6
Name________________________ StarBiochem Ver. 1 ‐ LMA 1 DNA Glycosylase: a case study in protein evolution Learning Objectives Proteins with similar functions have similar 3D structures Proteins with similar function and 3D structures do not need to have identical amino acids sequences. Background In this exercise, you will use StarBiochem, a protein 3‐D viewer, to explore the structure of a DNA repair protein found in most species. DNA repair proteins move along DNA strands, checking for mistakes. DNA glycosylases, a specific type of DNA repair proteins, recognize DNA bases that have been chemically altered and remove them, leaving a site in the DNA without a base. Other proteins then come along to fill in the missing DNA base. We will begin this exercise by exploring the structure of one of the human DNA glycosylases called hOGG1. We will then explore the structure of a related DNA glycosylase protein found in archaebacteria called PaAGOG. hOGG1 Pa‐AGOG Getting started with StarBiochem To get to StarBiochem, please navigate to: http://web.mit.edu/star/biochem. Click on the Start button to launch the application. Click Trust when a prompt appears asking if you trust the certificate. Under File, click on Open/Import and select “1EBM” (the four letter ID for hOGG1) and click Open. You are now viewing the structure of the human DNA glycosylase hOGG1 (1EBM), with each bond in the protein drawn as a line. Practice changing the viewpoint of this protein in the view window: Mac PC TO ROTATE click and drag the mouse left‐click and drag the mouse TO MOVE UP/DOWN RIGHT/LEFT apple‐click and drag the mouse right‐click and drag the mouse TO ZOOM option‐click and drag the mouse Alt‐left‐click and drag the mouse Take a moment to look at the structure of hOGG1 (1EBM) from various angles in this "bonds only" view. Before proceeding to answer the questions, review the basic structures and terms on the next page which you can refer to during this lesson.

DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

1

DNAGlycosylase:acasestudyinproteinevolutionLearningObjectives• Proteinswithsimilarfunctionshavesimilar3Dstructures• Proteinswithsimilarfunctionand3Dstructuresdonotneedtohaveidenticalaminoacidssequences.

BackgroundInthisexercise,youwilluseStarBiochem,aprotein3‐Dviewer,toexplorethestructureofaDNArepairproteinfoundinmostspecies.DNArepairproteinsmovealongDNAstrands,checkingformistakes.DNAglycosylases,aspecifictypeofDNArepairproteins,recognizeDNAbasesthathavebeenchemicallyalteredandremovethem,leavingasiteintheDNAwithoutabase.OtherproteinsthencomealongtofillinthemissingDNAbase.

WewillbeginthisexercisebyexploringthestructureofoneofthehumanDNAglycosylasescalledhOGG1.WewillthenexplorethestructureofarelatedDNAglycosylaseproteinfoundinarchaebacteriacalledPa‐AGOG.

hOGG1 Pa‐AGOG

GettingstartedwithStarBiochem• TogettoStarBiochem,pleasenavigateto:http://web.mit.edu/star/biochem.• ClickontheStartbuttontolaunchtheapplication.• ClickTrustwhenapromptappearsaskingifyoutrustthecertificate.• UnderFile,clickonOpen/Importandselect“1EBM”(thefourletterIDforhOGG1)andclickOpen.

YouarenowviewingthestructureofthehumanDNAglycosylasehOGG1(1EBM),witheachbondintheproteindrawnasaline.

Practicechangingtheviewpointofthisproteinintheviewwindow:

Mac PCTOROTATE

clickanddragthemouse left‐clickanddragthemouse

TOMOVEUP/DOWNRIGHT/LEFT

apple‐clickanddragthemouse right‐clickanddragthemouse

TOZOOM

option‐clickanddragthemouse Alt‐left‐clickanddragthemouse

TakeamomenttolookatthestructureofhOGG1(1EBM)fromvariousanglesinthis"bondsonly"view.Beforeproceedingtoanswerthequestions,reviewthebasicstructuresandtermsonthenextpagewhichyoucanrefertoduringthislesson.

Page 2: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

2

PROTEINSTRUCTUREBASICSEachproteinhasthefollowingthreelevelsofproteinstructure:PrimarystructureListstheaminoacidsthatmakeupaprotein’ssequence,butdoesnotdescribeitsshape.SecondarystructureDescribesregionsoflocalfoldingthatformaspecificshape,likeahelix,asheet,oracoil.TertiarystructureDescribestheentirefoldedshapeofawholeproteinchain.Inaddition,someproteinsinteractwiththemselvesorwithotherproteinstoformlargerproteinstructures.HowtheseproteinsinteractandfoldtoformalargerproteincomplexistermedQuaternarystructure.

CHEMICALSTRUCTURESOFTHEAMINOACIDSThe20aminoacidsshareacommonbackboneandaredistinguishedbydifferent‘R’groups,highlightedinvariouscolorsbelow.

Page 3: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

3

ProteinStructureQuestions1TheproteinhOGG1(1EBM)interactswithDNAtohelprepairdamagedDNAbases.Inthisparticularstructure,thehOGG1proteinisboundtoasegmentofDNAthathasbeendamaged.Whatcoloristheprotein?WhatcoloraretheDNAstrands?• TohelpdistinguishtheDNAsegmentfromthehOGG1proteinclickonStructure.• ClickontheforwardarrowuntilyouseeQuaternary.• ClickonQuaternaryandthenclickonChain.

Answer

2ThehOGG1(1EBM)proteinconsistsof325aminoacids.Listthe13aminoacidsnumbered105through117inorder.• WithinStructure,clickonPrimary.• Scrolldownthroughtheaminoacidlistifnecessary.

Answer 105_______ 108_______ 111_______ 114_______ 117_______106_______ 109_______ 112_______ 115_______107_______ 110_______ 113_______ 116_______

3Withinaprotein,aminoacidssequencesformlocalstructurescalledsecondarystructures(referencepage2).Secondarystructuresincludehelices,sheetsandcoils.

a)ExplorethesecondarystructuresfoundinhOGG1(1EBM).Arehelices,sheets,and/orcoilspresentinhOGG1(1EBM)?• UnderStructureclickonSecondary.• ClickonHelices,SheetsandCoilsoneatatimemakingsuretoclickeachoneoffbeforeclickingthenextone.

AnswerHelices_______(YesorNo)Sheets_______(YesorNo)Coils_______(YesorNo)

b)WhichsecondarystructurepredominatesinthehOGG1(1EBM)protein?

Answer

c)Aminoacids105through117foldintooneofthethreesecondarystructures.Whichsecondarystructuredotheyfoldinto?• WithinSecondary,clickonAllRibbons.• ClickonPrimary.

Page 4: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

4

• Selectallaminoacidsbetween105through117byclickingonaminoacids105and117whileholdingdownShift(Mac/PC).

• Rotatetheproteintolocatetheselectedaminoacids(white).

Answer

4DNAiscomposedoffourbases:A,T,C&G.TheDNAsequenceillustratedinthisstructure,containsadamagedDNAbase• UnderView,clickonResetmolecule.• ClickonPDBTree,IEBMandthenclickon8OG_25.• Thehighlightedstructuralelement(white),8OG_25(8‐oxoguanine),isatypeofdamagefortheDNAbaseguanine(G).

CertainaminoacidswithinhOGG1(1EBM)formcontactswiththeDNAandareabletorecognizeifaDNAbasehasbeenchemicallyalteredordamaged.WhereareyoumorelikelytofindtheaminoacidsthatrecognizedamagedDNAbaseswithinhOGG1(1EBM),inHelix1orHelix16?Explainwhy.• ClosePDBTreeandclickonStructure.• ClickonSecondaryandthenonTrackSelection.• WithinHelixSelectionclickonHelix1andHelix16.• CloseStructure.• TovisualizealltheatomswithinthehelicesandthedamagedbasedclickonViewControls.• UnderAtoms,clickonDraw.Underthisview,eachatomintheproteinisshown.[Carbonisgrey,Nitrogenisblue,Oxygenisred,andSulfurisyellow.Note:hydrogenisnotshown.]

• TohelpisolatetheaminoacidswithintheproteinandthedamagedDNAbasemovetheUnselectedtransparencyslidertotheleftuntilyouseemostoftheaminoacidsthatwereNOTselecteddisappear.

• Optional:underAtomsclickonFillspacetohaveamorerealisticviewofthespaceoccupiedbytheselectedatoms.ThisviewallowsyoutoseewhetherornotthedamagedDNAiscontactingeitheroneofthehelices.

Answer

ProteinEvolutionQuestionsThehOGG1proteinispartoflargesuperfamilyofDNAglycosylases.Proteinfamiliesrepresentgroupsofproteinsfromdifferentorganismswhosefunction(forinstance,repairingDNAdamage)hasbeenconservedthroughoutevolution.Typically,proteinfamilymembersnotonlyhaveconservedfunction,butinmanyinstancestheir3Dstructure(orpartsoftheirstructure)havealsobeenconservedthroughoutevolution.WewillnowexploreanothermemberoftheDNAglycosylaseproteinfamily:Pa‐AGOG.Pa‐AGOGisfoundinaspeciesofarchaebacteria,Pyrobaculumaerophilum,thatliveinhotmarinewaterholes.Pyrobaculumaerophilumpreferslivinginextremeenvironment.It’soptimalgrowingtemperatureis100˚C(212˚F)!

Page 5: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

5

WewillexplorethedifferencesandsimilaritiesbetweenthehumanDNAglycosylaseprotein,hOGGanditsarchaebacteriaproteincounterpart,Pa‐AGOG.

OpenanotherviewerwindowofStarBiochem.(DonotclosetheviewerthatcontainsthehOGG1(1EBM)protein.)• LaunchanotherwindowofStarBiochem.• InthetopmenuunderFileclickonOpen/Importandselect“1XQP”,thefourletterIDforthePa‐AGOGprotein,andclickOpen.

YouarenowviewingthestructureofPa‐AGOG(1XQP),witheachbondintheproteindrawnasaline.NotethatthisstructureonlycontainstheproteinPa‐AGOG(1XQP)boundtoasingledamagedDNAbase(noDNAhelicesarepresent).TakeaminutetolookatthestructureofPa‐AGOGandthenanswerthefollowingquestions.5Pa‐AGOG(1XQP)andhOGG1(1EBM)havesimilar3Dstructures.InparticularPa‐AGOG(1XQP)sharessomeofthesamesecondarystructuresashOGG1(1EBM).

a)Whichsecondarystructure(s)arepresentinbothPa‐AGOG(1XQP)andhOGG1(1EBM)?• WithinthehOGG1(1EBM)viewer,underViewclickonResetmolecule.• ClickonStructure.• WithinSecondary,clickonAllRibbons.• GotothePa‐AGOG(1XQP)viewer.• ClickonStructure.• WithinSecondary,clickonAllRibbons.

Answer

b)Whichsecondarystructure(s)aremissinginPa‐AGOG(1XQP),butpresentinhOGG1(1EBM)?

AnswerInthearcheabacteriaproteinPa‐AGOG(1XQP)thephenylalanineaminoacid144,Phe_144,isinvolvedinrecognizingdamagedDNAbases.FirsttakealookatPhe_144inthePa‐AGOG(1XQP)protein.NoteitslocationwithintheproteinandwithrespecttothedamagedDNAbase(yellow).• InthePa‐AGOG(1XQP)viewer,underViewclickonResetmolecule.• WithinStructureclickonPrimary.• ClickonPhe_144.Theselectedaminoacidisnowshowninwhite.• ZoominandrotatethemoleculetoobservetheorientationofPhe_144withrespecttothedamagedDNAbase(yellow).NotebothitsangleandthedistancefromthedamagedDNAbase.

Page 6: DNA Glycosylase: a case study in protein evolutionstar.mit.edu/media/uploads/biochem/exercises/... · DNA Glycosylase: a case study in protein evolution Learning Objectives • Proteins

Name________________________

StarBiochem

Ver.1‐LMA

6

6InthehumanproteinhOGG1(1EBM),aphenylalanineaminoacidisalsoinvolvedinrecognizingdamagedDNAbases.AlthoughhOGG1(1EBM)containsaphenylalanineatposition144,thisoneisNOTtheoneinvolvedintherecognitionofdamagedDNAbases.WewillexaminetheorientationandclosenessofPhe_144withrespecttothedamagedDNAbaseinhOGG1(1EBM).

a)WhatisdifferentabouttheanglebetweenPhe_144andthedamagedDNAbaseinPa‐AGOG(1XQP)andinhOGG1(1EBM)?• InthehOGG1(1EBM)viewer,clickonResetmoleculeunderViewinthemainmenu.• WithinStructureclickonPrimary.• ClickonPhe_144.Theselectedaminoacidisnowshowninwhite.• ZoominandrotatethemoleculetoobservetheorientationofPhe_144withrespecttothedamagedDNAbase(yellow).

Answer

b)WhatelseisdifferentintheplacementofPhe_144inPa‐AGOG(1XQP)andinhOGG1(1EBM),withrespecttothedamagedDNAbase?

Answer

c)GiventhatinthehumanDNAglycosylase,hOGG1(1EBM),Phe_144isNOTresponsibleforrecognizingdamagedDNAbases,findthephenylalanineinhOGG1(1EBM)thatwouldrecognizedamagedDNAbases.UsetheplacementandorientationofPhel_144withrespecttothedamagedbaseinPa‐AGOGasareference.WhatistheaminoacidnumberofthisphenylalanineinhOGG1(1EBM)?Why?• InthehOGG1(1EBM)viewer,clickonResetmoleculeunderViewinthemainmenu.• ZoomintoseeaminoacidssurroundingthedamagedDNAbasedcoloredinyellow.• ClickonSelectionControls.• UnderSelectbymouseclickclickonResidue.ThiswillallowyoutoclickonaparticularaminoacidwithintheactualstructureinthevieweranddeterminewhichoneitisbylookingatthehighlightedaminoacidinPrimarywithintheStructurewindow.

Answer