature 5 °Cwithout retarding admix
September 1980
Fresh concrete temperature 5 °Cwith setting retarded by 5 h
Flow concre
te
The Formwork Experts10
The Formwork Experts 11
Deflection diagram Doka-3-SO-Panels 21 and 27 mm
Doka three-ply formwork sheets 3-SODoka three-ply formwork sheets GDoka three-ply board texture formwork sheetsDokadur-3S panels
The direction of grain in surface veneers lies at right angles to the supports.
4.0
3.5
3.0
2.5
2.0
1.5
0.5
1.0
20 60 7030 40 50 80
30.0 20
.0 kN
/m²
5.0
7.5
p [kN/m²]
Support spacing I [cm]
Def
lect
ion
[m
m]
80.0
100.
0
50.0
40.0
60.0
10.0
max pmtd M 15.0
2.5l/500
27 mmEJ = 15.4 kNm²/m(15 % moisturecontent)
L L L L L L
4.0
3.5
3.0
2.5
2.0
1.5
0.5
1.0
20 60 7030 40 50 8020
.0
10.0
7.540.0
30.0
2.5
5.0
Support spacing I [cm]
Def
lect
ion
[m
m] 10
0.0
15.0
kN
/m²
80.0 60
.0 50.0
l/500
p [kN/m²]
21 mmEJ = 9.0 kNm²/m(15 % moisturecontent)
L LLL L L
max pmtd M
The Formwork Experts12
Deflection diagramFinnish birch plywood
The direction of grain in surface veneers is of no importance.
1510 20 25 30 35 40 45 50
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
7.5
40.0
30.0
2.5
20.0
15.0
Support spacing I [cm]
Def
lect
ion
[m
m]
80.0
100.
0
50.0
60.0 10
.0 k
N/m
²
5,0
l/500
p [kN/m²]
15 mmEJ = 2.0 kNm²/m(15 % moisturecontent)
L L L L L L
20.0
15.0
7.5 5.0
2.5
1510 20 25 30 35 40 45 50
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Support spacing I [cm]
Def
lect
ion
[m
m]
50.0
60.0
30.0
100.
0
40.0
10.0
kN
/m²
l/500
p [kN/m²]
12 mmEJ = 1.1 kNm²/m(15 % moisturecontent)
L L L L L L
80.0
max pmtd M
max. pmtd. M
The Formwork Experts 13
The direction of grain in surface veneers is of no importance.
3.5
3.0
2.5
2.0
1.5
0,5
1.0
20 60 7030 40 50 80
60.0
30.0
15.0
20.0
7.5
5.0
2.5
Support spacing I [cm]
Def
lect
ion
[m
m]
4.0
80.0
50.0
40.0
10.0
kN
/m²
l/500
p [kN/m²]
21 mmEJ = 4.7 kNm²/m(15 % moisturecontent)
Deflection diagramFinnish birch plywood
L L L L L L
100.
0
20 80
4.0
3.5
3.0
2.5
2.0
1.5
0.5
60 70
40.0
30.0
20.0
15.0 5.0
50.0
7.5
30 40 50
1.0
Support spacing I [cm]
Def
lect
ion
[m
m]
80.0
100.
0
10.0
kN
/m²
l/500
2.5
p [kN/m²]
18 mmEJ = 3.1 kNm²/m(15 % moisturecontent)
L L L L L L
Dokaplex formwork sheets, 21 mmDokadur-Plex panels, 21
60.0
max
. pm
td.
M
max. pmtd. M
The Formwork Experts14
The Formwork Experts 15
Doka timber formwork beams
Design values
H 16 H 20 H 30 H 36
max. 8.5 11.0 15.0 17.0 kNpermitted Q
max. 2.7 5.0 13.5 17.0 kNmpermitted M
E x J 250 450 1250 1850 kNm²
3.20 4.00 6.00 6.00 m
H 16 H 20 H 30 H 36
16.0
6.5
3.5
4.0
8.0
20.0
30.5
5.4
9.7 9.7
5.4
36.0
Dimensions in cm
max. supportspacing
The Formwork Experts16
Deflection diagramDoka timber formwork beams
Support spacing l [m]
Def
lect
ion
[m
m]
2.0
Support spacing l [m]
Def
lect
ion
[m
m]
1.5 2.0 2.5 3.0 3.5 4.0
1
2
3
4
5
6
7
8
9
10
11
12
1.0 1.5 2.5 3.0
1.50
1.00
123456789
1011
1213141516
1.0
2.0
kN/m
p [kN/m]
H20
p [kN/m]
H16
15.0
0 10.0
0
7.50
5.00
4.50
4.00
3.00
2.00
2.50
0.25
0.50
20.0
15.0
10.0
7.5
5.0
4.5 4.0
3.5
3.0
2.5
1.5
1.0
0.5
L
L
3.50
kN
/m0
l/500
l/500
max. pmtd. M
max
. pm
td. Q
max. p
mtd
. M
max
. pm
td. Q
The Formwork Experts 17
Deflection diagramDoka timber formwork beams
0
support spacing I [m]
Def
lect
ion
[m
m]
40
35
30
25
20
15
10
5
1.0 2.0 3.0 4.0 5.0 6.0
1.0
2.0
3.0
4.0
7.5
10.0
15.0
max
. per
m M
0
Support spacing I [m]
Def
lect
ion
[m
m]
40
35
30
25
20
15
10
5
1.0 2.0 3.0 4.0 5.0 6.0
1.0
2.0
3.0
4.0
7.5
10.0
20.0
p [kN/m]
H30
H36
p [kN/m]
5.0
kN/m
40.0
30.0 20
.0
40.0 30
.0
15.0
L
L
5.0
kN/m
max
. per
m Q
l/500
l/500
max
. pm
td.
M
max
. pm
td.
Q
The Formwork Experts18
The Formwork Experts 19
Doka steel components
Steel walings G F Wx lxMaterial grade St-37 [kg/m] [cm²] [cm³] [cm4]
WS10 Top 50 22.0 27.0 82.4 412
WU12 Top 50 27.0 34.0 121.4 728
WU14 Top 50 33.0 40.8 172.8 1210
WU16 Top 50 37.6 48.0 232.0 1850
Connection parts G F Wx lxMaterial grade St-37 [kg] [cm²] [cm³] [cm4]
Splice plate Top 50 9.30 14.4 21.6 97
Splice plate Top 50 Z 9.00 14.4 21.6 97
Adj. waling extension 1.40 m Top 50 13.00 14.4 21.6 97
Universal support Top 50 11.10 14.1 28.7 129per m
Formwork connector FF20/50 6.30 14.4 21.6 97
Adj. waling extension FF20/50 9.80 14.4 21.6 97
Anchoring plate FF20/50 6.60 14.4 21.6 97
Framax Universal waling 0.90 m 10.00 14.6 32.2 180
Framax Universal waling 1.50 m 17.00 14.6 32.2 180
Frami Universal waling 0.70 m 3.65 6.2 6.8 17
Frami Universal waling 1.25 m 6.35 6.2 6.8 17
The Formwork Experts20
Deflection diagramSteel waling WS10 and WU12
Support spacing I [m]
Def
lect
ion
[m
m]
2.5
5.0
7.5
20.0
10.0
30.0
40.0
50.0
1
2
3
4
5
8
7
6
15.0
kN/m
1.00 1.25 1.50 1.75 2.00 2.25 2.50
Support spacing I [m]
Def
lect
ion
[m
m]
1.00 1.25 1.50 1.75 2.00 2.25 2.50
1
2
3
4
5
6
7
8
2.5
5.0
7.510.0
15.0
20.0
kN/m
30.0
40.0
50.0
75.0
100.
0
max.pmtd. M
p [kN/m]
WS10
p [kN/m]
WU12
L
L
max. pmtd M
The Formwork Experts 21
Deflection diagramSteel waling WU14 and WU16
Support spacing I [m]
Def
lect
ion
[m
m]
1.50 1.75 2.00 2.25 2.50 2.75 3.00
1
2
3
4
5
6
7
8
2.5
5.0
7.5
10.0
15.0
20.0
kN/m30
.0
40.0
50.0
75.0
Support spacing I [m]
Def
lect
ion
[m
m]
1.50 1.75 2.00 2.25 2.50 2.75 3.00
1
2
3
4
5
6
7
8
p [kN/m]
WU14
p [kN/m]
WU16
2.5
5.0
7.5
max.pmtd M
10.0
15.0
20.0
30.040
.0 kN
/m
50.0
75.0
L
L10
0.0max. p
mtd M
The Formwork Experts22
Large area formwork:Timber formwork beam Doka H20Max. permissible fresh concrete pressure for timber formwork beams Doka H 20
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 63 48 42 41 0
Max. span deflection [mm] 0.43 0.43 0.35 0.29 0
Max. cantilever-arm deflection [mm] 0.15 0 0 0.06 0
Waling load B [kN/m] 28 29 29 28 0
Waling load A [kN/m] 29 39 46 50 0
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 56 44 36 31 27
Max. span deflection [mm] 0.31 0.26 0.29 0.32 0.29
Max. cantilever-arm deflection [mm] 0 0.10 0.06 0.05 0.09
Waling load C [kN/m] 21 21 21 20 20
Waling load B [kN/m] 39 50 57 61 62
Waling load A [kN/m] 31 41 52 62 72
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 47 35 29 26 26
Max. span deflection [mm] 1.54 1.56 1.45 1.28 1.17
Max. cantilever-arm deflection [mm] 0 0 0 0 0
Waling load B [kN/m] 35 38 40 39 39
Waling load A [kN/m] 37 50 60 69 73
Formwork height 2.50 m
Formwork height 3.00 m
Formwork height 3.60 m
250
245
4012
0
A
hs
A
B
120
360
B
300
290
B
A
hs
160
4512
045
Pb
Pb
Pb
hs
C
The Formwork Experts 23
Large area formwork:Timber formwork beam Doka H20
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 44 33 27 22 19
Max. span deflection [mm] 0.71 0.73 0.64 0.62 0.61
Max. cantilever-arm deflection [mm] 0 0 0 0 0
Waling load D [kN/m] 32 34 35 35 34
Waling load C [kN/m] 48 65 79 89 95
Waling load B [kN/m] 48 64 80 97 114
Waling load A [kN/m] 34 45 56 67 78
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 60 44 35 29 25
Max. span deflection [mm] 0.26 0.26 0.26 0.25 0.25
Max. cantilever-arm deflection [mm] 0.85 0.45 0.38 0.38 0.35
Waling load D [kN/m] 29 30 30 29 29
Waling load C [kN/m] 36 48 57 62 64
Waling load B [kN/m] 37 49 62 75 87
Waling load A [kN/m] 31 41 52 62 72
Formwork height 5.00 m
Formwork height 6.00 m
Fresh concrete pressure [kN/m²] 30 40 50 60 70
Beam spacing [cm] 52 39 33 28 26
Max. span deflection [mm] 0.41 0.42 0.36 0.32 0.37
Max. cantilever-arm deflection [mm] 0.32 0.08 0.05 0.05 0.11
Waling load C [kN/m] 30 32 32 31 31
Waling load B [kN/m] 41 55 66 74 77
Waling load A [kN/m] 31 41 52 63 74
Formwork height 4.00 m
Max. permissible fresh concrete pressure for timber formwork beams Doka H 20
hs
Pb
D
C
B
A
500
A
B
C
hs
hs
C
D
155
155
150
45
B
A
600
590
Pb
490
120
120
120
45
400
390
125
125
45
Pb
The Formwork Experts24
90.0
Large area formwork:Doka steel walings Top 50Max. permissible waling load per m fornormal steel walings WS 10 Top 50 andWU 12 Top 50; respective anchor forces.
* Normally only used as compensating element, with one tie
Standard element 0.75 m*
Standard element 1.00 m*
Standard element 1.25 m
Standard element 1.50 m
Standard element 1.75 m
Standard element 2.00 m
Standard element 2.25 m
20 35
25.0 50.0
25.025.0 75.0
30.0 30.0
30.0 30.0115.0
52.5 52.595.0
55.0 115.0 55.0
20
25.0
WS10 Top 50 WU12 Top50
kN/m kN kN/m kN
577 216 850 319
369 185 544 272
295 184 435 272
205 154 302 227
96 84 141 123
84 84 123 123
76 86 112 126
Max
.p
erm
issi
ble
wal
ing
load
An
cho
r fo
rce
An
cho
r fo
rce
Max
.p
erm
issi
ble
wal
ing
load
The Formwork Experts 25
Large area formwork:Doka steel walings Top 50
Max. permissible waling load per m fornormal steel walings WS 10 Top 50 andWU 12 Top 50; respective anchor forces.
WS 10 WU 12Top 50 Top 50
kN/m kN kN/m kN
76 95 112 140
76 86 112 127
76 87 112 128
76 90 112 133
76 87 112 128
76 88 112 129
76 97 112 143
76 93 112 127
75 102 110 150
Standard element 2.50 m
Standard element 2.75 m
Standard element 3.00 m
Standard element 3.50 m
Standard element 4.00 m
Standard element 4.50 m
Standard element 5.00 m
Standard element 5.50 m
Standard element 6.00 m
55.0 55.0140.0
55.0 82.5 82.5 55.0
55.0 55.0
55.0 55.0120.0
55.0 55.0100.0100.0
55.0 55.0112.0 116.0 112.0
95.095.0
120.0
90.0
55.0 132.5 132.5125.0 55.0
55.0
130.0115.0
55.0
55.0
105.0
130.0
115.0 115.0
115.0 55.0
105.0
Max
.p
erm
issi
ble
wal
ing
load
An
cho
r fo
rce
An
cho
r fo
rce
Max
.p
erm
issi
ble
wal
ing
load
The Formwork Experts26
B 165 165 165 165 165 165A 40 40 40 40 40 40
C 170 170 170 170 170 170B 140 140 140 140 140 140A 40 40 40 40 40 40
D 150 150 150 150 150 150C 130 130 130 130 130 130B 130 130 130 130 130 130A 40 40 40 40 40 40
E 130 130 130 130D 130 130 130 130C 130 130 130 130B 130 130 130 130A 40 40 40 40
E 180 180 180 180D 150 150 150 150C 140 140 140 140B 140 140 140 140A 40 40 40 40
F 150 150 150 150E 140 140 140 140D 140 140 140 140C 140 140 140 140B 140 140 140 140A 40 40 40 40
G 140 140 140 140F 140 140 140 140E 140 140 140 140D 140 140 140 140C 140 140 140 140B 130 130 130 130A 40 40 40 40
G 195 195 195 195F 155 155 155 155E 140 140 140 140D 140 140 140 140C 140 140 140 140B 140 140 140 140A 40 40 40 40
Column formwork withsteel walings WS10 Top 50Waling spacing for various dimensions of columns
Column dimension [cm] 20/20 30/30 40/40 50/50 60/60 70/70
Number of H 20's per side 2 2 3 4 4 5
Waling spacing [cm]Height of
column [m]
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
The design dimensions for rectangular columns are those for thelonger side.
Max. fresh-concrete pressure 90 kN/m²
Co
lum
n h
eig
ht
AB
CD
EF
G
Steel waling WS 10 Top 50Corner connecting
plate 90/50
The Formwork Experts 27
C 135 135 135B 165 165 95 95 95A 40 40 30 30 30
D 135 135 135C 170 170 95 95 95B 140 140 95 95 95A 40 40 30 30 30
E 135 135 135D 170 170 100 100 100C 130 130 95 95 95B 110 110 95 95 95A 40 40 30 30 30
F 135 135 135E 150 150 100 100 100D 120 120 95 95 95C 120 120 95 95 95B 120 120 95 95 95A 40 40 30 30 30
G 135 135 135F 140 140 105 105 105E 120 120 95 95 95D 120 120 95 95 95C 120 120 95 95 95B 120 120 95 95 95A 40 40 30 30 30
H 135 135G 170 170 170 110 110F 120 120 120 95 95E 105 105 105 95 95D 105 105 105 95 95C 105 105 105 95 95B 105 105 105 95 95A 40 40 40 30 30
I 155 155H 165 165 165 110 110G 120 120 120 95 95F 105 105 105 95 95E 105 105 105 95 95D 105 105 105 95 95C 105 105 105 95 95B 105 105 105 95 95A 40 40 40 30 30
K 145 145I 160 110 110H 170 170 120 95 95G 140 140 105 95 95F 120 120 105 95 95E 120 120 105 95 95D 120 120 105 95 95C 120 120 105 95 95B 120 120 105 95 95A 40 40 40 30 30
Column formwork with steelwalings WU12 Top50
Waling spacing for various dimensions of columns
Waling spacing [cm]
Column dimension [cm] 80/80 90/90 100/100 110/110 120/120
Number of H 20's per side 5 5 5 6 6
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
AB
CD
EF
GH
IK
Co
lum
n h
eig
ht
Steel waling WU 12 Top 50Corner connecting
plate 90/50
The design dimensions forrectangular columns are those forthe longer side.
Max. fresh-concrete pressure90 kN/m²
Height ofcolumn[m]
The Formwork Experts28
Supporting construction frameVariable: Calculation
H
��VZ
�Z
H
�V
Formwork height up to 4.00 m
3.253.503.754.00
Pouringheight H
[m]
3.253.503.754.00
Influence width Influence width Influence width Influence widthe = 0.90 m e = 1.00 m e = 1.25 m e = 1.35 m
Anchor Shoring Anchor Shoring Anchor Shoring Anchor Shoringforce Z force V force Z force V force Z force V force Z force V
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Max. permissible formwork pressure 40 kN/m²
125 62 139 69 173 86 187 93137 75 153 83 191 104150 89 167 99163 105 181 116
Max. permissible formwork pressure 50 kN/m²
143 67 159 75 199 94 215 101159 82 177 91175 99 194 110191 117 212 130
Formwork height up to 3.25 m
2.502.753.003.25
Pouringheight H
[m]
2.502.753.003.25
Influence width Influence width Influence width Influence widthe = 0.90 m e = 1.00 m e = 1.25 m e = 1.35 m
Anchor Shoring Anchor Shoring Anchor Shoring Anchor Shoringforce Z force V force Z force V force Z force V force Z force V
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Max. permissible formwork pressure 40 kN/m²
87 31 96 34 120 43 130 4799 40 110 45 138 56 149 60
112 51 124 56 156 70 168 76125 62 139 69 173 86 187 93
Max. permissible formwork pressure 50 kN/m²
95 32 106 36 133 45 143 48111 42 124 47 155 59 167 64127 54 141 60 177 75 191 81143 67 159 75 199 94
Anchor walings must be used that are of suitable size for the anchoring forces encountered. The bearingcapacity of the foundation / floor slab must also be checked.
Waling WU 14
for supportingconstr. frame
Waling WU 14
for supportingconstr. frame
The Formwork Experts 29
Supporting construction frameUniversal F: Calculation
Formwork height up to 4.50 m
3.003.504.004.50
Pouringheight H
[m]
3.003.504.004.50
Influence width Influence width Influence width Influence widthe = 0.90 m e = 1.00 m e = 1.25 m e = 1.35 m
Anchor Spindle Anchor Spindle Anchor Spindle Anchor Spindleforce Z force V force Z force V force Z force V force Z force V
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Max. permissible formwork pressure 40 kN/m²
112 49 124 55 156 68 168 74137 73 153 81 191 101 206 110163 102 181 113 226 141 244 153188 135 209 150 262 188 283 203
Max. permissible formwork pressure 50 kN/m²
127 53 141 59 177 73 191 79159 80 177 89 221 111 239 120191 114 212 126 265 158 286 170223 153 247 170 309 213 334 230
H
�Z
�V
Formwork height up to 6.00 m
4.505.005.506.00
Pouringheight H
[m]
4.505.005.506.00
Influence width Influence width Influence width Influence widthe = 0.90 m e = 1.00 m e = 1.25 m e = 1.35 m
Anchor Spindle Anchor Spindle Anchor Spindle Anchor Spindleforce Z force V force Z force V force Z force V force Z force V
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Max. permissible formwork pressure 40 kN/m²
188 94 209 105 262 131 283 142214 121 238 135 297 168 321 182239 151 266 168 332 210 359 227265 185 294 206 368 257 397 278
Max. permissible formwork pressure 50 kN/m²
223 107 247 119 309 148 334 160255 139 283 154 354 193 382 208286 175 318 194 398 243 430 262318 215 354 239 442 299
H
�Z
�V
6.006.507.007.508.00
Pouringheight H
[m]
Influence width Influence width Influence width Influence widthe = 0.90 m e = 1.00 m e = 1.25 m e = 1.35 m
Anchor Spindle Anchor Spindle Anchor Spindle Anchor Spindleforce Z force V force Z force V force Z force V force Z force V
[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
Max. permissible formwork pressure 40 kN/m²
265 131 294 145 368 182 397 196290 157 322 174 403 218 435 235316 186 351 206 438 258 473 278341 216 379 241 474 301367 250 407 278
6.006.507.007.508.00
Max. permissible formwork pressure 50 kN/m²
318 152 354 169 442 211 477 228350 184 389 204 486 255382 218 424 242414 255 460 284445 296 495 329
Formwork height up to 8.00 m
�V
�Z
H
Anchor walings must be used that are of suitable size for the anchoring forces encountered. The bearingcapacity of the foundation / floor slab must also be checked.
The Formwork Experts30
Universal struts - Top 50
0 0.5 1.0 1.5 2.0 2.50
10203040506070
Max
. per
mit
ted
load
[kN
]
Length of strut [m]
Univ. strut T5/3 - Top 50
0 0.5 1.0 1.5 2.0 2.50
10203040506070
Per
mit
ted
lo
ad [
kN]
Length of strut [m]
Univ. strut T5/5 - Top 50
0 1.0 2.0 3.0 4.0 5.0 5.40
10203040506070
Per
mit
ted
lo
ad [
kN]
Length of strut [m]
Univ. strut T8/4 - Top 50
� With no bracing on the strut*�� With bracing on the strut�� With bracing on the strut
+ 2 % longitudinal bridge slope�� With bracing on the strut
+ 4 % longitudinal bridge slope* Ensure that the frame sections
are adequately braced!
Min. angle between universal strutand steel waling = 30 °
Universal strut
Bracing
Bracing
Universal strut
�����
�����
�����
The Formwork Experts 31
Spindle struts - Top 50
Bracing
Spindle strut
Spindle strut T5/3-Top 50
� Spindle not unscrewed = min. length�� Spindle unscrewed 18 cm = max. length
� Spindle not unscrewed = min. length�� Spindle unscrewed 12 cm = max. length
Min. angle between strutand steel waling = 30 °
Spindle strut
Bracing
0 1.0 2.0 3.0 4.0 5.0 5.40
10203040506070
Per
mit
ted
lo
ad [
kN]
Length of strut [m]
���
Spindle strut T8/4-Top 50
0 0.5 1.0 1.5 2.0 2.50
10203040506070
Per
mit
ted
lo
ad [
kN]
Length of strut [m]
�
�
70
50
40
30
20
10
0
60
Spindle struts T6, T7, T10
Spindle strut T6 100/150 cm
Spindle strut T7 150/200 cm
Spindle strut T7 200/250 cm
Spindle strut T7 250/300 cm
Spindle strut T7 305/355 cm
1.0 5.04.03.02.0
T7 150/200 cmT7 200/250 cm
T6 100/150 cm
T10
T7 305/355 cm
T7 250/300 cm
Length of strut [m]
Per
mit
ted
lo
ad [
kN]
The Formwork Experts32
Panel stabilisersPanel strut 340Loadability data
Length extended Permissible load [kN]
L [m] Pressure Tension2.00 22.02.20 21.02.40 17.52.60 14.5 152.80 12.53.00 11.03.20 9.53.40 8.0
Loadability data
Length extended Permissible load [kN]L [m] Pressure Tension
3.20 30.03.40 30.03.60 30.03.80 25.54.00 21.54.20 19.04.40 16.5 304.60 15.04.80 13.55.00 12.05.20 11.05.40 10.05.50 9.5
Adjustable plumbing strutLoadability data
Length extended Perm. axial pressure load [kN]
L [m] min. L halb. L max. L Tension
6.0 - 7.4 40.0 40.0 27.87.1 - 8.5 40.0 38.2 24.38.4 - 9.8 40.0 35.6 21.79.7 - 11.1 40.0 31.7 19.0 40
10.8 - 12.2 40.0 27.8 16.111.9 - 13.3 34.2 24.1 13.413.2 - 14.6 27.1 21.5 12.214.5 - 15.9 20.8 17.5 9.5
Univ. stabilising strutLoadability data
Length extended Permissible load [kN]
L [m] Pressure Tension
5.00 405.50 406.00 396.50 387.00 377.50 36 308.00 338.50 309.00 279.50 25
10.00 23
To
p v
iew
of s
way
bra
cin
g
L
Spindle element
Intermediate piece 3.70 m
Intermediate piece 2.40 m
Spindle element
L
max
. 330
.0
112,0
Panel strut 540
210.0
max
. 505
.0
L
Univ. stabilising strut foot
Timber formwork beam H 20
Univ. stabilising strut head
Nailed-on sway bracingmade of 3/15 cm planksUnit spacing 'a' ≤ 100 cm
a
L
The Formwork Experts 33
Doka form-tiesElongation of the form-tie as a per-centage of the loaded length of rod
Max. permissible service loads on tie rods
15.0 20.0 26.5*
Diameter d1 15.0 20.0 26.5 mm
Diameter d2 17.0 22.5 30.0 mm
Cross-sectional area 1.77 3.14 5.50 cm²
120 220 350 kN
* Only in DOKA sales range for Germany
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
50
100
150
Tie
load
[kN
]
Elongation of loadedlength of rod [%]
Tie
rod
20.0
Tie rod 15.0
Tie
rod
26.5
200
250
∆L ... Tie-rod elongation [mm]
L ... Length of tie-rod [m]
Z ... Tie load [kN]
A ... Cross-sectional area [cm²]
∆L = L ⋅ Z21 ⋅ A
d1
d2
Safety instruction:Never weld or heat tie rods - risk of fracture!Do not bend tie rods or load them perpendicular to the rod axis!
Max. permissible loadabilitywith 1.6 safety factor againstbreaking load
The Formwork Experts34
Doka climbing formwork F
as per DIN 1055 for heights of up to 100 m abovegeneral ground level
For wind speeds of up to130 km/has per DIN 1055 for heights of up to 20 m above generalground level.
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Form
wo
rk h
eig
ht [
m]
Influence width per bracket [m]
With wind-load supportWithout wind-load support
For wind speeds of up to150 km/h
Influence width per bracket [m]0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Form
wo
rk h
eig
ht [
m]
Without wind-load support With wind-load support
For short-term work phases notin the normal position, calculatorysafety is given for wind speeds ofup to 100 km/h.
The above calculation diagramsare valid for climbing formworkwhich conforms completely toDoka's technical directions anddocumentation.
Normal position
Guy-bracing
The Formwork Experts 35
Doka climbing formwork MF
3.0kN/m²
1.5kN/m²
1.5kN/m²
0.75kN/m²
0.75kN/m²
3.0kN/m²
3.0kN/m²
Wind loads:
In both positions Formwork up against
concrete Formwork retracted
� full wind load as perDIN 1055 part 4 ispermissible- structure heights of up
to 100 m: 1.1 kN/m²- structure heights of
over 100 m: 1.3 kN/m²
���������
���������
Working loads: Working loads:
Vertical load per bracket: 50 kN
0 1 2 3 4Influence width per bracket [m]
0
1
2
3
4
5
6
Form
wo
rk h
eig
ht
[m]
Structure heights of over 100 mStructure heights of up to 100 m
A separate check must be made on the way the forcesoccurring are introduced into the concrete.
This diagram refers to the climbingbracket MF used with both pressure strutMF long and pressure strut MF short (it doesnot refer to the adjustable variant, or towhen the formwork is used with automaticclimbers).
The Formwork Experts36
Th
e ad
just
able
plu
mb
ing
str
ut m
ust
be
set u
p in
eve
ryb
rack
et a
xis
and
fixe
d in
to th
e cl
amp
ing
lpo
ints
.If
adju
stab
le p
lum
bin
g s
tru
ts a
re s
et u
p o
n t
he
fold
ing
pla
tfo
rm,
they
may
on
ly b
e p
osi
tion
ed i
n t
he
bra
cket
axis
an
d fi
xed
into
the
clam
pin
g p
oin
ts p
rovi
ded
, usi
ng
a tie
ro
d 1
5.0/
20cm
or
tie r
od
15.
0 .
May
on
ly b
e fix
ed w
ith ti
e-ro
d15
.0/2
0cm
.U
se o
f pre
-str
esse
d s
teel
tie-
rod
s is
pro
hib
ited
!
Load
s at
th
e su
s-p
ensi
on
po
int:
Ho
rizo
nta
l lo
adV
erti
cal l
oad
Co
lum
n 3
Form
wor
k on
fold
ing
plat
form
wit
hgu
y-br
aced
form
wor
k an
d br
acke
t
Co
lum
n 2
Form
wo
rk s
up
po
rted
on
flo
or
Co
lum
n 1
Form
wo
rk s
up
po
rted
on
fold
ing
pla
tfo
rm
Th
e ad
just
able
plu
mb
ing
str
ut m
ust
be
set u
p in
eve
ryb
rack
et a
xis
and
fix
ed i
nto
th
e cl
amp
ing
po
ints
pro
vid
ed, u
sin
g a
tie
rod
15.
0/20
cm o
r tie
ro
d 1
5.0.
Bo
w h
ead
K-E
S
Load
s at
th
esu
spen
sio
n p
oin
t:
Ho
rizo
nta
l lo
ad
36kN
Ver
tica
l lo
ad
20kN
Folding platforms
Fold
. p
latf
ms
A,
B &
K14
kN24
kN
Fold
ing
pla
tfo
rm E
SFo
ldin
g p
latf
orm
K +
14kN
18kN
The Formwork Experts 37
*ab
ove
a w
ind
sp
eed
of 5
5km
/h, t
he
acci
den
t pre
ven
tio
n r
egu
lati
on
s al
so s
tip
ula
te r
estr
icti
on
s in
cra
ne
uti
lisat
ion
.
Sca
ffo
ld c
ateg
ory
2 t
o D
IN 4
420
(live
load
per
un
it ar
ea o
n fo
ldin
g p
latf
orm
and
po
uri
ng
pla
tfo
rm 1
50kg
/m²)
For
hig
her
win
d s
pee
ds
(as
ind
icat
ed b
elo
w) a
nd
wh
en w
ork
is fi
nis
hed
for
the
day
or
inte
rru
pte
dfo
r lo
ng
per
iod
s, th
e m
easu
res
des
crib
ed in
Co
lum
ns
2 o
r 3
mu
st b
e ta
ken
.
Sca
ffo
ld c
ateg
ory
2 t
o D
IN 4
420
(live
load
per
un
it ar
ea o
n fo
ldin
g p
latf
orm
and
po
uri
ng
pla
tfo
rm 1
50kg
/m²)
Sca
ffo
ld c
ateg
ory
2 t
o D
IN 4
420
(live
load
per
un
it ar
ea o
n fo
ldin
g p
latf
orm
and
po
uri
ng
pla
tfo
rm 1
50kg
/m²)
Per
mitt
ed fo
r fo
ldin
g p
latf
orm
s A
man
uf.
fro
m 1
994
on
.(C
har
acte
rist
ic: O
nly
1 c
lam
pin
g p
oin
t fo
r ad
just
able
plu
mb
ing
str
ut )
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
Incl
usio
n of
sus
pend
ed fo
ldin
g pl
atfo
rm o
rsu
spen
ded
plat
form
(sca
ffol
d ca
t.2) p
ossi
ble
Plan
king
bri
dge
max
. 1.0
m
Max
. for
mw
ork
heig
ht 5
.50
m
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
Incl
usio
n of
sus
pend
ed fo
ldin
g pl
atfo
rm o
rsu
spen
ded
plat
form
(sca
ffol
d ca
t.2) p
ossi
ble
Pla
nki
ng
bri
dg
ing
on
ly w
ith e
xtra
bra
cket
.A
nch
ori
ng
an
d g
uy-
bra
cin
g a
s ab
ove
.
Max
. for
mw
ork
heig
ht 3
.75
m
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
Incl
usio
n of
sus
pend
ed fo
ldin
g pl
atfo
rm o
rsu
spen
ded
plat
form
(sc
affo
ld c
at.2
) po
ssib
le
Plan
king
bri
dge
max
. 1.0
m
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
Incl
usio
n of
sus
pend
ed fo
ldin
g pl
atfo
rm o
rsu
spen
ded
plat
form
(sca
ffol
d ca
t.2) p
ossi
ble
Plan
king
bri
dge
max
. 1.0
m
Max
. for
mw
ork
heig
ht 5
.50
m
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
Incl
usio
n of
sus
pend
ed fo
ldin
g pl
atfo
rm o
rsu
spen
ded
plat
form
(sca
ffol
d ca
t.2) p
ossi
ble
Plan
king
bri
dge
max
. 1.0
m
Form
wor
k up
to4.
00m
hig
h
Win
d sp
eed
max
. 45
km/h
Form
wor
k up
to3.
00m
hig
h
Win
d sp
eed
max
. 55
km/h
*
Form
wor
k up
to3.
00m
hig
h
Win
d sp
eed
max
. 55
km/h
*
Form
wor
k up
to4.
00m
hig
h
Win
d sp
eed
max
. 45
km/h
with
out i
nclu
sion
of s
uspe
nded
fold
ing
plat
form
Plan
king
bri
dge
max
. 0.7
5m
Form
wor
k up
to3.
00m
hig
h
Win
d sp
eed
max
. 55
km/h
*
Form
wor
k up
to4.
00m
hig
h
Win
d sp
eed
max
. 45
km/h
Sus
pens
ion
only
per
mitt
ed in
top
posi
tion
with
out i
nclu
sion
of s
uspe
nded
fold
ing
plat
form
Plan
king
bri
dge
max
. 0.7
5m
Max
. for
mw
ork
heig
ht 4
.00
m
Fold
ing
pla
tfo
rm E
S
Fold
ing
pla
tfo
rm K
+B
ow
hea
dK
-ES
Fold
ing
pla
tfo
rm A
Fold
ing
pla
tfo
rm K
Fold
ing
pla
tfo
rm B
The Formwork Experts38
Shaft platformsStructural design diagram for telescopic shaft-platformbeams with gravity pawls or main beam heads
Legend:
I = effective span of telescopic shaft-platform beam (clear shaft dimension)
Effective loading: Formwork load (0.7 kN/m²) + effective loading divided over the wholeplatform area (at least 2.0 kN/m²). If reinforcement is to be stored on theplatform an exact loading calculation will be necessary.
Permanent load: Consists of boarding (0.3 kN/m² for 50 mm thick), transverse timbers(6.0 kN/m³) and estimated main beam section.][ 100 = 0.22 kN/m, ][ 120 = 0.27 kN/m, ][ 140 = 0.33 kN/m, ][ 160 = 0.38 kN/m
Width of influence: Proportion of the whole width of the platform to the main beam. Except forexceptional circumstances where more than two main beams are used thiswidth is always b/2.
Note: The reaction is limited by the pawl mounting / universal climbing cone 15.0plus cone screw B 7 cm to A = 40 kN.
q =m² platform area
effective loading+permanent loadx
10
20
30
40
1,0 2,0 3,0 4,0 5,0 6,0Length I [m]
Load
q [
kN/m
]
1) 2) 3) 4) 5)
1) Telescopic shaft-platform beam 1.45 - 1.65 m2) Telescopic shaft-platform beam 1.65 - 2.00 m3) Telescopic shaft-platform beam 2.00 - 2.70 m4) Telescopic shaft-platform beam 2.70 - 3.80 m5) Telescopic shaft-platform beam 3.80 - 5.90 m
][ 160
][ 140
][ 120
][ 100
Telescopic shaft-platform beam
Suspensionwith pawl
Suspensionwith mainbeam head
Width of influenceof the beam
Max. capacity per lifting point:Permissible vertical tensile force2000 kg (20 kN)
The Formwork Experts 39
Doka beam forming supportsTable:
Max. spacing ofbeam-forming supports
Height H of side form-
work Without Floor Floorfloor d=20 cm d=30 cm
[cm] [m] [m] [m]
30 1.65 (4.0)1) 1.35 (1.7)1) 1.30
35 1.55 (2.9)1) 1.30 1.15
40 1.50 (2.2)1) 1.20 0.95
45 1.40 (1.8)1) 1.00 0.80
50 1.35 0.83 0.70
55 1.30 0.75 0.60
60 1.05 0.63 0.50
65 0.90 0.50
70 0.75 0.40
75 0.63
80 0.50
85 0.43
90 0.36
1) The values given in brackets apply wheresufficiently stiff side formworks are used.
Other heights and spacings are possible whereform-ties are incorporated. (Must be designedon case-by-case basis).
Floor beamwithout floor
H
Floor beamwith floor
H
Hd
HThe height (H) of the side formwork is decisive forthe structural design. For perimeter floor beams, itis the height of the outside that is decisive.
Always position beam forming supports oppositeone another. For floor perimeters, suitably long endtransverse beams must be used.
The spacings given in the table are maximumdistances that must not be exceeded.
Perimeterfloor beam
Floor perimeter
With longitudinal timber formworkbeams H 20, or squared timbers
With vertical side beams H 20
The Formwork Experts40
Dokaflex 20The max. permitted spacing of the longitudinal beams depends upon the desired floor thickness and thepreselected spacing of the transverse beams - as well as upon the formwork sheathing. The max. permittedspacing of the floor props is then determined by the spacing of the longitudinal beams and the floor thickness.
Spacing of transverse beamsMax. spacing of transverse beams [m]
with different types of sheathingFloor thickness Dokaplex 21 mm 3-SO 21 mm 3-SO 27 mm
up to 18 cm 0.75 m 0.750 m 0.75 mup to 40 cm 0.67 m 0.670 m 0.75 mup to 50 cm 0.50 m 0.625 m 0.67 m
Timber formwork beam Doka H 16 PMax. permitted spacing Max. permitted spacing
of longitudinal beams [m] of floor props [m]Floor Total For a transverse-beam spacing [m] of: For a pre-selected longitudinal-beam spacing [m] of:
thickness load[cm] [kN/m²] 0.40 0.50 0.625 0.667 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 3.50
10 4.40 3.20 2.98 2.77 2.71 2.56 2.22 1.98 1.81 1.67 1.57 1.48 1.40 1.34 1.28
12 4.92 3.04 2.82 2.62 2.56 2.42 1.10 1.87 1.71 1.58 1.48 1.40 1.33 1.26 1.15
14 5.44 2.90 2.69 2.50 2.44 2.30 1.99 1.78 1.63 1.51 1.41 1.33 1.25 1.14 1.04
16 5.96 2.78 2.58 2.40 2.33 2.20 1.90 1.70 1.55 1.44 1.35 1.27 1.14 1.04 0.95
18 6.48 2.68 2.49 2.31 2.24 2.11 1.83 1.63 1.49 1.38 1.29 1.17 1.05 0.95
20 7.00 2.59 2.41 2.22 2.15 2.03 1.76 1.57 1.43 1.33 1.21 1.08 0.97 0.88
22 7.52 2.52 2.34 2.14 2.08 1.96 1.69 1.52 1.38 1.28 1.13 1.00 0.90 0.82
24 8.04 2.45 2.27 2.07 2.01 1.89 1.64 1.47 1.34 1.21 1.06 0.94 0.85
26 8.56 2.39 2.22 2.01 1.95 1.83 1.59 1.42 1.30 1.13 0.99 0.88 0.79
28 9.08 2.33 2.16 1.95 1.89 1.78 1.54 1.38 1.25 1.07 0.94 0.83 0.75
30 9.66 2.28 2.11 1.89 1.83 1.73 1.50 1.34 1.17 1.01 0.88 0.78 0.70
35 11.22 2.17 1.96 1.76 1.70 1.60 1.39 1.21 1.01 0.87 0.76 0.67
40 12.78 2.06 1.84 1.64 1.59 1.50 1.30 1.06 0.89 0.76 0.67 0.59
45 14.34 1.94 1.74 1.55 1.50 1.42 1.19 0.95 0.79 0.68 0.59
50 15.90 1.84 1.65 1.47 1.43 1.35 1.07 0.86 0.71 0.61 0.53
Timber formwork beam Doka H 20
Floor- Total For a transverse-beam For a pre-selected longitudinal-beam spacing [m] of:thickness load spacing [m] of:
[cm] [kN/m²] 0.50 0.625 0.667 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.50
10 4.40 3.63 3.37 3.29 3.17 2.88 2.67 2.46 2.28 2.13 2.01 1.82 1.65 1.52 1.30
12 4.92 3.43 3.19 3.12 3.00 2.72 2.53 2.33 2.16 2.02 1.81 1.63 1.48 1.36 1.16
14 5.44 3.27 3.04 2.97 2.86 2.60 2.41 2.21 2.05 1.84 1.63 1.47 1.34 1.23 1.05
16 5.96 3.14 2.92 2.85 2.74 2.49 2.31 2.12 1.92 1.68 1.49 1.34 1.22 1.12 0.96
18 6.48 3.03 2.81 2.75 2.65 2.40 2.22 2.03 1.76 1.54 1.37 1.23 1.12 1.03 0.88
20 7.00 2.93 2.72 2.66 2.56 2.32 2.14 1.90 1.63 1.43 1.27 1.14 1.04 0.95
22 7.52 2.84 2.64 2.58 2.48 2.26 2.06 1.77 1.52 1.33 1.18 1.06 0.97 0.89
24 8.04 2.76 2.57 2.51 2.42 2.19 1.99 1.66 1.42 1.24 1.11 1.00 0.90 0.83
26 8.56 2.70 2.50 2.45 2.35 2.14 1.87 1.56 1.34 1.17 1.04 0.93 0.85
28 9.08 2.63 2.44 2.39 2.30 2.09 1.76 1.47 1.26 1.10 0.98 0.88 0.80
30 9.66 2.57 2.39 2.34 2.25 2.03 1.66 1.38 1.18 1.04 0.92 0.83 0.75
35 11.22 2.45 2.27 2.23 2.14 1.78 1.43 1.19 1.02 0.89 0.79 0.71
40 12.78 2.35 2.18 2.13 2.04 1.56 1.25 1.04 0.89 0.78 0.70 0.63
45 14.34 2.26 2.10 2.04 1.93 1.39 1.12 0.93 0.80 0.70 0.62 0.56
50 15.90 2.18 2.01 1.94 1.83 1.26 1.01 0.84 0.72 0.63 0.56
These tables allow for a live load of 20% of the self-weight of the fresh concrete, but not less than1.5 kN/m² (150 kp/m²). The mid-span deflection has been limited to l/500.
Max. permitted spacingof longitudinal beams
[m]
Max. permitted spacingof floor props [m]
The Formwork Experts 41
Permitted prop loads
5.5
28.7
5.4
31.3
5.3
33.8
5.2
36.1
5.1
38.4
5.0
40.3
4.9
42.2
4.8
44.0
4.7
45.7
4.6
47.2
4.5
48.6
4.4
49.8
4.3
50.0
4.2
kNkN
4.1
23.2
44.9
4.0
24.7
47.9
3.9
26.3
50.0
3.8
27.7
3.7
29.4
3.6
kN31
.03.
532
.532
.53.
434
.234
.23.
335
.935
.93.
236
.536
.53.
1kN
50.0
3.0
36.5
2.9
2.8
2.7
kN2.
636
.52.
52.
450
.02.
336
.52.
22.
12.
036
.51.
91.
836
.51.
71.
636
.51.
51.
41.
31.
21.
11.
00.
90.
80.
70.
60.
50.
40.
30.
20.
1
Hei
gh
t l o
f pro
pin
mkN
Eco
20
Eu
rex
2026
0
Eco
20
Eu
rex
2030
0
Eco
20
Eu
rex
2035
0
Eco
20
Eu
rex
2041
0E
ure
x 20
550
Hei
gh
t l o
f pro
pin
m
Eu
rex
3026
0E
ure
x 30
300
Eu
rex
3035
0E
ure
x 30
410
kN
kN
kN
Flo
or
pro
ps
Eco
20
Flo
or
pro
ps
Eu
rex
20
Flo
or
pro
ps
Eu
rex
30
kN
kN
kN
kN
Hei
gh
t l o
f pro
pin
mkN
G55
0G
410
N41
0N
350
N30
0N
260
Flo
or
pro
ps
N a
nd
G
Exte
nsio
nra
nge
from
3.0
5 m
to 5
.50
m
Exte
nsio
nra
nge
from
2.3
0 m
to 4
.10
m
Exte
nsio
nra
nge
from
2.3
0 m
to 4
.10
m
Exte
nsio
nra
nge
from
1.9
7 m
to 3
.50
m
Exte
nsio
nra
nge
from
1.7
2 m
to 3
.00
m
Exte
nsio
nra
nge
von
1.52
mbi
s 2.
60 m
5.5
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
kN4.
130
.04.
03.
93.
83.
73.
63.
530
.03.
43.
33.
23.
13.
030
.02.
92.
82.
72.
630
.02.
52.
42.
330
.02.
22.
12.
030
.01.
91.
830
.01.
71.
630
.01.
51.
41.
31.
21.
11.
00.
90.
80.
70.
60.
50.
40.
30.
20.
1
5.5
20.0
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2
4.1
20.0
4.0
3.9
3.8
3.7
3.6
3.5
20.0
3.4
3.3
3.2
3.1
3.0
20.0
20.0
2.9
2.8
2.7
2.6
20.0
2.5
2.4
2.3
20.0
2.2
2.1
2.0
20.0
1.9
1.8
20.0
1.7
1.6
20.0
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Exte
nsio
nra
nge
from
1.5
2 m
to 2
.60
m
Exte
nsio
nra
nge
from
1.7
2 m
to 3
.00
m
Exte
nsio
nra
nge
from
1.9
7 m
to 3
.50
m
Exte
nsio
nra
nge
from
2.2
7 m
to 4
.10
m
Exte
nsio
nra
nge
from
2.9
7 m
to 5
.50
m
Exte
nsio
nra
nge
from
1.5
2 m
to 2
.60
m
Exte
nsio
nra
nge
from
1.7
2 m
to 3
.00
m
Exte
nsio
nra
nge
from
1.9
7 m
to 3
.50
m
Exte
nsio
nra
nge
from
2.3
0 m
to 4
.10
m
Per
mit
ted
load
abili
ty a
s d
eter
min
ed b
y
exp
erim
ents
at t
he
Tec
hn
ical
Un
iver
sity
of V
ien
na
Per
mit
ted
load
abili
ty o
f Eco
20
pro
ps
to Ö
-No
rm B
400
9
Per
mit
ted
load
abili
ty o
f Eu
rex
20 p
rop
s
to D
raft
EN
106
5,
Cat
ego
ry D
Per
mit
tted
load
abili
ty o
f Eu
rex
30 p
rop
s
to D
raft
EN
106
5,
Cat
ego
ry E
The Formwork Experts42
Loadability for tableforms with U-head or screw-jack U-head
Tableforms d2 -supporting scaffold held at top
Used in conjunction with screw-jack U-head
≤35
≤70
U-head directly on baseframe
≤70
Permitted loadability per leg* for tableformswith 1.80 m baseframe
51.2 kN 40.7 kN 31.0 kN
0 cm 20 cm 35 cm
Extension length of screw-jack U-head
Permitted loadability per leg* for tableformswith 1.20 m baseframe and stacked tableformswith any combination of 1.80 m and 1.20 mbaseframes.
51.4 kN 45.0 kN 36.2 kN
0 cm 20 cm 35 cm
Extension length of screw-jack U-head
Using heavy-duty screw-jack 70 Using telescopic spindle
Where telescopic spindles withtelescopic frame feet are usedinstead of the heavy-duty screw-jack 70, the permitted maximumloadability values given in the tablemust be limited to 36 kN.
The Formwork Experts 43
Tower frames d2 -free standing supporting scaffoldExcerpt from Test Certificate N° V 66975/2 of the Technical Testing and Research Institute at the TechnicalUniversity of Vienna
Breaking load per leg where a horizontal load of 2 % of the vertical loadis acting simultaneously (test result)
Allowing for a safety factor of 2.50, the following loads per leg may be permitted:
3518
018
018
025
600
100 100 152
V V V
H H H
Screw-jack U-head
Horizontal diagonal
Baseframe 1.80 m
Horizontal brace
Baseframe 1.80 m
Diagonal brace
Baseframe 1.80 m
Screw-jack foot
VBREAK = 144.00 kN
HBREAK = 2.88 kN
VPERM = 57.60 kN
HPERM = 1.15 kN
The Formwork Experts44
0 10 20 30 40 500
10
20
30
40
50
60
Lf 70 cm
Lf 45 cm
0 10 20 30 40 500
10
20
30
40
50
60
Per
mit
ted
load
on
leg
Fv
(eff
ecti
ve r
esis
tan
ce)
[kN
]
Length Lk by which screw-jack U-head is extended [cm]
Lf 15 cm
Lf 30 cm
Lf 60 cm
Lf 70 cm
Lf 45 cm
Aluxosupporting scaffold held at top
1.0 - 2.5 m 1.5 m
Fv Fv FvFv
L fL k
∇ 2-storey,1.80/1.20 frames
∇ 1-storey1.20 frame
∇ 3-storey,1.80/1.20 frames
1.0 - 2.5 m 1.5 m
FvFv FvFv
∇ 1-storey1.80 frame
L fL k
Aluxo supporting scaffold
Bottom height adjustment:Heavy-duty screw-jack 70or screw-jack foot
Top height adjustment:U-head (direct) or screw-jack U-head
Per
mit
ted
load
on
leg
Fv
(eff
ecti
ve r
esis
tan
ce)
[kN
]
Length Lk by which screw-jack U-head is extended [cm]
Calculationallowing for windon the supportingscaffold
The Formwork Experts 45
Aluxosupporting scaffold held at top
0 10 20 30 40 50 60 70 800
10
20
30
40
50
60
Per
mit
ted
load
on
leg
Fv
(eff
ecti
ve r
esis
tan
ce)
[kN
]
Lf 70 cm
Lf 45 cm
Length Lk of telescopic tube [cm]
0
10
20
30
40
50
60
Length Lk of telescopic tube [cm]
Per
mit
ted
load
on
leg
Fv
(eff
ecti
ve r
esis
tan
ce)
[kN
]
0 10 20 30 40 50 60 70 80
Lf 70 cm
Lf 45 cm
1.0 - 2.5 m 1.5 m
Fv Fv FvFv
L fL k
∇ 2-storey,1.80/1.20 frames
∇ 1-storey1.20 frame
∇ 3-storey,1.80/1.20 frames
1.0 - 2.5 m 1.5 m
FvFv FvFv
∇ 1-storey1.80 frame
L fL k
Aluxo supporting scaffold
Bottom height adjustment:Heavy-duty screw-jack 70or screw-jack foot
Top height adjustment:Telescopic tube 70 and 4-way head H20
Calculationallowing for windon the supportingscaffold
The Formwork Experts46
70.0
Per
mit
ted
ver
tica
l lo
ad
F V p
er le
g[k
N]
Height up to 6.0 m
50.0
Per
mit
ted
ver
tica
l lo
ad F
V p
er le
g
[kN
]
Permitted horizontal load FH per leg [kN]
bracing-strut plane
frame plane
bracing-strut plane
0 0.5 1.0 1.5
80.0
60.0
50.0
40.0
20.0
30.0
10.0
Permitted horizontal load FH per leg [kN]0 0.5 1.0 1.5
80.0
70.0
60.0
40.0
30.0
20.0
10.0
Staxofree standing supporting scaffold
LF max. 30 cmLK max. 30 cm
FVFV FVFV
1.5 - 2.5 m
max
.6.0
m
Staxo-frames1.80 m, 1.20 m or0.90 m
FH FHFH FH
Screw jack U-head or 4-wayscrew-jackhead
Screw-jack footor heavy-dutyscrew-jack 70
L KL F
Bracing-strut plane Frame plane
frame planebracing-strut plane
frame plane
LF max. 20 cmLK max. 20 cm
Calculationallowing for windon the supportingscaffold
The Formwork Experts 47
Per
mit
ted
ver
tica
l lo
ad F
Vp
erle
g [
kN]
60.0
Height up to 8.0 m
Permitted horizontal load FH per leg [kN]0 0.5 1.0 1.5
80.0
70.0
50.0
40.0
30.0
20.0
10.0
frame plane
Per
mit
ted
ver
tica
l lo
ad F
V p
erle
g [
kN] 80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0 0.5 1.0 1.5Permitted horizontal load FH per leg [kN]
frame planebracing strut plane
bracing strut plane
Staxofree standing supporting scaffold
FVFV FVFV
1.5 - 2.5 m
max
.8.0
m
Staxo frame1.80 m,1.20 mor 0.90 m
FH FHFH FH
Screw jack U-head or 4-wayscrew-jack head
Screw jack footor heavy dutyscrew jack 70
Frame planeBracing-strut plane
L KL F
LF max. 30 cmLK max. 30 cm
LF max. 20 cmLK max. 20 cm
Calculationallowing for windon the supportingscaffold
The Formwork Experts48
Per
mit
ted
ver
tica
l lo
ad F
Vp
er l
eg [
kN]
10.0
20.0
30.0
40.0
70.0
50.0
60.0
0 5 10 15
without wind
80.0
Per
mit
ted
ver
tica
l lo
ad F
V p
er le
g
[kN
]
Staxo framesassembled in any waydesired
Top and bottom Staxoframes 1.20 or 0.90 m
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
Staxosupporting scaffold held at top
0 5 10 15
Height H of supporting scaffold [m]
Height H of supporting scaffold [m]
without windwith wind
FV
Bracing-strut or frame planeFV FVFV
H
L K
1.5 - 2.5 m
Staxo-frames1.80 m, 1.20 mor 0.90 m
Screw-jack footor heavy-dutyscrew-jack 70 L F
with wind
Screw jackU-head or 4-wayscrew-jack head
LF max. 70 cmLK max. 35 cm
LF max. 30 cmLK max. 30 cm
Calculationallowing for windon the supportingscaffold
The Formwork Experts 49
I-beams
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
Des
ign
atio
n DimensionsSection properties
weak axis z-zstrong axis y-y
h b tw tf r1 r2 A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
IPN 80 80 42 3.9 5.9 3.9 2.3 7.6 5.9 77.8 19.5 22.8 3.2 6.3 3. 5. 0.91 0.87IPN 100 100 50 4.5 6.8 4.5 2.7 10.6 8.3 171. 34.2 39.8 4.01 12.2 4.9 8.1 1.07 1.6IPN 120 120 58 5.1 7.7 5.1 3.1 14.2 11.1 328. 54.7 63.6 4.81 21.5 7.4 12.4 1.23 2.71IPN 140 140 66 5.7 8.6 5.7 3.4 18.3 14.3 573. 81.9 95.4 5.61 35.2 10.7 17.9 1.4 4.32IPN 160 160 74 6.3 9.5 6.3 3.8 22.8 17.9 935. 117. 136. 6.4 54.7 14.8 24.9 1.55 6.57IPN 180 180 82 6.9 10.4 6.9 4.1 27.9 21.9 1450. 161. 187. 7.2 81.3 19.8 33.2 1.71 9.58IPN 200 200 90 7.5 11.3 7.5 4.5 33.4 26.2 2140. 214. 250. 8. 117. 26. 43.5 1.87 13.5IPN 220 220 98 8.1 12.2 8.1 4.9 39.5 31.1 3060. 278. 324. 8.8 162. 33.1 55.7 2.02 18.6IPN 240 240 106 8.7 13.1 8.7 5.2 46.1 36.2 4250. 354. 412. 9.59 221. 41.7 70. 2.2 25.IPN 260 260 113 9.4 14.1 9.4 5.6 53.3 41.9 5740. 442. 514. 10.4 288. 51. 85.9 2.32 33.5IPN 280 280 119 10.1 15.2 10.1 6.1 61. 47.9 7590. 542. 632. 11.1 364. 61.2 103. 2.45 44.2IPN 300 300 125 10.8 16.2 10.8 6.5 69. 54.2 9800. 653. 762. 11.9 451. 72.2 121. 2.56 56.8IPN 320 320 131 11.5 17.3 11.5 6.9 77.7 61. 12510. 782. 914. 12.7 555. 84.7 143. 2.67 72.5IPN 340 340 137 12.2 18.3 12.2 7.3 86.7 68. 15700. 923. 1080. 13.5 674. 98.4 166. 2.8 90.4IPN 360 360 143 13. 19.5 13. 7.8 97. 76.1 19610. 1090. 1276. 14.2 818. 114. 194. 2.9 115.IPN 380 380 149 13.7 20.5 13.7 8.2 107. 84. 24010. 1260. 1482. 15. 975. 131. 221. 3.02 141.IPN 400 400 155 14.4 21.6 14.4 8.6 118. 92.4 29210. 1460. 1714. 15.7 1160. 149. 253. 3.13 170.IPN 450 450 170 16.2 24.3 16.2 9.7 147. 115. 45850. 2040. 2400. 17.7 1730. 203. 345. 3.43 267.IPN 500 500 185 18. 27. 18. 10.8 179. 141. 68740. 2750. 3240. 19.6 2480. 268. 456. 3.72 402.IPN 550 550 200 19. 30. 19. 11.9 212. 166. 99180. 3610. 4240. 21.6 3490. 349. 592. 4.02 544.
European standard beams
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r1 radius of root fillet IT torsional constant
r2 toe radius
A sectional area
G weight per meter
The Formwork Experts50
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
IPE-beams
h b tw tf r hi A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
IPE 80 80 46 3.8 5.2 5 69.6 7.6 6. 80.1 20. 23.2 3.24 8.5 3.7 5.8 1.05 0.7IPE 100 100 55 4.1 5.7 7 88.6 10.3 8.1 171. 34.2 39.4 4.07 15.9 5.8 9.2 1.24 1.2IPE 120 120 64 4.4 6.3 7 107.4 13.2 10.4 317.8 53. 60.7 4.9 27.7 8.7 13.6 1.45 1.74IPE 140 140 73 4.7 6.9 7 126.2 16.4 12.9 541.2 77.3 88.3 5.74 44.9 12.3 19.3 1.65 2.45IPE 160 160 82 5. 7.4 9 145.2 20.1 15.8 869.3 108.7 123.9 6.58 68.3 16.7 26.1 1.84 3.6IPE 180 180 91 5.3 8. 9 164. 24. 18.8 1317. 146.3 166.4 7.42 100.9 22.2 34.6 2.05 4.79IPE 200 200 100 5.6 8.5 12 183. 28.5 22.4 1943. 194.3 220.6 8.26 142.4 28.5 44.6 2.24 6.98IPE 220 220 110 5.9 9.2 12 201.6 33.4 26.2 2772. 252. 285.4 9.11 204.9 37.3 58.1 2.48 9.07IPE 240 240 120 6.2 9.8 15 220.4 39.1 30.7 3892. 324.3 366.6 9.97 283.6 47.3 73.9 2.69 12.88IPE 270 260 135 6.6 10.2 15 249.6 45.9 36.1 5790. 428.9 484. 11.23 419.9 62.2 97. 3.02 15.94IPE 300 300 150 7.1 10.7 15 278.6 53.8 42.2 8356. 557.1 628.4 12.46 603.8 80.5 125.2 3.35 20.12IPE 330 330 160 7.5 11.5 18 307. 62.6 49.1 11770. 713.1 804.3 13.71 788.1 98.5 153.7 3.55 28.15IPE 360 360 170 8. 12.7 18 334.6 72.7 57.1 16270. 903.6 1019. 14.95 1043. 122.8 191.1 3.79 37.32IPE 400 400 180 8.6 13.5 21 373. 84.5 66.3 23130. 1156. 1307. 16.55 1318. 146.4 229. 3.95 51.08IPE 450 450 190 9.4 14.6 21 420.8 98.8 77.6 33740. 1500. 1702. 18.48 1676. 176.4 276.4 4.12 66.87IPE 500 500 200 10.2 16. 21 468. 115.5 90.7 48200. 1928. 2194. 20.43 2142. 214.2 335.9 4.31 89.29IPE 550 550 210 11.1 17.2 24 515.6 134.4 106. 67120. 2441. 2787. 22.35 2668. 254.1 400.5 4.45 123.2IPE 600 600 220 12. 19. 24 562. 156. 122. 92080. 3069. 3512. 24.3 3387. 307.9 485.6 4.66 165.4
IPE O 180 182 92 6. 9. 9 164. 27.1 21.3 1505. 165.4 189.1 7.45 117.3 25.5 39.9 2.08 6.76IPE O 200 202 102 6.2 9.5 12 183. 32. 25.1 2211. 218.9 249.4 8.32 168.9 33.1 51.9 2.3 9.45IPE O 220 222 112 6.6 10.2 12 201.6 37.4 29.4 3134. 282.3 321.1 9.16 239.8 42.8 66.9 2.53 12.27IPE O 240 242 122 7. 10.8 15 220.4 43.7 34.3 4369. 361.1 410.3 10. 328.5 53.9 84.4 2.74 17.18IPE O 270 274 136 7.5 12.2 15 249.6 53.8 42.3 6947. 507.1 574.6 11.36 513.5 75.5 117.7 3.09 24.9IPE O 300 304 152 8. 12.7 15 278.6 62.8 49.3 9994. 657.5 743.8 12.61 745.7 98.1 152.6 3.45 31.06IPE O 330 334 162 8.5 13.5 18 307. 72.6 57. 13910. 833. 942.8 13.84 960.4 118.6 185. 3.64 42.15IPE O 360 364 172 9.2 14.7 18 334.6 84.1 66. 19050. 1047. 1186. 15.05 1251. 145.5 226.9 3.86 55.76IPE O 400 404 182 9.7 15.5 21 373. 96.4 75.7 26750. 1324. 1502. 16.66 1564. 171.9 269.1 4.03 73.1IPE O 450 456 192 11. 17.6 21 420.8 117.7 92.4 40920. 1795. 2046. 18.65 2085. 217.2 341. 4.21 109.IPE O 500 506 202 12. 19. 21 468. 136.7 107. 57780. 2284. 2613. 20.56 2622. 259.6 408.5 4.38 143.5IPE O 550 556 212 12.7 20.2 24 515.6 156.1 123. 79160. 2847. 3263. 22.52 3224. 304.2 480.5 4.55 187.5IPE O 600 610 224 15. 24. 24 562. 196.8 154. 118300. 3879. 4471. 24.52 4521. 403.6 640.1 4.79 318.1
Des
ign
atio
n Dimensions
Section properties
weak axis z-zstrong axis y-y
European I-beams
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r radius of root fillet IT torsional constant
hi inner depth between flanges
A sectional area
G weight per meter
The Formwork Experts 51
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
IPBI-beams
h b tw tf r hi A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
HE 100 A 96 100 5. 8. 12 80 21.2 16.7 349.2 72.8 83. 4.06 133.8 26.8 41.1 2.51 5.24HE 120 A 114 120 5. 8. 12 98 25.3 19.9 606.2 106.3 119.5 4.89 230.9 38.5 58.9 3.02 5.99HE 140 A 133 140 5.5 8.5 12 116 31.4 24.7 1033. 155.4 173.5 5.73 389.3 55.6 84.9 3.52 8.13HE 160 A 152 160 6. 9. 15 134 38.8 30.4 1673. 220.1 245.1 6.57 615.6 77. 117.6 3.98 12.19HE 180 A 171 180 6. 9.5 15 152 45.3 35.5 2510. 293.6 324.9 7.45 924.6 102.7 156.5 4.52 14.8HE 200 A 190 200 6.5 10. 18 170 53.8 42.3 3692. 388.6 429.5 8.28 1336. 133.6 203.8 4.98 20.98
HE 220 A 210 220 7. 11. 18 188 64.3 50.5 5410. 515.2 568.5 9.17 1955. 177.7 270.6 5.51 28.46HE 240 A 230 240 7.5 12. 21 206 76.8 60.3 7763. 675.1 744.6 10.05 2769. 230.7 351.7 6. 41.55HE 260 A 250 260 7.5 12.5 24 225 86.8 68.2 10450. 836.4 919.8 10.97 3668. 282.1 430.2 6.5 52.37HE 280 A 270 280 8. 13. 24 244 97.3 76.4 13670. 1013. 1112. 11.86 4763. 340.2 518.1 7. 62.1HE 300 A 290 300 8.5 14. 27 262 112.5 88.3 18260. 1260. 1383. 12.74 6310. 420.6 641.2 7.49 85.17
HE 320 A 310 300 9. 15.5 27 279 124.4 97.6 22930. 1479. 1628. 13.58 6985. 465.7 709.7 7.49 108.HE 340 A 330 300 9.5 16.5 27 297 133.5 105. 27690. 1678. 1850. 14.4 7436. 495.7 755.9 7.46 127.2HE 360 A 350 300 10. 17.5 27 315 142.8 112. 33090. 1891. 2088. 15.22 7887. 525.8 802.3 7.43 148.8HE 400 A 390 300 11. 19. 27 352 159. 125. 45070. 2311. 2562. 16.84 8564. 570.9 872.9 7.34 189.
HE 450 A 440 300 11.5 21. 27 398 178. 140. 63720. 2896. 3216. 18.92 9465. 631. 965.5 7.29 243.8HE 500 A 490 300 12. 23. 27 444 197.5 155. 86970. 3550. 3949. 20.98 10370. 691.1 1059. 7.24 309.3HE 550 A 540 300 12.5 24. 27 492 211.8 166. 111900. 4146. 4622. 22.99 10820. 721.3 1107. 7.15 351.5HE 600 A 590 300 13. 25. 27 540 226.5 178. 141200. 4787. 5350. 24.97 11270. 751.4 1156. 7.05 397.8
HE 650 A 640 300 13.5 26. 27 588 241.6 190. 175200. 5474. 6136. 26.93 11720. 781.6 1205. 6.97 448.3HE 700 A 690 300 14.5 27. 27 636 260.5 204. 215300. 6241. 7032. 28.75 12180. 811.9 1257. 6.84 513.9HE 800 A 790 300 15. 28. 30 734 285.8 224. 303400. 7682. 8699. 32.58 12640. 842.6 1312. 6.65 596.9
HE 900 A 890 300 16. 30. 30 830 320.5 252. 422100. 9485. 10810. 36.29 13550. 903.2 1414. 6.5 736.8HE 1000 A 990 300 16.5 31. 30 928 346.8 272. 553800. 11190. 12820. 39.96 14000. 933.6 1470. 6.35 822.4
Des
ign
atio
n Dimensions
Section properties
strong axis y-y weak axis z-z
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r radius of root fillet IT torsional constant
hi inner depth between flanges
A sectional area
G weight per meter
European wide flange beams
The Formwork Experts52
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
IPB-beamsD
esig
nat
ion Dimensions
Section properties
strong axis y-y weak axis z-z
h b tw tf r hi A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
HE 100 B 100 100 6. 10. 12. 80. 26. 20.4 449.5 89.9 104.2 4.16 167.3 33.5 51.4 2.53 9.25HE 120 B 120 120 6.5 11. 12. 98. 34. 26.7 864.4 144.1 165.2 5.04 317.5 52.9 81. 3.06 13.84HE 140 B 140 140 7. 12. 12. 116. 43. 33.7 1509. 215.6 245.4 5.93 549.7 78.5 119.8 3.58 20.06HE 160 B 160 160 8. 13. 15. 134. 54.3 42.6 2492. 311.5 354. 6.78 889.2 111.2 170. 4.05 31.24HE 180 B 180 180 8.5 14. 15. 152. 65.3 51.2 3831. 425.7 481.4 7.66 1363. 151.4 231. 4.57 42.16HE 200 B 200 200 9. 15. 18. 170. 78.1 61.3 5696. 569.6 642.5 8.54 2003. 200.3 305.8 5.07 59.28
HE 220 B 220 220 9.5 16. 18. 188. 91. 71.5 8091. 735.5 827. 9.43 2843. 258.5 393.9 5.59 76.57HE 240 B 240 240 10. 17. 21. 206. 106. 83.2 11260. 938.3 1053. 10.31 3923. 326.9 498.4 6.08 102.7HE 260 B 260 260 10. 17.5 24. 225. 118.4 93. 14920. 1148. 1283. 11.22 5135. 395. 602.2 6.58 123.8HE 280 B 280 280 10.5 18. 24. 244. 131.4 103. 19270. 1376. 1534. 12.11 6595. 471. 717.6 7.09 143.7HE 300 B 300 300 11. 19. 27. 262. 149.1 117. 25170. 1678. 1869. 12.99 8563. 570.9 870.1 7.58 185.
HE 320 B 320 300 11.5 20.5 27. 279. 161.3 127. 30820. 1926. 2149. 13.82 9239. 615.9 939.1 7.57 225.1HE 340 B 340 300 12. 21.5 27. 297. 170.9 134. 36660. 2156. 2408. 14.65 9690. 646. 985.7 7.53 257.2HE 360 B 360 300 12.5 22.5 27. 315. 180.6 142. 43190. 2400. 2683. 15.46 10140. 676.1 1032. 7.49 292.5HE 400 B 400 300 13.5 24. 27. 352. 197.8 155. 57680. 2884. 3232. 17.08 10820. 721.3 1104. 7.4 355.7
HE 450 B 450 300 14. 26. 27. 398. 218. 171. 79890. 3551. 3982. 19.14 11720. 781.4 1198. 7.33 440.5HE 500 B 500 300 14.5 28. 27. 444. 238.6 187. 107200. 4287. 4815. 21.19 12620. 841.6 1292. 7.27 538.4HE 550 B 550 300 15. 29. 27. 492. 254.1 199. 136700. 4971. 5591. 23.2 13080. 871.8 1341. 7.17 600.3HE 600 B 600 300 15.5 30. 27. 540. 270. 212. 171000. 5701. 6425. 25.17 13530. 902. 1391. 7.08 667.2
HE 650 B 650 300 16. 31. 27. 588. 286.3 225. 210600. 6480. 7320. 27.12 13980. 932.3 1441. 6.99 739.2HE 700 B 700 300 17. 32. 27. 636. 306.4 241. 256900. 7340. 8327. 28.96 14440. 962.7 1495. 6.87 830.9HE 800 B 800 300 17.5 33. 30. 734. 334.2 262. 359100. 8977. 10230. 32.78 14900. 993.6 1553. 6.68 946.HE 900 B 900 300 18.5 35. 30. 830. 371.3 291. 494100. 10980. 12580. 36.48 15820. 1054. 1658. 6.53 1137.HE 1000 B 1000 300 19. 36. 30. 928. 400. 314. 644700. 12890. 14860. 40.15 16280. 1085. 1716. 6.38 1254.
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r radius of root fillet IT torsional constant
hi inner depth between flanges
A sectional area
G weight per meter
European wide flange beams
The Formwork Experts 53
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
IPBV-beams
h b tw tf r hi A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
HE 100 M 120 106 12. 20. 12 80 53.2 41.8 1143 190.4 235.8 4.63 399.2 75.3 116.3 2.74 68.21HE 120 M 140 126 12.5 21. 12 98 66.4 52.1 2018 288.2 350.6 5.51 702.8 111.6 171.6 3.25 91.66HE 140 M 160 146 13. 22. 12 116 80.6 63.2 3291 411.4 493.8 6.39 1144. 156.8 240.5 3.77 120.HE 160 M 180 166 14. 23. 15 134 97.1 76.2 5098 566.5 674.6 7.25 1759. 211.9 325.5 4.26 162.4HE 180 M 200 186 14.5 24. 15 152 113.3 88.9 7483 748.3 883.4 8.13 2580. 277.4 425.2 4.77 203.3HE 200 M 220 206 15. 25. 18 170 131.3 103. 10640 967.4 1135. 9. 3651. 354.5 543.2 5.27 259.4
HE 220 M 240 226 15.5 26. 18 188 149.4 117. 14600 1217. 1419. 9.89 5012. 443.5 678.6 5.79 315.3HE 240 M 270 248 18. 32. 21 206 199.6 157. 24290 1799. 2117. 11.03 8153. 657.5 1006. 6.39 627.9HE 260 M 290 268 18. 32.5 24 225 219.6 172. 31310 2159. 2524. 11.94 10450. 779.7 1192. 6.9 719.HE 280 M 310 288 18.5 33. 24 244 240.2 189. 39550 2551. 2966. 12.83 13160. 914.1 1397. 7.4 807.3HE 300 M 340 310 21. 39. 27 262 303.1 238. 59200 3482. 4078. 13.98 19400. 1252. 1913. 8. 1408.
HE 320 M 359 309 21. 40. 27 279 312. 245. 68130 3796. 4435. 14.78 19710. 1276. 1951. 7.95 1501.HE 340 M 377 309 21. 40. 27 297 315.8 248. 76370 4052. 4718. 15.55 19710. 1276. 1953. 7.9 1506.HE 360 M 395 308 21. 40. 27 315 318.8 250. 84870 4297. 4989. 16.32 19520. 1268. 1942. 7.83 1507.HE 400 M 432 307 21. 40. 27 352 325.8 256. 104100 4820. 5571. 17.88 19340. 1260. 1934. 7.7 1515.
HE 450 M 478 307 21. 40. 27 398 335.4 263. 131500 5501. 6331. 19.8 19340. 1260. 1939. 7.59 1529.HE 500 M 524 306 21. 40. 27 444 344.3 270. 161900 6180. 7094. 21.69 19150. 1252. 1932. 7.46 1539.HE 550 M 572 306 21. 40. 27 492 354.4 278. 198000 6923. 7933. 23.64 19160. 1252. 1937. 7.35 1554.HE 600 M 620 305 21. 40. 27 540 363.7 285. 237400 7660. 8772. 25.55 18980. 1244. 1930. 7.22 1564.
HE 650 M 668 305 21. 40. 27 588 373.7 293. 281700 8433. 9657. 27.45 18980. 1245. 1936. 7.13 1579.HE 700 M 716 304 21. 40. 27 636 383. 301. 329300 9198. 10540. 29.32 18800. 1237. 1929. 7.01 1589.HE 800 M 814 303 21. 40. 30 734 404.3 317. 442600 10870. 12490. 33.09 18630. 1230. 1930. 6.79 1646.HE 900 M 910 302 21. 40. 30 830 423.6 333. 570400 12540. 14440. 36.7 18450. 1222. 1929. 6.6 1671.HE 1000 M 1008 302 21. 40. 30 928 444.2 349. 722300 14330. 16570. 40.32 18460. 1222. 1940. 6.45 1701.
Des
ign
atio
n DimensionsSection properties
strong axis y-y weak axis z-z
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r radius of root fillet IT torsional constant
hi inner depth between flanges
A sectional area
G weight per meter
European wide flange beams
The Formwork Experts54
U-sections
Excerpt from "Stahlbauprofile" (Structural steel sections), 16th reprint
h b tw tf r1 r2 A G Iy Wy Wpl,y iy Iz Wz Wpl,z iz IT
mm mm mm mm mm mm cm2 kg/m cm4 cm3 cm3 cm cm4 cm3 cm3 cm cm4
UPN 80 80 45 6. 8. 8. 4. 11. 8.6 106 26.5 31.8 3.1 19.4 6.4 12.1 1.33 2.16UPN 100 100 50 6. 8.5 8.5 4.5 13.5 10.6 206 41.2 49. 3.91 29.3 8.5 16.2 1.47 2.81
UPN 120 120 55 7. 9. 9. 4.5 17. 13.4 364 60.7 72.6 4.62 43.2 11.1 21.2 1.59 4.15UPN 140 140 60 7. 10. 10. 5. 20.4 16. 605 86.4 103. 5.45 62.7 14.8 28.3 1.75 5.68UPN 160 160 65 7.5 10.5 10.5 5.5 24. 18.8 925 116. 138. 6.21 85.3 18.3 35.2 1.89 7.39UPN 180 180 70 8. 11. 11. 5.5 28. 22. 1350 150. 179. 6.95 114. 22.4 42.9 2.02 9.55UPN 200 200 75 8.5 11.5 11.5 6. 32.2 25.3 1910 191. 228. 7.7 148. 27. 51.8 2.14 11.9
UPN 220 220 80 9. 12.5 12.5 6.5 37.4 29.4 2690 245. 292. 8.48 197. 33.6 64.1 2.3 16.UPN 240 240 85 9.5 13. 13. 6.5 42.3 33.2 3600 300. 358. 9.22 248. 39.6 75.7 2.42 19.7UPN 260 260 90 10. 14. 14. 7. 48.3 37.9 4820 371. 442. 9.99 317. 47.7 91.6 2.56 25.5UPN 280 280 95 10. 15. 15. 7.5 53.3 41.8 6280 448. 532. 10.9 399. 57.2 109. 2.74 31.UPN 300 300 100 10. 16. 16. 8. 58.8 46.2 8030 535. 632. 11.7 495. 67.8 130. 2.9 37.4
UPN 320 320 100 14. 17.5 17.5 8.8 75.8 59.5 10870 679. 826. 12.1 597. 80.6 152. 2.81 66.7UPN 350 350 100 14. 16. 16. 8. 77.3 60.6 12840 734. 918. 12.9 570. 75. 143. 2.72 61.2UPN 380 380 102 13.5 16. 16. 8. 80.4 63.1 15760 829. 1014. 14. 615. 78.7 148. 2.77 59.1UPN 400 400 110 14. 18. 18. 9. 91.5 71.8 20350 1020. 1240. 14.9 846. 102. 190. 3.04 81.6
Designation Dimensions
Section properties
strong axis y-y weak axis z-z
European standard channels
h depth of section I moment of inertia
b width of section W elastic section modulus
tw web thickness Wpl plastic section modulus
tf flange thickness i radius of gyration
r1 radius of root fillet IT torsional constant
r2 toe radius
A sectional area
G weight per meter
The Formwork Experts 55
Excerpt from VÖEST works standard specification
Section tubes, square
A dimensions J moment of inertia
t thickness W elastic section modulus
F sectional area i radius of gyration
G weight per meter JD torsinal constant
M outer surface WD torsional section modulus
The Formwork Experts56
Excerpt from VÖEST works standard specification
Section tubes, rectangular
a depth of section M outer surface
b Width of section J moment of inertia
s thickness W elastic section modulus
F sectional area i radius of gyration
G weight per meter
The Formwork Experts 57
Excerpt from VÖEST works standard specification
Section tubes, rectangular
The Formwork Experts58
Excerpt from "Stahl im Hochbau" (Steel in building construction),1969 edition, 13th reprint
Steel tubes
D diameter
G weight per meter
F sectional area
I moment of inertia
W elastic section modulus
i radius of gyration
The Formwork Experts 59
Excerpt from "Stahl im Hochbau" (Steel in building construction),1969 edition, 13th reprint
Steel tubes
The Formwork Experts60
Excerpt from "Bautechnische Zahlentafeln", (Numerical tables for construction engineering),23rd reprint
Squared timbers, cross-sectionaldimensions and statical values
The Formwork Experts 61
Excerpt from "Bautechnische Zahlentafeln", (Numerical tables for construction engineering),23rd reprint
Squared timbers, cross-sectionaldimensions and statical values
The Formwork Experts62
Characteristic materials values
Combination of building materials Frictional coefficient
max. min
1 Timber/timber
Friction surface parallel to grain
or perpendicular to grain 1.0 0.4
2 Timber/timber
at least one friction surfaceperpendicular to grain(end-grained wood) 1.0 0.6
3 Timber/steel 1.2 0.5
4 Timber /concrete or /mortar bed 1.0 0.8
5 Steel/steel 0.8 0.2
6 Steel/concrete 0.4 0.3
7 Steel/mortar bed 1.0 0.5
8 Concrete/concrete 1.0 0.5
Frictional coefficients
MetalModulus of elasticity Shear modulus Thermal coefficient of
E G linear expansion αααααt
kN/cm² kN/cm² 1/°C
Steel 21000 8100 0.000012
Aluminium 7000 2700 0.000023
TimberModulus of elasticity
Parallel to Perpendicular tograin grain Shear modulus
EII E⊥⊥⊥⊥⊥ G
kN/cm² kN/cm² kN/cm²
Softwoods 1000 30 50(European)
Oak and beech 1250 60 100
Laminated wood(from European 1100 30 50softwoods)
(grain direction)
or
The Formwork Experts 63
Fundamentals: DIN 18 800 Part 2/1990Steel grade: St 37-2
Safety factors: γF = 1.5 γM = 1.1
λmax = 250
Loadability ofbuckling columns
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
0per
mis
sib
le p
ress
ure
load
[kN
]
Free buckling length SK [m]
48.3/3,2
48.3/4,0 50/50/3
50/50/5
60.3/4,5
108/5.0
80/60/4
80/80/4
The Formwork Experts64
Platform flooringto DIN 4420
December 1990
Live loads for platform floors
Scaffold category 1Category 1 scaffolds may be used for inspection purposes only. Surveying or control work on a facade would be anexample of such inspection work. Note that only one person at a time, bearing light tools only, may stand on eachsection of scaffold flooring. Manual handiwork in the usual sense of the term may not be carried out on a Category1 scaffold.
Scaffold category 2Category 2 scaffolds may only be used for work not requiring building materials or components to be stored on thescaffold. Scaffolds of this category may be used for maintenance work, for example, and in particular for cleaningwork on facades. The permitted load on the flooring may not exceed 150 kg/m² here. For a platform floor measuring0.60 m x 2.50 m, for example, the permitted load would be 225 kg. However, it must be remembered that in thiscategory, no single flooring member (i.e. scaffold plank) that is less than 0.35 m wide may be loaded with a weightof more than 150 kg. Category 2 scaffolds may also be used as protective scaffolding where the flooring used isappropriately designed.
Scaffold category 3Category 3 scaffolds may only be used for work in which the load from both materials and persons does not exceeda live weight per unit area of 200 kg/m². The materials stored on the flooring may not be set down by means of hoistingappliances.
Scaffolds of this category may be used, for example, for exterior rendering and plastering work; for coating, pointingor repair work; as reinforcement-placement or concrete-pouring scaffolds in the reinforced-concrete constructionfield, or as erection scaffolds in the fields of steel construction, shipbuilding and aerospace engineering.
The precondition for such usage, however, is that a passageway of at least 0.20 m in width is left clear where materialsare stored on the flooring. If machine rendering is carried out on these scaffolds, care must be taken to use onlypressure-gun equipment that can still be operated in an ergonomically acceptable manner on scaffolds of only 0.60m in width.
Scaffold categories 4, 5 and 6Scaffolds of categories 4, 5 and 6 may be used for work in which building materials and components are, as a rule,set down by means of hoisting appliances and stored on the scaffold. The precondition for such usage, however, isthat the permitted loads and surface pressures do not exceed the values stipulated in Table 1. Scaffolds of thesecategories are generally used for masonry and rendering work, tiling and stone-ashlar work, and for heavy erectionwork in the steel construction and shipbuilding fields. Where materials are stored on the scaffold, care should betaken - as with Category 3 scaffolds - to ensure that a passageway of at least 0.20 m in width is left clear on the flooring.
If brackets are used on the wall-facing side of the scaffold for repetitive (storey-cycle) masonry operations, thesebrackets must be compatible with the scaffold category of the main area of platform flooring - if, that is, they arepositioned at the same height as the main floor, i.e. with a maximum height difference of 0.25 m. If the heightdifference is more than 0.25 m, it is also permissible to select a bracket flooring that corresponds to scaffold category2 or 3.
1 2 3 4 5 6
Concentrated load Load on partial areaUniformly on an area of Parial area
Category distributed 500 x 500 mm 200 x 200 mm Acload in kN/m² kN kN kN/m² m²
1 0.75 1.50 1.00 not required
2 1.50 1.50 1.00 not required
3 2.00 1.50 1.00 not required
4 3.00 3.00 1.00 5.00 0.4 · A
5 4.50 3.00 1.00 7.50 0.4 · A
6 6.00 3.00 1.00 1000 0.4 · A
The Formwork Experts 65
Platform flooringand side protection
Permitted effective span in m for scaffold flooring made oftimber planks or boards
Scaffold Width of Thickness of plank or boardcategory plank or board cm
cm 3.00 3.50 4.00 4.50 5.00
1, 2, 3 20 1.25 1.50 1.75 2.25 2.50
24 and 28 1.25 1.75 2.25 2.50 2.75
4 20 1.25 1.50 1.75 2.25 2.50
24 and 28 1.25 1.75 2.00 2.25 2.50
5 20, 24, 28 1.25 1.25 1.50 1.75 2.00
6 20, 24, 28 1.00 1.25 1.25 1.50 1.75
Excerpt from DIN 4420, Part 1
Timber planks as flooring on fall barriers
Drop Permitted span in m forh plank cross-section in cm x cm
[m] Double layer flooringmax. 24 x 4.5 28 x 4.5 24 x 4.5 28 x 4.5
1.0 1.4 1.5 2.5 2.71.5 1.2 1.4 2.2 2.52.0 1.2 1.3 2.0 2.22.5 1.1 1.2 1.9 2.03.0 1.0 1.1 1.8 2.0
Excerpt from DIN 4420, Part 1
Timber side protection - except on ladder scaffolding
Minimum dimensions in cm forrailing boards and posts
Spacing of posts Scaffold boards Scaffold poles Edge boardsor planks
(thickness/width) (diameter) (thickness/width)
2.00 3/15
2.50 4/15 or 3/20 8 3/10
3.00 4/20
4.00 5/20
Excerpt from ZH 1/534 "Arbeits- und Schutzgerüste" (Working and safety scaffolds)
The Formwork Experts66
Frequently used formulae
Excerpt from "Bautechnische Zahlentafeln", (Numerical tables for construction engineering),23rd reprint
The Formwork Experts 67
Frequently used formulae
Excerpt from "Bautechnische Zahlentafeln", (Numerical tables for construction engineering),23rd reprint
The Formwork Experts68
Nailed joinsStrain perpendicular to nail axis(shearing-off) to DIN 1052
Timber thicknesses, penetration depths and permitted loads per nail andshear plane (shearing off) in loading case H for
a) round wire nails to DIN 1151 for all grades of timber
Nail Min. timber Minimum Permitted nail load N1 in Nsize dn thickness depth of for one shear in:
in 1/10 mm in mm for penetrationtimes ln nail holes: in mm Softwood Hardwood
per Table 1 per Table 1
without with single- multi- without with alwaysin mm pilot-drillhole shear pilot-drillhole pilot-drilled
18 x 35 24 22 15 135 170 20520 x 40 24 24 16 165 205 25020 x 45 24 24 16 165 205 25022 x 45 24 27 18 200 250 30022 x 50 24 27 18 200 250 30025 x 55 24 30 20 250 310 37525 x 60 24 30 20 250 310 37528 x 65 24 34 23 305 380 46031 x 65 24 38 25 365 460 55031 x 70 24 38 25 365 460 55031 x 80 24 38 25 365 460 55034 x 80 24 41 27 430 540 65034 x 90 24 41 27 430 540 650
38 x 100 24 46 30 525 655 78542 x 100 26 51 34 620 775 93042 x 110 26 51 34 620 775 93042 x 120 26 51 34 620 775 93046 x 130 30 28 56 37 725 905 109055 x 140 40 35 66 44 975 1220 146555 x 160 40 35 66 44 975 1220 146560 x 180 50 35 72 48 1125 1405 169070 x 210 60 45 84 56 1440 1800 216076 x 230 70 45 92 62 1640 2050 246076 x 260 70 45 92 62 1640 2050 246088 x 260 90 55 106 70 2060 2570 3090
Excerpt from "Bautechnische Zahlen-tafeln", (Numerical tables for constructionengineering),23rd reprint
Minimum distance of nails
Values in ( ) Direction Nail distance parallelonly for of grain to direction of forcedn > 4,2 mm
not bored bored
between 10 dn (12 dn)5 dn
nails 5 dn
in direction 15 dn 10 dnof loadedborder
7 dn (10 dn) 5 dnin directon ofunloadedborder 5 dn 3 dn
Penetration dephts s1) and permitted nail loads perm. N1 for roundwire nails (DN) and special nails (SN) of load bearing capacity grades I, II, III
penetr.depth s perm. nail load
single s > 12dn perm. N1shear DN,plan SN 6dn < sw < 12dn perm. N1
. sw/12dnI
s < 6dn 0
s > 8dn perm. N1
SN 4dn < sw < 8dn perm. N1 . sw/8dn
II, IIIs < 4dn 0
m-shear s > 8dn m . perm. N1plan for DN DN,and SN SN 4dn < sw < 8dn [(m-1)+sw/8dn]
. perm. N1
nailing both I, II, IIIsides s < 4dn (m-1) . perm. N11) s = nominal depth, sw = real depth, for special nails II, III only treaded shaft lg
Reduction of nailnumbers at joints: for n >10 nails close together use ef n = 10 + 0,666 (n-10),n > 30 close together don't calculate
twice shear plane
single shear plane
= =
=
=
= =
=
= =
=
The Formwork Experts 69
Systems of unitsSI basic units
Physical property UnitName Symbol
Length Metre mMass Kilogram kgTime Second sAmperage Ampere ATemperature*) Kelvin KAmount of mass Mol molLight intensity Candela cd
*) The celsius temperature scale continues to be used in the iron and steel industry.
Comparison of the principal SI unitswith former measuring units
s²=
mm²N 1mm²
N = 1NewtonKilopound kp
mm²
Property Previous term Unit New unit Symbol Relationship to basic(excepting magnetic symbol in SI system of unit units of SI system
units permitteduntil• 31.12.1977)
Force• Kilopound kp Newton N 1 N 1
Mechanicalstrain(strength)
Kilopound kp Pascal PaSquare centimetre cm² or
Pressure Atmosphere at Newton NMillimetres w•ater column mm WS Square millimetre mm²
Millimetres mercury column Torr
Energy, work, Calorie calquantity of heat Kilopound metre kpm
Notch Kilopound metre kpmtoughness Square centimetre cm²
1 Pa = kg · ms² · m²1
kg · m=s² · 10-6m²
Nmm² 11
Joule
Joule
J
J
= 1kg · m²
s²1J
1J = 1kg · m²
s²
Force SI unit: Newton Mechanical strain SI unit:(strength)
Square millimetreNewton
kp J/cm N
kp 1 9.81 · 10-2 9.81J/cm 10.2 1 100N 0.102 0.01 1
kp/mm² kp/cm² N/mm²
kp/mm² 1 100 9.81kp/cm² 0.01 1 9.81 · 10-2
N/mm² 0.102 10.2 1
The exact conversion factor is: 1 kp = 9.80665 N
Prefixes and their symbols
Name of Prefix Decimal Name of Prefix Decimalprefix symbol exponent prefix symbol exponent
Deca da 10 Deci d 10-1
Hecto h 10² Centi c 10-2
Kilo k 10³ Milli m 10-3
Mega M 106 Micro µ 10-6
Giga G 109 Nano n 10-9
Tera T 1012 Pico p 10-12
The prefix is written directly in front of the name of the unit, and the prefix symbol directlyin front of the symbol for the unit, with no intervening space in either case.
Square millimetreSquare millimetre
kg · m
kg · ms² · 10-6m²
The Formwork Experts
Correct formwork designsaves materials and time
In all formwork tasks, it is exceedingly importantto ensure that the formwork is correctly designed.
The Doka branch nearest you will be pleased to give youinformation and literature on Doka's formwork systems.
A telephone call is all it takes!
The Doka Group’s central plant at Amstetten, Austria
Doka internationalDeutsche Doka
Schalungstechnik GmbH Frauenstrasse 35
D-82216 Maisach, GermanyTelephone: (0 81 41) 3 94-0Telefax: (0 81 41) 3 94 405
E-Mail: [email protected]
Österreichische DokaSchalungstechnik GmbHReichsstrasse 23A-3300 Amstetten, AustriaTelephone: (0 74 72) 6 05-0Telefax: (0 74 72) 6 44 30E-Mail: [email protected]
Internet: http: // www.doka.com
BelgiumNV Doka SAHandelsstraat 3B-1740 TernatTelephone: (02) 5 82 02 70Telefax: (02) 5 82 29 14
BrazilDoka BrasilFôrmas para Concreto Ltda.Rua Guilherme Lino dos Santos, 800Jardim Flôr do Campo -Guarulhos/SP CEP 07.190-010Telephone: (011) 6404-3500Telefax: (011) 6404-5700
FinlandDoka Finland OySelintie 542FIN-03320 SelkiTelephone: (09) 22 42 64 0Telefax: (09) 22 42 64 20
FranceDoka France SA3, chemin des Iles, Z.I.F-78610 Le Perray en YvelinesTelephone: 01 34 84 27 27Telefax: 01 34 84 27 00
ItalyDoka Italia S.p.A.Via Bruno Buozzi, 9I-20097 S. Donato Milanese (MI)Telephone: (02) 52 77 51Telefax: (02) 5 27 98 98
KoreaKumkang DokaJung-Am Building 6th Floor769-12 Yeoksam-Dong, Kangnam-KuSeoul 135-080Telephone: (02) 562-3030Telefax: (02) 565-4466
KuwaitDoka KuwaitDiv.of Riham Gen. Trad.& Contr. Co.P.O. Box 2217 Salmiyah22023 KuwaitTelephone: 482 24 62Telefax: 482 24 72
LebanonÖsterreichische DokaSchalungstechnik GmbHDoka Branch LebanonEl-Arab BuildingSidani Street / Hamra RegionBeirut/LebanonTelephone: (03) 88 00 17Telefax: (01) 74 52 33
Other subsidiaries andrepresentatives:
ArgentinaAustraliaChileChinaCroatiaCzech RepublicDenmarkGreeceGuatemalaHungaryIcelandIndiaIndonesiaIranJapanMalaysiaMexicoNew ZealandNorwayPolandRomaniaRussiaSlovakiaSloveniaSwedenSwitzerlandThailandTurkeyUruguayUSAYugoslavia
NetherlandsDoka Nederland BVLongobardenweg 11NL-5342 PL OssTelephone: (04 12) 65 00 00Telefax: (04 12) 65 00 05
PortugalDoka Portugal Cofragens Lda.Zona Industrial da MaiaSector III - Lote 20 - Outeiro - GemundeP-4470 MaiaTelephone: (02) 943 80 80Telefax: (02) 949 03 62
Saudi ArabiaDoka JeddahDiv. of Mahmoud Othman Est.P.O. Box 7620Jeddah 21472Telephone: (2) 6 94 09 14Telefax: (2) 6 94 12 81
SpainDoka España Encofrados, S.A.Poligono Industrial ButarqueCalle Julio Palacios 20 - 22E-28914 Leganés - MadridTelephone: (91) 685 75 00Telefax: (91) 685 75 01
SingaporeDFS Technology Pte. Ltd.No. 167 Geylang Road # 04-01Singapore 389242Telephone: 747-3890Telefax: 747-9770
TaiwanDEC Engineering Corp.7 Fl., No.123, Sec.4, Pa-Te Rd.Taipei, Taiwan, R.O.C.Telephone: (2) 27 53 42 61Telefax: (2) 27 53 33 38
United Arab EmiratesDoka Gulf FZEP.O. Box 61407Jebel Ali Free Zone Dubai, U.A.E.Telephone: (04) 81 80 96Telefax: (04) 81 80 97
United KingdomDoka UKFormwork Technologies LtdMonchelsea Farm, Heath RoadBoughton MonchelseaMaidstone, Kent, ME17 4JDTelephone: (01622) 74 90 50Telefax: (01622) 74 90 33