122
7/16/2019 Dn 0938143 http://slidepdf.com/reader/full/dn-0938143 1/122 Nokia Siemens Networks WCDMA RNC Rel. RN6.0, Site Documentation, Issue 01 WCDMA RNC Engineering Description DN0938143 Issue 2-1 Approval Date 2011-1-25 Confidential

Dn 0938143

Embed Size (px)

Citation preview

Page 1: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 1/122

Nokia Siemens Networks

WCDMA RNC Rel. RN6.0, Site

Documentation, Issue 01

WCDMA RNC Engineering Description

DN0938143

Issue 2-1

Approval Date 2011-1-25

Confidential

Page 2: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 2/122

2 DN0938143

Issue 2-1

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

The information in this document is subject to change without notice and describes only the

product defined in the introduction of this documentation. This documentation is intended for the

use of Nokia Siemens Networks customers only for the purposes of the agreement under whichthe document is submitted, and no part of it may be used, reproduced, modified or transmitted

in any form or means without the prior written permission of Nokia Siemens Networks. The

documentation has been prepared to be used by professional and properly trained personnel,

and the customer assumes full responsibility when using it. Nokia Siemens Networks welcomes

customer comments as part of the process of continuous development and improvement of the

documentation.

The information or statements given in this documentation concerning the suitability, capacity,

or performance of the mentioned hardware or software products are given "as is" and all liability

arising in connection with such hardware or software products shall be defined conclusively and

finally in a separate agreement between Nokia Siemens Networks and the customer. However,

Nokia Siemens Networks has made all reasonable efforts to ensure that the instructions

contained in the document are adequate and free of material errors and omissions. Nokia

Siemens Networks will, if deemed necessary by Nokia Siemens Networks, explain issues which

may not be covered by the document.

Nokia Siemens Networks will correct errors in this documentation as soon as possible. IN NO

EVENT WILL Nokia Siemens Networks BE LIABLE FOR ERRORS IN THIS DOCUMENTA-

TION OR FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDI-

RECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED

TO LOSS OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY

OR DATA,THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION

IN IT.

This documentation and the product it describes are considered protected by copyrights and

other intellectual property rights according to the applicable laws.

The wave logo is a trademark of Nokia Siemens Networks Oy. Nokia is a registered trademark

of Nokia Corporation. Siemens is a registered trademark of Siemens AG.

Other product names mentioned in this document may be trademarks of their respectiveowners, and they are mentioned for identification purposes only.

Copyright © Nokia Siemens Networks 2011. All rights reserved

f Important Notice on Product SafetyThis product may present safety risks due to laser, electricity, heat, and other sources

of danger.

Only trained and qualified personnel may install, operate, maintain or otherwise handle

this product and only after having carefully read the safety information applicable to this

product.

The safety information is provided in the Safety Information section in the “Legal, Safety

and Environmental Information” part of this document or documentation set.

The same text in German:

f Wichtiger Hinweis zur ProduktsicherheitVon diesem Produkt können Gefahren durch Laser, Elektrizität, Hitzeentwicklung oder 

andere Gefahrenquellen ausgehen.

Installation, Betrieb, Wartung und sonstige Handhabung des Produktes darf nur durch

geschultes und qualifiziertes Personal unter Beachtung der anwendbaren Sicherheits-

anforderungen erfolgen.

Die Sicherheitsanforderungen finden Sie unter „Sicherheitshinweise“ im Teil „Legal,

Safety and Environmental Information“ dieses Dokuments oder dieses Dokumentations-

satzes.

Page 3: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 3/122

DN0938143 3

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

Table of contentsThis document has 122 pages.

Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 About WCDMA RNC Engineering Description. . . . . . . . . . . . . . . . . . . . 11

2 RNC Hardware Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 IPA2800 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Internal Messaging and Resource Allocation. . . . . . . . . . . . . . . . . . . . . 16

3.2 Computing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Redundancy Principles for IPA2800 Network Elements . . . . . . . . . . . . 18

4 Mechanical Construction of the IPA2800 Network Elements. . . . . . . . . 22

4.1 Cabinets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 EC216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 IC186/-B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Dimensions of Cabinets in Floor Rail on Free-standing Installations. . . 25

4.2 Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Plug-in Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Cabling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4.1 General Cabling Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Cooling Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Cabinet and Subrack Descriptions for RNC2600. . . . . . . . . . . . . . . . . . 32

5.1 RNC2600 Cabinet Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Equipment in the Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345.3 RNC2600 Upgrades and Expansions in RN6.0. . . . . . . . . . . . . . . . . . . 37

5.3.1 Optional Expansions for RNC2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Cabinet and Subrack Descriptions for RNC450. . . . . . . . . . . . . . . . . . . 38

6.1 RNC450 Cabinet Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Equipment in the subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Upgrades and Expansions for RNC450 in RN6.0 . . . . . . . . . . . . . . . . . 43

6.3.1 Optional Upgrades and Expansions for RNC450 . . . . . . . . . . . . . . . . . 43

6.4 RNC450 Upgrades and Expansions in RN5.0. . . . . . . . . . . . . . . . . . . . 44

6.4.1 Mandatory Upgrades for RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4.2 Optional Upgrades and Expansions for RNC450 . . . . . . . . . . . . . . . . . 446.5 RNC450 Upgrades and Expansions in RN4.0. . . . . . . . . . . . . . . . . . . . 44

6.5.1 Mandatory Upgrades for RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5.2 Optional Upgrades and Expansions for RNC450 . . . . . . . . . . . . . . . . . 44

7 Cabinet and Subrack Descriptions for RNC196. . . . . . . . . . . . . . . . . . . 46

7.1 RNC196 Cabinet Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1.1 RNC196 Step 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2 RNC196 Step 6 and RNC196 Step 7. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.3 Hardware Upgrade to RNC196 Step 6 and RNC196 Step 7 . . . . . . . . . 51

7.2 Equipment in the Subracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Upgrades and Expansions for RNC196 in RN6.0 . . . . . . . . . . . . . . . . . 57

7.3.1 Optional Upgrades and Expansions for RNC196 . . . . . . . . . . . . . . . . . 57

Page 4: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 4/122

4 DN0938143

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

7.4 Upgrades and Expansions for RNC196 in RN5.0. . . . . . . . . . . . . . . . . . 58

7.4.1 Mandatory Upgrades for RNC196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4.2 Optional Upgrades for RNC196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Upgrades and Expansions for RNC196 in RN4.0. . . . . . . . . . . . . . . . . . 587.5.1 Mandatory Upgrades for RNC196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5.2 Optional Upgrades for RNC196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Functional Unit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.1 Functional Unit Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2 Management, Control Computer and Data Processing Units. . . . . . . . . 60

8.2.1 DMCU, Data and Macro Diversity Combining Unit . . . . . . . . . . . . . . . . . 60

8.2.2 GTPU, Gateway Tunneling Protocol Unit . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2.3 ICSU, Interface Control and Signalling Unit . . . . . . . . . . . . . . . . . . . . . . 66

8.2.4 Integrated OMS, Operation and Maintenance Server and its sub-units . 70

8.2.5 ESA40-A, Ethernet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2.6 ESA24, Ethernet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.7 ESA12, Ethernet Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.2.8 OMU, Operation and Maintenance Unit and Its Subunits . . . . . . . . . . . . 76

8.2.9 RRMU, Radio Resource Management Unit . . . . . . . . . . . . . . . . . . . . . . 83

8.2.10 RSMU, Resource and Switch Management Unit . . . . . . . . . . . . . . . . . . 86

8.3 Switching and Multiplexing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3.1 A2SU, AAL2 Switching Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3.2 MXU, Multiplexer Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.3 SFU, Switching Fabric Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 Network Interface Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.4.1 NIP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008.4.2 NIS1 / NIS1P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4.3 NPS1 / NPS1P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4.4 NPGE / NPGEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Timing, Power Distribution and Hardware Management Subsystems . 104

8.5.1 TBU, Timing and Hardware Management Bus Unit . . . . . . . . . . . . . . . 104

8.5.2 HMS, Hardware Management Subsystem . . . . . . . . . . . . . . . . . . . . . . 109

8.5.3 Power Distribution Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6 EHU, External Hardware Alarm Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Interfaces to the Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1 Power Supply and Grounding Interfaces . . . . . . . . . . . . . . . . . . . . . . . 1179.2 PDH TDM Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.3 SDH TDM Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.4 External Synchronisation Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.5 External HW Alarm Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.6 Ethernet/LAN Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.7 Mouse, Keyboard, VDU, SCSI and Printer Interfaces . . . . . . . . . . . . . 122

9.8 RS232 Service Terminal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Page 5: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 5/122

DN0938143 5

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

List of figuresFigure 1 Block diagram of the RNC2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2 Block diagram of the RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3 EC216 cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4 IC186-B cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 5 Dimensions of the EC216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 6 Dimensions of the IC186-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 7 Dimensions of EC216 / IC186-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 8 SRA1 subrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 9 Layout options for the RNC2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 10 RNAC cabinet in RNC2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 11 RNBC cabinet in RNC2600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 12 Layout options for the RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 13 RNAC cabinet in RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Figure 14 RNBC cabinet in RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 15 Layout options for the RNC196 (with optional cabling cabinet) . . . . . . . 46

Figure 16 RNAC cabinet - RNC196 step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 17 RNBC cabinet - RNC196 steps 2-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 18 RNAC cabinet - RNC196 steps 6 and 7. . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 19 RNBC cabinet - RNC196 steps 6 and 7. . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 20 Configuration steps RNC196 step 6 and 7 with mandatory hardware

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 21 DMCU's interfaces - CDSP-DH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 22 DMCU's interfaces - CDSP-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 23 GTPU’s interfaces - CCP1D-A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Figure 24 GTPU's interfaces - CCP18-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 25 GTPU's interfaces - CCP18-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 26 GTPU's interfaces - CCP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 27 ICSU’s interfaces - CCP1D-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 28 ICSU's interfaces - CCP18-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 29 ICSU's interfaces - CCP18-A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 30 ICSU's interfaces - CCP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 31 Integrated OMS interfaces (MCP18-B) . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 32 Integrated OMS storage device interfaces. . . . . . . . . . . . . . . . . . . . . . . 72

Figure 33 SCSI connection principle for integrated OMS storage devices (MCP18-B)

73

Figure 34 ESA40-A’s interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 35 ESA24's interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 36 ESA12's interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 37 OMU’s interfaces - CCP1D-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 38 OMU's interfaces - CCP18-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 39 OMU's interfaces - CCP10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 40 OMU’s storage device interfaces - HDS-C . . . . . . . . . . . . . . . . . . . . . . 80

Figure 41 OMU's storage devices' interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 42 SAS connection principle for OMU storage devices - CCP1D-A and HDS-C

82

Figure 43 SCSI connection principle for OMU storage devices - CCP18-A and HDS-B

Page 6: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 6/122

6 DN0938143

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

82

Figure 44 SCSI connection principle for OMU storage devices - CCP10, HDS-A and

MDS-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 45 RRMU's interfaces - CCP18-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 46 RRMU's interfaces - CCP18-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 47 RRMU's interfaces - CCP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 48 RSMU’s interfaces - CCP1D-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 49 RSMU's interfaces - CCP18-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 50 RSMU's interfaces - CCP18-A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 51 RSMU's interfaces - CCP10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 52 ATM connections to SFU - RNC450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 53 A2SU's interfaces - AL2S-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 54 A2SU's interfaces - AL2S-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 55 MXU's interfaces - MX1G6 and MX1G6-A . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 56 MXU's interfaces - MX622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Figure 57 SFU's interfaces - SF20H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 58 SFU's interfaces - SF10E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 59 SFU's interfaces - SF10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 60 NIP1's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 61 NIS1's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 62 NPS1(P) interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 63 NPGE(P) interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 64 TSS3/-A's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 65 TBUF's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 66 Dual Star timing bus cabling principles . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 67 Connection principle of the duplicated clock distribution bus . . . . . . . . 109

Figure 68 Block diagram of the HMS subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 69 Connection principle of the duplicated HMS bus . . . . . . . . . . . . . . . . . 111

Figure 70 PD30/PD20's interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 71 General power distribution principle for RNC . . . . . . . . . . . . . . . . . . . . 115

Figure 72 DC/DC converter structure in a plug-in unit . . . . . . . . . . . . . . . . . . . . . 116

Figure 73 Power supply interfaces of CPD120-A with DC/I principle . . . . . . . . . . 118

Figure 74 Power supply interfaces of CPD120-A with DC/C principle . . . . . . . . . 119

Figure 75 Power supply interfaces of CPD80-B with two connection alternatives and

optional ETS grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 76 Power supply interfaces of CPD80-A and their connection alternatives:

DC/I and DC/C principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Page 7: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 7/122

DN0938143 7

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

List of tablesTable 1 Computing platform hierarchy levels for IPA2800 RNC . . . . . . . . . . . . 17

Table 2 Redundancy principles of the functional units in the RNC . . . . . . . . . . 20

Table 3 Number of units in RNC2600 subracks . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4 Maximum number of units in the RNC2600 for each configuration step 35

Table 5 Numbers of units in RNC450 subracks . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 6 Maximum number of units in the RNC450 for each configuration step . 41

Table 7 Minimum hardware level and configuration expansion for RNC196 step 6

53

Table 8 Minimum hardware level and configuration expansion for RNC196 step 7

53

Table 9 Number of units in RNC196 subracks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 10 Maximum number of units in RNC196 for each configuration step . . . . 56

Page 8: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 8/122

8 DN0938143

WCDMA RNC Engineering Description

Id:0900d805808219be

Confidential

Page 9: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 9/122

DN0938143 9

WCDMA RNC Engineering Description Summary of changes

Id:0900d80580821ae7

Confidential

Summary of changesChanges between document issues are cumulative. Therefore, the latest document

issue contains all changes made to previous issues.

Issue 2-1

Updated issue for release RN6.0. Minor corrections in release contents.

SAS bus cabling principle added for HDS-C.

Dual Star timing bus configuration added.

Issue 2-0

First draft issue for release RN6-0 pre-release.

Issue 1-4

In Table 1 Computing Platform Hierarchy Levels, operating system for MCP18-B has

been corrected to Linux.

Issue 1-3

Reference to Hardware upgrades from RNC196 step 7 to step 8 removed because this

document is not ready.

Issue 1-2

MCP18-B removed.

added text to clarify the difference between Upgrade and Expansion in Chapter 1.

 Added Chaper 5.3 RNC2600 Upgrades and Expansions in RN5.0.Chaper 6.3.1, added

Minimum hardware requirement for all configurations in RN5.0: the disk size for Inte-

grated OMS must be at least 147 GB. Added reference to Hardware Expansion for RNC450 and Upgrading RNC450 to RNC2600Chaper 6.3.2, Added reference to

Hardware Expansion for RNC450 and Upgrading RNC450 to RNC2600Chaper 6.4.1,

 Added reference to Hardware Expansion for RNC450 and Upgrading RNC450 to

RNC2600Chaper 7.3.1, added Minimum hardware requirement for all configurations in

RN5.0: the disk size for Integrated OMS must be at least 147 GB. Chaper 7.3.2, Added

reference to Hardware Expansion for RNC196.Chaper 7.4.1, Added reference to

Hardware Expansion for RNC196.

Issue 1-1

Chapter 1: Noted that the upgrades supported in RN4.0 are also supported in RN5.0.

 Added RNC196 step 5 to step 6 and 7. Added Full CDSP-DH upgrade.Chapter 6.3.3 Optional upgrades and expansions for RNC450:Noted that the upgrades

supported in RN4.0 are also supported in RN5.0. Added full CDSP-DH upgrade.

Chapter 6.4.2 Optional upgrades and expansions for RNC450: Added Full CDSP-DH

upgrade.

Chapter 7.1.4 RNC196 step 8 and chapter 7.1.5 Hardware upgrade to RNC196 step 8

was updated according to new architecture.

Chapter 7.3.2 Optional upgrades for RNC196: Added RNC196 step 7 to step 8 upgrade.

 Added Full CDSP-DH upgrade. Noted that the upgrades supported in RN4.0 are also

supported in RN5.0.

Page 10: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 10/122

10 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821ae7

Confidential

Summary of changes

Issue 1-0

Issue 1-0 is the first issue for the RNC2600 network element with RN5.0 software.

The main, optional change from RN4.0 is that the functional unit OMS can be selected

between the current integrated OMS or an external standalone OMS network element.For RN5.0 new deliveries, the standalone OMS is recommended.

With the integrated OMS, its plug-in unit MCP18-B and the related two HDDs must also

be removed, as well as all SCSI connections between OMS and the HDD, and the LAN

connection between OMS and the Ethernet Switch (ESA24).

Page 11: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 11/122

DN0938143 11

WCDMA RNC Engineering Description About WCDMA RNC Engineering Description

Id:0900d805807fd6f1

Confidential

1 About WCDMA RNC Engineering DescriptionThis Engineering Description provides the basic information needed for the installation

planning of the WCDMA RNC. It does not include the installation planning instructions

for the site power supply equipment or for the PDH and alarm distribution frames.

WCDMA RNC Engineering Description provides the following information:

• System architecture

• Mechanical construction of the network element

• Cabinet and subrack descriptions for RNC2600

• Cabinet and subrack descriptions for RNC450

• Cabinet and subrack descriptions for RNC196

• Functional unit descriptions

• Interfaces to the environment

New deliveries, expansions, and upgrades

This document describes the hardware configurations, mechanics, and electromechan-

ics for RN6.0 level RNC2600 new deliveries and expansions, as well as upgrades and

expansions for previously delivered RNC450 and RNC196 at RN5.0 and RN4.0

hardware level. Cabinet mechanics used in the different delivery types are described in

section Mechanical construction of the IPA2800 network elements. Hardware configu-

rations for RNC450 are described in section Cabinet and subrack descriptions for 

RNC450 and for RNC196 (Upgrading to RNC196 step 6 and 7, upgrading RNC196 step

7 to step 8) in section Cabinet and subrack descriptions for RNC196.

Information on Upgrades at RN6.0 level will be available at a later date.

For more information on upgrades at RN5.0 hardware level, see Upgrading from RN4.0 

OMS to RN5.0 OMS and Upgrading from integrated RNC OMS to standalone RNC 

OMS.

For more information on upgrades at RN4.0 hardware level, see Upgrading RNC450 to

RNC2600 , Replacing CDSP-C with CDSP-DH and Enabling HSDPA Capacity 

Enhancement in CDSP-DH and SFU and IP Upgrade.

Full CDSP-DH upgrade is supported at RN4.0 and RN5.0 hardware level, see Replacing 

CDSP-C with CDSP-DH and Enabling HSDPA Capacity Enhancement in CDSP-DH  

and SFU and IP Upgrade.

 All upgrades supported in RN4.0 are also supported in RN5.0.

The term “expansion” in this document means that extra hardware is added to RNC to

provide new configuration step, for example from RNC2600 step 1 to RNC2600 step 3.

Term “upgrade” means that existing hardware is some how changed to provide the use

of new feature or capacity level, for example from RNC196 step 5 to RNC196 step 6/7,

RNC196 step 7 to 8, IP upgrade, etc.

Other related documentation

The site requirements for the RNC are described in the document Installation Site

Requirements for MGW and RNC . It provides the following information:

• Technical specifications

• General hardware platform requirements

• Equipment room requirements

• Site power supply

Page 12: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 12/122

12 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807fd6f1

Confidential

 About WCDMA RNC Engineering Description

• Grounding and bonding

• Electromagnetic compatibility

• Operational environment

•Ventilation in the equipment rooms

• Specifications of interfaces to the environment

For information on changes in previous releases, see Upgrades and expansions for 

RNC196 in RN3.0/RN2.2 and NEMU, Network Element Management Unit and its

subunits in WCDMA RNC Engineering Description documents for previous releases and

Product Description for RNC2600 .

Page 13: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 13/122

DN0938143 13

WCDMA RNC Engineering Description RNC Hardware Changes

Id:0900d80580841885

Confidential

2 RNC Hardware ChangesThis section summarises the differences in the hardware implementation between

RN5.0 and RN6.0.

New plug-in units

Compared to RNC2600 on RN5.0 level, RNC2600, RN450 and RN196 on RN6.0 level

contain the following new plug-in units:

• CCP1D-A

Control Computer 1 with dual core processor, variant A

Used for ICSU, OMU and RSMU functional units.

• ESA40-A

Ethernet Switch for A series with 40 ports

• HDS14-A

Hard Disk SAS, variant A

• HDS-C

 Adapter for hard disk

Page 14: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 14/122

14 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c824

Confidential

IPA2800 System Architecture

3 IPA2800 System ArchitectureThe IPA2800 network elements have a distributed processing architecture based on a

modular software and hardware structure. The distribution of processes is achieved by

using a multi-processor system, in which the functions of the network element are

divided among several functional units. In the IPA2800 network element, each functional

unit usually consists of one plug-in unit, which has a fixed capacity. The capacity

reserved for a given function can be increased by simply installing additional units of the

appropriate type to the configuration – another benefit from the modular structure.

Each functional unit has a separate task group to handle. For example, the ATM Switch

Matrix has been organised as a separate unit, Switch Fabric Unit (SFU), and it is con-

trolled by another unit, called Resource and Switch Management Unit (RSMU). The key

operation and maintenance functions are performed by the Operation and Maintenance

Unit (OMU), the external SDH STM-1 and Ethernet interfaces are provided by the

Network Interface Units (NPS1(P)) and (NPGE(P)), respectively, and so on.

Each functional unit has its own, separate hardware and software; some of them are

equipped with a dedicated Pentium®II, Pentium®III or Pentium®M 745-type computer.

These units are referred to as computer units, some of which have storage devices as

dedicated sub-units. The hardware of the functional units and the tasks each unit

handles are described in more detail in chapter Functional unit descriptions. Further 

information is available in the Product Description.

The figures below present the block diagrams of the Radio Network Controller,

RNC2600 and RNC450, their functional units and the internal and external interfaces.

Page 15: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 15/122

DN0938143 15

WCDMA RNC Engineering Description IPA2800 System Architecture

Id:0900d8058083c824

Confidential

Figure 1 Block diagram of the RNC2600

RSMU

SFU

ICSU

DMCU

DN70618302

MANAGEMENT, CONTROL COMPUTER AND D ATA PROCESSING UNIT

SWITCHING AND MULTIPLEXING UNIT

NETWORK INTERFACE UNIT

MXU

DMCU

ICSU

MXU

EHU

NPGE(P)

OMS*

HDD*

OMU

WDU

MXU

TBU

Ethernet

Ethernet

Ethernet

NPS1(P)

SWU

* Optionally, the integrated OMS and the related HDDs can be removed as of RN5.0.

Page 16: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 16/122

16 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c824

Confidential

IPA2800 System Architecture

Figure 2  Block diagram of the RNC450

3.1 Internal Messaging and Resource Allocation

In terms of network element architecture, perhaps the most significant single feature of the ATM technology is that it allows for relatively easy designing of switching devices

with high capacity and low delay. A primary bottleneck in the design of the 2nd genera-

tion systems, the switching capacity is no longer such a limiting factor in 3rd generation

systems. This is reflected in the architecture of the RNC in the following ways:

• Nearly all of the network element's internal traffic is routed through its switching 

fabric. 

In the IPA2800 network elements, the message bus between its units consists of 

standard ATM virtual channels routed through the switching fabric.

However, the IPA2800 has timing and Hardware Management (alarm) buses

separate from the ATM connections. The timing bus has been separated to ensure

that the strict timing requirements of the ATM technology are met, while an individualHardware Management bus ensures that some basic functions in the network

SFU

TBU

EHU

NIS1

DMCU

Iu

Iur Iub

E1/T1/JT1

 ATM

ICSU

RRMU

RSMU

OMU

WDUFDU

 A2SU

GTPU

OMS */NEMU

IuIur Iub

STM-1 ATM

Harddisk

ETHERNET

100 BASE Tx

DN01128754

MANAGEMENT, CONTROL COMPUTER AND DATA PROCESSING UNIT

SWITCHING AND MULTIPLEXING UNIT

NETWORK INTERFACE UNIT

MXU

 A2SU

GTPU

DMCU

ICSU

 A2SU

GTPU

DMCU

ICSU

NIP1

MXU

MXU

DMCU

* OMS replaces NEMU in RN3.0

Page 17: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 17/122

DN0938143 17

WCDMA RNC Engineering Description IPA2800 System Architecture

Id:0900d8058083c824

Confidential

element can be carried out without any support from its control units when the

network element is being taken into use, upgraded or serviced, or during normal

operation.

• Virtually all DSPs (Digital Signal Processors) in the system can be used by any 

control computer. 

In the IPA2800 network elements, the DSPs are organised as pools whose services

are available to the control computers through the ATM virtual message bus. This

ensures optimal use of the system's DSP resources. As a consequence, the plug-in

units containing DSPs have been separated from the control computers on the func-

tional unit level and they form functional units of their own.

This kind of architecture has been achieved by enabling the routing of the user data

of a call multiple times through the switching fabric while it is being processed.

3.2 Computing System

The computing system of the IPA2800 network elements consists of various micropro-

cessor based computers and microcontrollers with either proprietary or standard oper-

ating systems, as well as standard message transfer protocols. It is organised according

to a four-level hierarchy, as shown in the table below.

Management computer unit MCP18-B and control computer unit CCP1D-

A/CCP18-C/CCP18-A/CCP10

The MCP18-B and CCP1D-A/CCP18-C / CCP18-A / CCP10 plug-in units are used as

the management computer units and control computer units, respectively, in the

IPA2800 network elements. Both are single board computers with an onboard PCI bus.

The CCP1D-A has a dual core Intel Jasper Forest processor. The MCP18-B andCCP18-C / CCP18-A are based on Pentium M 745 1800 MHz microprocessor.

Level Type Processor Operating

system

PIUs Communica-

tion to upper 

level/other 

units

Level 4 Management

computer 

Intel P M 745

Intel PIII

Linux MCP18-B TCP/IP

Level 3 Control

computer 

Intel Pentium M

(CCP18-C /

CCP18-A)

Intel PIII

(CCP10)

DMX with

POSIX

CCP1D-A/

CCP18-C/

CCP18-A/

CCP10

LAN/Ethernet,

 ATM virtual

channels

Level 2 Unit computer Motorola Power-

Quicc II

Chorus MX1G6/-A,

SF10E,

 AL2S-D/-B,

CDSP-C/-DH,

NP2GE-B,

NP8S1-B

 ATM virtual

channels

Level 1 Control proces-

sor 

8-bit microcon-

troller 

No OS

needed

Embedded in

all PIUs

Selected case

by case

Table 1 Computing platform hierarchy levels for IPA2800 RNC

Page 18: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 18/122

18 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c824

Confidential

IPA2800 System Architecture

 As of RN5.0, the functional unit OMS can be selected between the current integrated

OMS or an external standalone OMS network element. For RN5.0 new deliveries, the

standalone OMS is recommended.

 As for RN6.0 new deliveries only standalone OMS is applicable. Usage of CCP1D-ACPU with its hard disks are not supported with standalone OMS.

For more information on the MCP18-B and CCP18-C / CCP1D-A / CCP18-A / CCP10

plug-in units, see the individual Plug-in Unit Descriptions online.

3.3 Redundancy Principles for IPA2800 Network Elements

The reliability of the operations in the IPA2800 network elements has been ensured by

backing up all crucial parts of the system following various redundancy principles, as

described in the sections below. Functional unit-specific redundancy principles are

named in chapter Functional unit descriptions.

Redundancy of the functional units

Different redundancy techniques are used for backing up different types of functional

units. The Operation and Maintenance Unit, the main Switch Fabric, the radio resource

and switch control units along with all crucial databases are backed up according to the

2N redundancy principle, that is, by duplication according to the hot-standby method.

When a defect is detected in an active functional unit, a spare unit is set active by an

automatic recovery function. The spare unit is designated for only one active unit, and

the software in the unit pair is kept synchronised.

Most units with 2N redundancy, except for most of the subrack-specific Timing Buffers

and multiplexers, are located in the two first subracks of the network element. The two

units of a mutually redundant pair are placed in different subracks. Switchover can be

performed between units of a redundant unit pair independently of the other correspond-

ing pairs, which means that no subrack-level switchover procedure is needed in the

network element.

The STM-1 network interface units can optionally use 2N redundancy. Until RN3.0, NIS1

unit is the default non-redundant unit. As of RN4.0, NPS1 and NPGE units are the

default non-redundant units. These can be turned into redundant, 2N duplicate, units

(NIS1P or NPS1P and NPGEP, respectively) providing additional equipment protection

by adding another NIS1, NPS1 or NPGE unit to the network element or by changing the

cabling of the existing two units. In NIS1, the SDH transmission protection is ensured by

the MSP 1+1, bidirectional protection switching mode, where the traffic is carried via two

multiplex sections.

The signalling units, AAL2 switch, and the units handling user or control plane functions

are backed up according to the N+1 or SN+ principle. N+1 principle means that there is

one spare unit available ready to take over the tasks of a faulty unit. Load sharing, SN+,

means that the workload is shared between all devices, and if one malfunctions, the

other units are able to carry the full load.

Ensuring reliability at unit level

In the Intel processors, the following methods are used to ensure proper operation:

• Error correcting RAM in critical parts

• ECC in read-write memories

Parity checks in data transmission on the PCI bus• Reporting on certain error events in data transactions on the system bus

Page 19: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 19/122

DN0938143 19

WCDMA RNC Engineering Description IPA2800 System Architecture

Id:0900d8058083c824

Confidential

• Memory area protection (standard Intel processor capability)

• Time-out supervision

• Continuous supervision of the functioning of processes including restarts, when

required• Continuous testing of operations (as a background run) in all computer units

Units without nominal redundancy

Some of the functional units of the network element do not have redundancy at all.

These are units which interface the network element to the environment. As of RN4.0,

the non-redundant units are NPGE, NPS1 and integrated OMS. As of RN5.0, the func-

tional unit OMS can be selected between the current integrated OMS or an external

standalone OMS network element. For RN5.0 new deliveries, the standalone OMS is

recommended. Integrated or standalone OMS is left without backup because a failure

in it does not prevent the switching or cause any drop in the capacity available; the

network element only loses both its local and upper-level operation and maintenance

interface.

The network interfaces are more crucial to the whole system. The PDH network inter-

face units are organised as pools of resources, with several units available at a time to

handle an assignment. It is recommended that connections to any given direction will be

divided between two or more units located in different subracks. This ensures that a

failure in, for example, one of the power supply plug-in units will not interrupt the traffic

to one direction altogether. If there is surplus capacity available for the network inter-

faces, it is recommended that it be used for backing up the crucial connections and

sharing the load between all the network interfaces available for connections towards

that direction.

Redundancy of the power distribution, timing distribution, and Hardware Manage-ment Subsystems

Virtually the entire power distribution chain from the rectifiers and power feed cables to

individual pieces of equipment in the cabinets has been duplicated to minimise the risk

of downtime due to power failures in the IPA2800 equipment or cabling. The redundancy

for the power supply from the rectifiers to the cabinets has been achieved by duplicating

the power inputs in each cabinet, along with the input cables. The two units are placed

in different subracks. On the other hand, each cabinet is equipped with a duplicated

power distribution system, which allows feeding the voltages to units that are backing

each other up through two separate distribution lines.

Likewise, the IPA2800 network elements have a duplicated alarm collection (or 

Hardware Management) and clock distribution system organised by means of redun-dant system clock or timing buffer unit in each subrack and separate, redundant cables

for the alarm collection and clock distribution buses. The synchronisation reference can

be fed to each IPA2800 network element from up to five inputs, three from line interfaces

and two from external sources.

Page 20: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 20/122

20 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c824

Confidential

IPA2800 System Architecture

RNC FU

Redundancy prin-

ciple

Plug-In unit

variant choices

for RNC196 or 

RNC450

Plug-In unit

variant choices

for RNC2600

RSMU 2N 2 * CCP1D-A

or 

2 * CCP10

or 

2 * CCP18-A

or 

2 * CCP18-C

2 * CCP1D-A

or 

2 * CCP18-A

or 

2 * CCP18-C

MXU 2N 2 * MX622-B

or 

2 * MX662-C

or 

2 * MX622-D

as same subrack

WO-SP pair 

2 * MX1G6-A

OMU 2N 2 * CCP1D-A

or 

2 * CCP10

or 

2 * CCP18-A

2 * CCP1D-A

or 

2* CCP18-A

SFU 2N 2 * SF10

or 

2 * SF10E

2 * SF20H

TBU 2N 2 * TSS3 or 2 *

TSS3-A

in subracks 1-2 and

2 * TBUF

in other subracks

2 * TSS3 or 2 *

TSS3-A

in subracks 1-2 and

2 * TBUFin other 

subracks

WDU / OMU 2N Mixed use of  

WDW18, WDW18-

S, WDW36 ,WDW73, WDW147

or HDS14-A

HDS14-A

or WDW147

ICSU N+1 Mixed use of  

CCP1D-A, CCP10,

CCP18-A, and

CCP18-C

Mixed use of 

CCP1D-A, CCP18-

 A and CCP18-C

 A2SU SN+ Mixed use of 

 AL2S-B and AL2S-

D

N/A

Table 2  Redundancy principles of the functional units in the RNC

Page 21: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 21/122

DN0938143 21

WCDMA RNC Engineering Description IPA2800 System Architecture

Id:0900d8058083c824

Confidential

DMCU SN+ Mixed use of  

CDSP-C and

CDSP-DH

CDSP-DH

GTPU SN+ Mixed use of  

CCP10, CCP18-A,

and CCP18-C

N/A

NIP1 No redundancy

(Transport redun-

dancy organised by

call routing).

NI16P1A N/A

NIS1 No redundancy

(Transport redun-dancy organised by

call routing and/or 

MSP1+1).

NI4S1-B N/A

NIS1P 2N (Transport

redundancy

organised by

MSP1+1 and call

routing).

2 * NI4S1-B N/A

NPGE No redundancy NP2GE-B NP2GE-B

NPGEP 2N 2 * NP2GE-B 2 * NP2GE-B

NPS1 No redundancy

(Transport redun-

dancy organised by

routing).

NP8S1-B NP8S1-B

NPS1P 2N (Transport

redundancy

organised by

routing and MSP

and/or MSP1+1).

2 * NP8S1-B 2 * NP8S1-B

EHU No redundancy EHAT EHAT

No redundancy MCP18-B MCP18-B

SWU Optional 2N (for  

LAN connectivity) 1)

1 * ESA12

or 

1-2 * ESA24

1-2 * ESA40-A

or 

1-2 * ESA24

1) Equipment database does not recognise ESA24 as a functional unit and

HMS does not supervise it.

RNC FU

Redundancy prin-

ciple

Plug-In unit

variant choices

for RNC196 or 

RNC450

Plug-In unit

variant choices

for RNC2600

Table 2  Redundancy principles of the functional units in the RNC (Cont.)

Page 22: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 22/122

22 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807031ff 

Confidential

Mechanical Construction of the IPA2800 Network Ele-ments

4 Mechanical Construction of the IPA2800

Network Elements

The mechanical construction of the IPA2800 network elements is based on M2000mechanics platform, which follows a standard hierarchy:

• Cabinets

• Cooling and power supply equipment

• Subracks

• Plug-in units

• Internal cables

The system is based on IEC/ETSI standards for metric dimensioning, along with EN, UL,

and Telcordia recommendations for advanced features in terms of safety, protection

against interference, stability, and durability. Particular attention has been paid to

thermal resistance.

4.1 Cabinets

The equipment of the IPA2800 network elements is housed in EC216 or IC186/-B equip-

ment cabinets. Each cabinet has space for four subracks, the cabinet-specific power 

distribution panels plus the subrack-specific cooling equipment, all of which are installed

at the factory, along with the plug-in units and intracabinet cables.

The RNC features two different equipment cabinets:

• RNC Cabinet A (RNAC)

• RNC Cabinet B (RNBC)

The cabinets are dimensioned according to ETS 300119-2 and IEC 60917-2 standards.

The emphasis of its design is on easy transportability and suitability for installations in

premises with a normal or even lower room height. Due to the simple mechanical struc-

ture with relatively few components, the cabinet is easy to assemble and disassemble

when necessary.

The employment of thin sheet steel technology in its manufacture, along with the use of 

aluminium or sheet metal profile as the material for the doors makes the cabinet frame

light in weight. When fully equipped, the weight of a single cabinet is circa:

• EC216: 260 kg

• IC186/-B: 230 kg

The cabinets meet the IEC 60950 and UL 60950 safety requirements, along with the EN

300019-1-3, Class 3.1E environmental requirements. Based on a riveted (EC216) or 

welded (IC186/-B) frame structure, the earthquake resistance of the cabinet is in accor-

dance with Telcordia GR-63-CORE Zone 4, and the EMC emission and immunity char-

acteristics comply with the EN 300386 and CFR 47, FCC Part 15 standards,

respectively.

NEBS compliance

NEBS stands for Network Equipment Building System. It is a set of Telcordia (former 

Bellcore) Standards, whose purpose is to unify HW requirements and help Telephone

companies to evaluate the suitability of products for use in their networks. Compliance

Page 23: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 23/122

DN0938143 23

WCDMA RNC Engineering Description Mechanical Construction of the IPA2800 Network Ele-ments

Id:0900d805807031ff 

Confidential

to NEBS is usually inquired by RBOC:s (Regional Bell Operator Company) in the USA.

The IPA2800 Network Element Hardware is NEBS Level 3 compliant, covering GR-63-

CORE and GR-1089-CORE in Central Office or equivalent premises, as applicable for 

type 2 ports, as specified in GR-1089-CORE.

 

4.1.1 EC216

Figure 3 EC216 cabinet

The EC216 cabinet consists of the following parts (see figure above):

• Riveted self-supporting cabinet frame made of sheet metal with incorporated

mounting flanges for subrack installation and equipment place for CPD120-A

cabinet power supply units

• Doors manufactured of sheet metal profile (2 pcs)

• Two CPD120-A power distribution units at the top of the cabinet, complete with con-

nectors for redundant incoming and outgoing supply lines plus circuit breakers for the latter 

Page 24: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 24/122

24 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807031ff 

Confidential

Mechanical Construction of the IPA2800 Network Ele-ments

• Side cover plates at the ends of the cabinet rows

• Vertical grounding bars

•  Adjustable feet for permanent installation

•FTRA-B Fan units

• CAIND-A Network Element Alarm indicator (only in the first cabinet).

• CS216-A cable shelves

CS216-A cable shelves are equipped under the two topmost subracks in the

backside of the RNAC cabinet. CPAL-A, CPSY-A and CPSY-B panels are equipped

below the CS216-A.

The cabinet doors can be easily removed, for example, for the duration of the installa-

tion. They have levers with an active locking mechanism, plus separate locks for 

securing the levers to their places.

4.1.2 IC186/-B

Figure 4 IC186-B cabinet

The IC186/-B cabinet consists of the following parts (see figure above):

SideCover Plates

Plug-inunits

Subrack

 Adjustment foot

Cable Support

Fan tray +

Cover plate

Doors

DN02179668

CPD80-B CabinetPower distribution

 Air Guide

Page 25: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 25/122

DN0938143 25

WCDMA RNC Engineering Description Mechanical Construction of the IPA2800 Network Ele-ments

Id:0900d805807031ff 

Confidential

• Welded, self-supporting cabinet frame made of sheet metal, with incorporated

mounting flanges for subrack installation

• Doors manufactured of aluminium profile (4 pcs)

Two CPD80-B power distribution units at the top of the cabinet, complete with con-nectors for redundant incoming and outgoing supply lines plus circuit breakers for 

the latter 

• Side cover plates at the ends of the cabinet rows

• Grounding flanges between adjacent cabinets (4 pcs)

• Vertical grounding bars (2 pcs)

• Horizontal grounding bars (5 pcs)

•  Adjustable feet for permanent installation (4 pcs)

The cabinet doors can be easily removed, for example, for the duration of the installa-

tion. They have levers with an active locking mechanism, plus separate locks for 

securing the levers to their places.

4.1.3 Dimensions of Cabinets in Floor Rail on Free-standing Installations

The cabinets can be installed either on floor rails or free-standing. The final installation

height of the cabinets varies somewhat, depending on whether they are installed on rails

or free-standing.

The equipment room must have a height of at least 2300 mm (86.8 in) with EC216 and

1900 mm (74.8 in) with IC186/-B, so that the cabinets can be lifted to upward position

from the horizontal position they are transported in.

The minimum distance between an RNC cabinet and another cabinet row is 700 mm

(27.6 in). If installed to the end of an existing row, the minimum distance between the

end of a cabinet row and the wall is 1000 mm (39.4 in) for working area.

The dimensions of the EC216 cabinet, and the needed space for conducting cables from

the top or bottom of the cabinet are shown in the figure below.

Page 26: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 26/122

26 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807031ff 

Confidential

Mechanical Construction of the IPA2800 Network Ele-ments

Figure 5  Dimensions of the EC216

The dimensions of the IC186/-B cabinet and the needed space for conducting cables

from the top or bottom of the cabinet are shown in the figure below.

Page 27: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 27/122

DN0938143 27

WCDMA RNC Engineering Description Mechanical Construction of the IPA2800 Network Ele-ments

Id:0900d805807031ff 

Confidential

Figure 6  Dimensions of the IC186-B

For more information on requirements of the equipment room and layout, see sections

Operational environment and Equipment room layout in Installation Site Requirementsfor MGW and RNC .

Dimensions of cabinets in free-standing installation

When installed free-standing, the cabinets stand on adjustable feet. The dimensions of 

the cabinet frame adjustment range provided by the feet are shown in the below figure.

600

DN02133818 FRONT

180

100

70

500

50

50

50

50

Primary areafor  routing cables

Secondary areafor  routing cables

Secondary areafor routing cables

IC186

Page 28: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 28/122

28 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807031ff 

Confidential

Mechanical Construction of the IPA2800 Network Ele-ments

Figure 7  Dimensions of EC216 / IC186-B

Dimensions of cabinets in installation on floor rails

The height of the cabinet rows, when installed on floor rails, is the following:

• EC216: 2060 mm (81.1 in) plus the height of the rail and accessories

• IC186/-B: 1760 mm (69.3 in) plus the height of the rail and accessories

For example, if 75-mm (3 in) high rails are used, the total height of the EC216 cabinets

is 2135 mm (84.1 in).

4.2 Subracks

The RNC uses the following subrack types:EC216:

• SRA3: all subracks

• SRBI-C: all subracks

IC186-B:

• SRA1-B / SRA1-A: subracks 1-2 in RNAC

• SRA2-B / SRA2-A: subracks 3-4 in RNAC and 1-4 in RNBC

• SRBI-B: subracks 3-4 in RNAC and 1-4 in RNBC

RNAC subracks 1 and 2 house nearly all 2N redundant equipment in the network

element. Units which make up a mutually redundant pair are placed in separate sub-

racks, except for upgrades from previously delivered RNCs to RNC196 step 6 and

Page 29: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 29/122

DN0938143 29

WCDMA RNC Engineering Description Mechanical Construction of the IPA2800 Network Ele-ments

Id:0900d805807031ff 

Confidential

RNC196 step 7. Each of the two subracks has an individual configuration, with N+1-

redundant units or those with no redundancy equipped in some of the slots.

RNAC subracks 3 and 4 and all RNBC subracks feature N+1 redundant units or those

with no backup at all, with 2N redundant pairs of MXU units in each subrack as the onlyexceptions. A 2N redundant MXU is located in the same subrack as all tributary units

connected to them are in the same subrack.

The differences between the different subrack types are:

• In comparison to SRA1, SRA2 and SRA3 integrate more of the internal cabling of 

the subrack, such as signals from the MXUs to tributary units, into its back interface

unit.

• SRBI-C is equipped behind the SRA3 and SRBI-B is equipped behind the SRA2

subrack to provide modular backplane connections using BIE1T or BIE1C connector 

panels.

The subracks are designed according to the ETS 300119-4 standard, with particular 

attention paid to durability even under demanding conditions, along with compact

dimensioning for optimal use of cabinet space. Their simple attachment mechanism

makes it easy to demount the subrack and replace it with a new one in case it gets

broken.

The IPA2800 network elements provide full EMC protection on the cabinet level.

 All subracks are installed in the cabinets at the factory. The dimensions of the subracks

are (H x W x D):

• 300 x 500 x 300 mm (11.8 x 19.7 x 11.8 in).

Figure 8  SRA1 subrack

4.3 Plug-in Units

The printed circuit boards of the plug-in units are multi-layered and covered with a pro-

tective coating. They enable the use of both soldered and pressfit through-hole compo-

nents, along with surface-mounted ones. The plug-in units are generally connected to

DN99572546

Page 30: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 30/122

30 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807031ff 

Confidential

Mechanical Construction of the IPA2800 Network Ele-ments

the other parts of the system by means of backplane connectors of Hard Metric type,

which are designed in accordance with the IEC 1076-4-101 standard. Some of the con-

nections, however, are made from the front panels, normally by means of standard RJ-

45 connectors.

The plug-in units of the IPA2800 network elements are designed to support hot-swap-

ping. They are equipped with various LED indicators for monitoring the unit's condition;

one indicator found in each unit, for example, shows that the unit is separated from the

system and can be extracted from the subrack.

The printed boards of the plug-in units come in two sizes (H x D):

• 115 x 285 mm (4.5 x 11.2 in; TBUF and TSS3/-A units)

• 265 x 285 mm (10.4 x 11.2 in; all other plug-in units)

The front panels of the units are made of aluminium. They are equipped with inser-

tion/extraction levers, which help to manage the friction encountered at their installation,

caused by the high number of connector pins typically needed for the backplane con-

nections. The levers are a highly appropriate feature, since the force to be overcome for 

a single plug-in unit may be as high as 400 N, equal to the weight of 41 kilograms.

Like their printed boards, the front panels of the plug-in units come in two sizes (H x W):

• 145 x 25 mm (5.71 x 0.98 in; TBUF and TSS3/-A units)

• 295 x (n x 25) mm (11.61 x (n x 0.98) in; all other plug-in units)

4.4 Cabling

The cabling of the network element consists of interconnection cables (intermediate

cables) and station cables (outgoing cables) as described below. All connections to the

Switch Fabric, multiplexing units, and the wideband network interfaces are made bymeans of high-frequency (HF) cables. Elsewhere in the system, the type of the cables

used has been determined on the basis of the requirements of the associated hardware,

following standard practices in the industry.

Interconnection cables

The interconnection cables comprise all cables running inside and between the cabinets

which form a single network element. The interconnection cables are cut to length and

equipped with connectors. They comprise the following cables:

• Power supply cables

•  ATM connection cables

• Hardware Management Bus cables• Synchronisation and timing cables

• SCSI cables between storage devices and their master units

• LAN/Ethernet cables

Site cables

The site (outgoing) cables are all the cables which leave the network element. They

include:

• Trunk circuit cables from the network interfaces

• Power supply cables

• Grounding cables

• I/O cables

Page 31: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 31/122

DN0938143 31

WCDMA RNC Engineering Description Mechanical Construction of the IPA2800 Network Ele-ments

Id:0900d805807031ff 

Confidential

• TCP/IP cables

The site cables connect directly to the plug-in units, to back interface units located at the

rear side of the IC186/-B cabinets or to units in the cabling cabinet.

4.4.1 General Cabling Principles

The general cabling principles for the IPA2800 network elements are as follows:

• The interconnection cables between plug-in units in the same subrack (intrasubrack

cables) are delivered completely installed in the cabinets.

• The interconnection cables between different subracks in the same cabinet or 

between the equipment cabinet and the cabling cabinet (intracabinet cables) run

directly from subrack to subrack/cabling cabinet. These cables are delivered com-

pletely installed in the cabinets, as individual cable sets for each cabinet type.

However, if the cabling cabinet is delivered separately, also the intracabinet cables

for it are delivered in separate boxes.• The interconnection cables running between different cabinets (intercabinet cables)

are led directly from one cabinet to another through the cable path. These cables

are delivered with one end of each cable installed in an appropriate cabinet. The

interconnection cables are delivered as prefabricated cable sets.

• The site cables can be routed to the environment through the opening at the bottom

(raised floor installations) or top plate (normal installation) of the cabinet. These

cables must be installed at the site.

 All the cables entering the cabinet(s), except for the DC power feed cables, must have

protective wires which are grounded to the frame of the network element at the connec-

tors in the cabling cabinets.

4.5 Cooling Equipment

Each subrack in the network element is provided with a dedicated fan tray cooling unit,

since forced cooling is needed in the cabinets due to the high thermal density. There are

two fan tray variants:

• FTRA-B in EC216, controlled by PD30

• FTRA in IC186/-B, controlled by PD20

The fan trays have eight separate fans with an aggregate capacity sufficient to ensure

N+1 redundancy (if one of the fans fails, this will not cause any rise in the temperature)

and air deflectors, which help to spread the cool air evenly through the subrack.

The FTRA-B fan trays are controlled by the PD30 power supply plug-in units and the

FTRA fan trays are controlled by the PD20 plug-in units on the basis of messages sent

by OMU. OMU, in turn, is supported by the Hardware Management System, which

collects alarms from FTRA/-Bs and controls the temperature inside each plug-in unit. In

case high temperatures are detected, OMU will automatically instruct the PD30/PD20s

(via the HMS bus) to increase the rotation speed of the fans so that the temperature can

be restored to an appropriate level.

Like the subracks, FTRA/-B fan trays are fixed to the cabinets by attaching them to the

mounting flanges. In case of a severe fault, a fan tray can be hot-swapped without any

need for plug-in unit switch-over procedures. For more information, see Replacing plug-

in units and other hardware units.

Page 32: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 32/122

32 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c828

Confidential

Cabinet and Subrack Descriptions for RNC2600

5 Cabinet and Subrack Descriptions for 

RNC2600

5.1 RNC2600 Cabinet Types

The RNC2600 features two different equipment cabinets, RNAC and RNBC, of the type

EC216. The subracks of the cabinets are assigned with numbers starting from 1 at the

top of cabinet and ending to 4 at its bottom.

The RNAC and RNBC cabinets can be configured from left to right or from right to left.

The positions of the cabinets in the two different layout options are shown in the figure

below.

Figure 9 Layout options for the RNC2600

RNC2600 has three configuration steps:

• RNC2600/Step 1

Configuration step 1 of RNC2600 implements the minimum capacity and it consists

of cabinet mechanics for RNAC and a fully equipped RNAC cabinet.

• RNC2600/Step 2

Configuration step 2 of RNC2600 consists of a fully equipped RNAC cabinet andcabinet mechanics for RNBC cabinet; all four subracks for RNBC cabinet, all needed

plug-in unit types for subracks 1 and 2 of RNBC cabinet, and cover plates for 

subracks 3 and 4 of RNBC cabinet.

Configuration step 2 of RNC2600 includes no plug-in units for subracks 3 and 4 in

RNBC, not even PD30s or TBUFs. Cover plates fill the front sides of subracks 3 and

4 entirely.

• RNC2600/Step 3

Configuration step 3 of RNC2600 consists of all needed plug-in unit types equipped

at RNAC and RNBC cabinets.

In addition to the RNC2600 configuration steps:

DN0624966

1200mm

RNBCRNAC600mm

Left-to-right configuration

Right-to-left configuration

RNBC RNAC

Front side of the cabinets

Page 33: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 33/122

DN0938143 33

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC2600

Id:0900d8058083c828

Confidential

• The NISx units with STM-1 interfaces are replaced with NPGE(P) units with IP inter-

face units or NPS1(P) units with SDH STM-1 interfaces.

• Optional second ESA40-A can be ordered separately.

The following figures present the hardware configuration options and configurationsteps for the RNC cabinets.

Figure 10  RNAC cabinet in RNC2600

Page 34: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 34/122

34 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c828

Confidential

Cabinet and Subrack Descriptions for RNC2600

Figure 11 RNBC cabinet in RNC2600

5.2 Equipment in the Subracks

The configurations of the subracks are shown in the tables below.

Page 35: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 35/122

DN0938143 35

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC2600

Id:0900d8058083c828

Confidential

a) As of RN5.0, the functional unit OMS can be selected between the current integrated

OMS or an external standalone OMS network element. For RN6.0 new deliveries, the

standalone OMS is recommended.

Unit type RNAC configuration step 1 RNBC configu-

ration step 2RNBC configu-

ration step 3

Min.

conf.

Max. conf.

SR 1 SR 2 SR 3 SR 4 SR 1 SR 2 SR 3 SR 4 RNAC RNAC - RNBC

DMCU / CDSP-DH 4 4 5 5 5 5 5 5 18 38

EHU / EHAT — — 1 — — — — — 1 1

ICSU / CCP1D-A 1 2 5 6 6 6 6 6 14 38

MXU / MX1G6-A 2 2 2 2 2 2 2 2 8 16

NPS1P / NP8S1-B 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-6 0-14

NPS1 / NP8S1-B 0-1 0-1 0-2 0-2 0-2 0-2 0-2 0-2 0-6 0-14

NPGEP / NP2GE-B 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-8 0-16

NPGE / NP2GE-B 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-8 0-16

OMU / CCP1D-A 1 1 — — — — — — 2 2

- / PD30 1 1 1 1 1 1 1 1 4 8

RSMU / CCP1D-A 1 1 — — — — — — 2 2

SFU / SF20H 1 1 — — — — — — 2 2

TBU / TSS3/-A 1 1 — — — — — — 2 2

TBU / TBUF 1 1 2 2 2 2 2 2 6 14

HDS-C 1 1 — — — — — — 2 2

WDU / HDS14-A

(OMU)

1 1 — — — — — — 2 2

HDD / HDS14 (OMS)

1)

1 1 — — — — — — 2 2

SWU / ESA40-A 1 0-1 — — — — — — 1-2 1-2

OMS / MCP18-B a) 1 — — — — — — — 1 1

Table 3 Number of units in RNC2600 subracks

Unit type Configuration steps

RNC2600/Step 1 RNC2600/Step 2 RNC2600/Step 3

DMCU / CDSP-DH 18 28 38

EHU / EHAT 1 for all configurations

ICSU / CCP1D-A 14 26 38

MXU / MX1G6-A 8 12 16

NPS1P / NP8S1-B a)/b) 0-6 0-10 0-14

Table 4 Maximum number of units in the RNC2600 for each configuration step

Page 36: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 36/122

36 DN0938143

WCDMA RNC Engineering Description

Id:0900d8058083c828

Confidential

Cabinet and Subrack Descriptions for RNC2600

a) Units are optional.

b) NPS1 and NPS1P units and NPGE and NPGEP units are mutually exclusive.

For information on the capacities of the alternative configurations, see RNC2600 capacity in Product Description for RNC2600 .

Back interface units at the rear of the cabinets in RNC2600

In RNC2600, the cabling cabinet is not used. Connections are made either from the back

interface units located at the rear side of the cabinets or from the front panels of the plug-

in units. For more information, see section Interfaces to the environment . The back inter-

face units located at the rear side of the cabinet are described below:

• BISFA

Back interface unit SFP type A for SF20H with 24 SFP connectors for cabling to

NPGE(P), NPS1(P) and MXU units. BISFA also contains an RJ-45 connector for 

cabling between redundant SFUs.• BISFB

Back interface unit SFP type B for MX1G6-A with 4 SFP connectors for cabling to

SFU.

• BISFB-A

Back interface unit SFP type B for MBMS upgrades to RNC196, IC186/IC186-B

mechanics.

• BISFC

Back interface unit SFP type C for NP2GE-B and NP8S1-B plug-in units. The back

interface unit contains 4 SFP connectors for cabling to SFU and an RJ-45 connector 

for ETH service terminal for debugging the NP2GE-B or NP8S1-B.

NPS1 / NP8S1-B a)/b) 0-6 0-10 0-14

NPGEP / NP2GE-B a)/b) 0-8 0-12 0-16

NPGE / NP2GE-B a)/b) 0-8 0-12 0-16

OMU / CCP1D-A 2 for all configurations

- / PD30 4 6 8

RSMU / CCP1D-A 2 for all configurations

SFU / SF20H 2 for all configurations

TBU / TSS3/-A 2 for all configurations

TBU / TBUF 6 10 14

HDS-B 2 for all configurationsWDU / HDS14-A (OMU) 2 for all configurations

HDD / HDS14-A (OMS) 2 for all configurations

SWU / ESA40-A a) 1-2 for all configurations

OMS / MCP18-B 1 for all configurations

Unit type Configuration steps

RNC2600/Step 1 RNC2600/Step 2 RNC2600/Step 3

Table 4 Maximum number of units in the RNC2600 for each configuration step

Page 37: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 37/122

DN0938143 37

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC2600

Id:0900d8058083c828

Confidential

• BISFD

Back interface unit SFP type D for SF20H with 8 SFP connectors for NPGE(P),

NPS1(P) and MXU units.

5.3 RNC2600 Upgrades and Expansions in RN6.0

5.3.1 Optional Expansions for RNC2600

CCP1D-A and HDS-C upgrade

Faulty CCP18-A/C units can be replaced with CCP1D-A in all configurations.

If CCP18-A OMU or RSMU is replaced by CCP1D-A the redundant unit must also be

replaced with CCP1D-A.

Faulty HDS-B can be replaced with HDS-C in all configurations.

gIf OMU’s CCP18-As are replaced by CCP1D-As, a HSD-C upgrade is mandatory

because CCP1D-A is not compatible with HDS-B.

If HDS-B is replaced by HDS-C then CCP1D-A upgrade is required for CCP18-A OMU

(also for the redundant unit) because HDS-C is not compatible with CCP18-A.

In case of upgrading OMU’s CPU units as CCP1D-A, or HSD-B is repleced with HDS-

C, the integrated OMS should be also upgraded to stand alone OMS.

Control plane capacity upgrade

 All CCP18-A/C except for OMU are changed to CCP1D-A.Capacity increasing is con-

trolled by SW license.

HDS-C upgrade

If OMU is upgraded to CCP1D-A then HDS-B has to be replaced by HDS-C as CCP1D-

 A is not compatible with HDS-A/B (no support for SCSI interface).

ESA40-A upgrade

Faulty ESA24 can be replaced with ESA40-A.

Page 38: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 38/122

38 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580841887

Confidential

Cabinet and Subrack Descriptions for RNC450

6 Cabinet and Subrack Descriptions for 

RNC450

6.1 RNC450 Cabinet Types

The RNC450 features two different equipment cabinets, RNAC and RNBC, of the type

EC216. The subracks of the cabinets are assigned with numbers starting from 1 at the

top of cabinet and ending to 4 at its bottom.

The RNAC and RNBC cabinets can be configured from left to right or from right to left.

The positions of the cabinets in the two different layout options are shown in the figure

below.

Figure 12  Layout options for the RNC450

RNC450 has three configuration steps:

• RNC450 step 1

Configuration step 1 of RNC450 implements the minimum capacity and it consists

of cabinet mechanics for RNAC and a fully equipped RNAC cabinet.

• RNC450 step 2

Configuration step 2 of RNC450 consists of a fully equipped RNAC cabinet andcabinet mechanics for RNBC cabinet; all four subracks for RNBC cabinet, all needed

plug-in unit types for subracks 1 and 2 of RNBC cabinet and cover plates for 

subracks 3 and 4 of RNBC cabinet.

Configuration step 2 of RNC450 includes no plug-in units for subracks 3 and 4 in

RNBC, not even PD30s or TBUFs. Cover plates fill the front sides of subracks 3 and

4 entirely.

• RNC450 step 3

Configuration step 3 of RNC450 consists of all needed plug-in unit types equipped

at RNAC and RNBC cabinets.

In addition to the RNC450 configuration steps:

DN0624966

1200mm

RNBCRNAC600mm

Left-to-right configuration

Right-to-left configuration

RNBC RNAC

Front side of the cabinets

Page 39: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 39/122

DN0938143 39

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC450

Id:0900d80580841887

Confidential

• Two NISx units with STM-1 interfaces are included in the basic configuration of 

RNC450 configuration step 1. Additional NISx units can be ordered separately.

NIS1P 10-11 can be configured in RNAC or RNBC.

One optional NIP1 unit with E1, T1, JT1 interfaces can be ordered separately.• Optional second ESA24 can be ordered separately.

The following figures present the hardware configuration options and configuration

steps for the RNC cabinets.

Figure 13 RNAC cabinet in RNC450

RNAC

DN70621159 FRONT VIEW

    D    M    C     U     5 

    D    C     M    U     4

    I    C     S     U     4

    I    C     S     U     5 

    I    C     S     U     6 

    D    M    C     U     6 

    D    M    C     U     7

    D    M    C     U     8 

    M    X    U     4

    P    D    3     0 

    M    X    U     5 

    A    2    S     U     3 

    D    M    C     U     9 

    D    M    C     U     1    0 

    N    I    S     1    P    1    0     /     N    I    P    1

     0     /     N    P    G     E    (      P    )  

     0 

    T    B    U     F

    T    B    U     F

    D    M    C     U     1    2

    D    M

     C     U 

     1     1

    I    C     S     U     7

    I    C     S     U     8 

    I    C     S     U     9 

    D    M    C     U     1    3 

    D    M    C     U     1    4

    D    M    C     U     1    5 

    M    X    U     6 

    P    D    3     0 

    M    X    U     7

    A    2    S     U     4

    D    M    C     U     1    6 

    D    M    C     U     1    7

    N    I    S     1    P

     1    1

    /     N    P    G     E    (      P    )  

     1

    G     T    P    U     2

     /      I    C 

    S     U     2    6 

    N    I    S     1    P     1    /     N    P    G     E    (      P    )  

     7

    N    I    S     1    P     3 

     G     T    P    U 

     1    / 

     I    C     S     U     2    5 

    S     F    U     0 

    E    S     A    2    4

     0      (      S 

    W    U     0     )  

    I    C     S     U     2    2

    R    S     M    U     0 

    M    X    U     0 

    P    D    3     0 

    M    X    U 

     1

    A    2    S     U     0 

    O     M    U     0 

    D    M    C     U     0 

    D    M

     C     U      1

    O     M    S 

    I     C      S     U 

     1

    I    C     S     U     0 

    A     2     S     U 

     1

     S     F    U 

     1

    E    S     A    2    4

     1     (      S 

    W    U     1    )  

    I     C      S     U 

     2     3 

    R     S     M    U 

     1

    M    X    U     2

    P    D    3     0 

    M    X    U     3 

    A    2    S     U     2

      B    :

       H      D      D

      1      O       M      S 

    A   :

     W    D    U 

     1

     O     M    U 

     O     M    U 

     1

    D    M    C     U     2

    D    M    C     U     3 

    G     T    P    U     0     / 

     I    C     S     U     2    4

    I    C     S     U     3 

    I    C     S     U     2

    E    H    U 

    N    I    S     1    P

     0     /     N    P    G     E    (      P    )  

     6 

    N    I    S     1    P

     2

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    S     S     3 

    T    S     S     3 

    T    B    U     F

      B    :

       H      D      D

      0       O       M      S 

    A   :

     W    D    U 

     0 

    O     M    U 

Configuration

step 1

Page 40: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 40/122

40 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580841887

Confidential

Cabinet and Subrack Descriptions for RNC450

Figure 14 RNBC cabinet in RNC450

6.2 Equipment in the subracks

The configurations of the subracks are shown in the tables below.

DN70621174

RNBC

FRONT VIEW

     T     B     U      F

     T     B     U      F

     T     B     U      F

     T     B     U      F

     T     B     U      F

     T     B     U      F

     T     B     U      F

     T     B     U      F

     D     M     C      U 

     2     5 

  -     /       N     P     G 

     E     (       P     )        3 

     I     C      S      U      1

     3 

     I     C      S      U      1

     4

     I     C      S      U      1

     5 

  -      D     M     C      U 

     2     6 

     D     M     C      U 

     2     7

     M     X     U      1     0 

     P     D     3      0 

     M     X     U      1     1

     A     2     S      U      6 

     D     M     C      U 

     2     8 

     D     M     C      U 

     2     9 

     G      T     P     U 

     4     /       I     C      S      U      2     8 

     G      T     P     U 

     5      /       I     C      S      U      2     9 

     D     M     C      U 

     1     8 

  -     /       N     P     G      E     (       P     )        2

     I     C      S      U 

     1     0 

     I     C      S      U 

     1     1

     I     C      S      U 

     1     2

     D     M     C      U 

     1     9 

     D     M     C      U 

     2     0 

     D     M     C      U 

     2     1

     M     X     U 

     8 

     P     D     3      0 

     M     X     U 

     9 

     A     2     S      U 

     5 

     D     M     C      U 

     2     2

     D     M     C      U 

     2     3 

     D     M     C      U 

     2     4

     G      T     P     U 

     3      /       I     C      S      U      2     7

     D     M     C      U 

     3      0 

     I     C      S      U 

     1     6 

     I     C      S      U 

     1     7

     I     C      S      U 

     1     8 

     D     M     C      U 

     3      1

     D     M     C      U 

     3      2

     D     M     C      U 

     3      3 

     M     X     U 

     1     2

     P     D     3      0 

     M     X     U 

     1     3 

     A     2     S      U 

     7

     D     M     C      U 

     3      4

     D     M     C      U 

     3      5 

     D     M     C      U 

     3      6 

     G      T     P     U 

     6      /       I     C      S      U      3      0 

     D     M     C      U 

     3      7

  -     /       N     P     G      E     (       P     )        5 

     I     C      S      U 

     1     9 

     I     C      S      U 

     2     0 

     I     C      S      U 

     2     1

     D     M     C      U 

     3      8 

     D     M     C      U 

     3      9 

     D     M     C      U 

     4     0 

     M     X     U 

     1     4

     P     D     3      0 

     M     X     U 

     1     5 

     A     2     S      U 

     8 

     D     M     C      U 

     4     1

     D     M     C      U 

     4     2

     D     M     C      U 

     4     3 

     G      T     P     U 

     7     /       I     C      S      U      3      1

     N     I     S      1     P     1     0 

     N     I     S      1     P     1     1

  -     /       N     P     G      E     (       P     )        4

     N     I     S      1     P     6 

     N     I     S      1     P     1     0 

     N     I     S      1     P     5 

     N     I     S      1     P     7

     N     I     S      1     P     4

     N     I     S      1     P     6 

Configurationstep 2

Configuration

step 3

Unit type RNAC RNBC Min Max

SR 1 SR 2 SR 3 SR 4 SRs 1–4 conf. conf.

 A2SU 2 1 1 1 1 5 9

DMCU 2 2 7 7 5–7 a) 18 44

Table 5  Numbers of units in RNC450 subracks

Page 41: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 41/122

DN0938143 41

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC450

Id:0900d80580841887

Confidential

EHU — 1 — — — 1 1

GTPU — 1 1 1 1 3 7

ICSU e) 3 3–4 3–4 3–4 3–5 f) 12 32

MXU 2 2 2 2 2 8 16

OMS d) 1 — — — — 1 1

ESA24 1 0–1 — — — 1 2

OMS HDD d) 1 1 — — — 2 2

NIP1 — — 0–1 — — 0 1

NIS1 — — 1–2 1–2 0–2 b) 2 6

NIS1P — — 1–3 c) 1–3 c) 0–2 2 12NPGE(P) — — 1–2 1–2 0–1 2 8

OMU 1 1 — — — 2 2

OMU WDU 1 1 — — — 2 2

PD30 1 1 1 1 1 4 8

RRMU e) 1 1 — — — 2 2

RSMU 1 1 — — — 2 2

SFU 1 1 — — — 2 2

TBUF 1 1 2 2 2 6 14

TSS3 1 1 — — — 2 2

a) In RNBC Sr2, there are 5 DMCU units.

b) 0–2 unprotected NIS1 units in RNBC Sr1 or Sr3. Maximum number of unprotected NIS1 units is 6.

c) NIS1P 10-11 can be configured in RNAC or RNBC.

d) Integrated OMS replaces NEMU as of RN3.0 new deliveries. As of RN5.0, the functional unit OMS can

be selected between the current integrated OMS or an external standalone OMS network element. For 

RN5.0 new deliveries, the standalone OMS is recommended.

e) ICSU replaces RRMU in both subracks after RN4.0 software release upgrade.

f) In RNBC Sr2, there are 3–5 ICSU units. In other RNBC subracks, there are 3–4 ICSU units.

Unit type RNAC RNBC Min Max

SR 1 SR 2 SR 3 SR 4 SRs 1–4 conf. conf.

Table 5  Numbers of units in RNC450 subracks (Cont.)

Unit type Configuration steps

RNC450 step 1 RNC450 step 2 RNC450 step 3

 A2SU 5 7 9

DMCU 18 30 44

EHU 1 for all configurations

ESA24 2 for all configurations

Table 6  Maximum number of units in the RNC450 for each configuration step

Page 42: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 42/122

42 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580841887

Confidential

Cabinet and Subrack Descriptions for RNC450

For information on the capacities of the alternative configurations, see RNC450 capacity  

in Product Description for RNC450 .

For information on equipping rules for interface units NIS1P, NIS1, and NIP1 in

RNC450, see NIS1P, NIS1, and NIP1 equipping rules in Equipment Lists for RNC450 .

Back interface units at the rear of the RNAC cabinet in RNC450

In RNC450, the cabling cabinet is not used. Connections are made either from the back

interface units located at the rear side of the RNAC cabinet or from the front panels of 

the plug-in units. For more information, see Interfaces to the environment in this docu-

ment. The back interface units located at the rear side of the RNAC cabinet are

described below:

• CPSY-A and CPSY-B

Back interface units for synchronisation with 2 pieces of BNC connectors and 3pieces of RJ45 connectors for external synchronisation inputs and outputs in each

GTPU 3 6 8

ICSU b) 10 16 22

MXU 8 12 16

OMS a) 1 for all configurations

OMS Hard disk

HDD a)

2 for all configurations

NIP1 1 for all configurations

NIS1 4 6 6

NIS1P 6 10 12

NPGE(P) 4 6 8

OMU 2 for all configurations

OMU Hard disk

WDU

2 for all configurations

PD30 4 6 8

RRMU b) 2 for all configurations

RSMU 2 for all configurations

SFU 2 for all configurations

TBUF 6 10 14

TSS3 2 for all configurations

a) Integrated OMS replaces NEMU as of RN3.0 new deliveries. As of 

RN5.0, the functional unit OMS can be selected between the current inte-

grated OMS or an external standalone OMS network element. For RN5.0

new deliveries, the standalone OMS is recommended.

b) ICSU replaces RRMU in both subracks after RN4.0 software release

upgrade.

Unit type Configuration steps

RNC450 step 1 RNC450 step 2 RNC450 step 3

Table 6  Maximum number of units in the RNC450 for each configuration step

Page 43: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 43/122

DN0938143 43

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC450

Id:0900d80580841887

Confidential

unit. CPSY-A (for TSS3/-A 0) and CPSY-B (for TSS3/-A 1) are equipped in the same

network element.

• CPAL-A

Back interface unit for alarms with one D25 connector for EXAU-A / EXAU controls,

one D37 connector for general current/voltage outputs, 2 pieces of D37 connectors

for voltage controlled inputs, and one D25 connector for current controlled alarm

inputs.

CPAL-A, CPSY-A and CPSY-B units are equipped below the CS216-A cable

shelves, which are located under the two topmost subracks in the backside of the

RNAC cabinet.

• BIE1T or BIE1C

The rear of the subracks are fitted with SRBI-C, subrack for back interface. If the

optional NIP1 0 is used, BIE1T balanced connector panel or BIE1C coaxial connec-

tor panel is installed in the SRBI-C behind the NIP1 0 installation position in RNAC

subrack 3, slot 15.

6.3 Upgrades and Expansions for RNC450 in RN6.0

6.3.1 Optional Upgrades and Expansions for RNC450

HSPA peak rate upgrade

In HSPA peak rate upgrade peak rate performance is controlled by SW license.

Control plane capacity upgrade

 All CCP18-A/C except for OMU are changed to CCP1D-A.Capacity increasing is con-

trolled by SW license.

CCP1D-A and HDS-C upgrade

Faulty CCP18-A/C units can be replaced with CCP1D-A in all configurations.

If CCP18-A OMU or RSMU is replaced by CCP1D-A the redundant unit must also be

replaced with CCP1D-A.

Faulty HDS-B can be replaced with HDS-C in all configurations.

g If OMU’s CCP18-As are replaced by CCP1D-As, a HSD-C upgrade is mandatory

because CCP1D-A is not compatible with HDS-B.

If HDS-B is replaced by HDS-C then CCP1D-A upgrade is required for CCP18-A OMU

(also for the redundant unit) because HDS-C is not compatible with CCP18-A.

HDS-C shall be equipped in subracks 1-2, slot 14. The upgrade to HDS-C also needs

that EHU is moved from subrack 2 slot 15 to subrack 2 slot 13.

In case of upgrading OMU’s CPU units as CCP1D-A, or HSD-B is repleced with HDS-

C, the integrated OMS should be also upgraded to stand alone OMS.

ESA40-A upgrade

Faulty ESA24 can be replaced with ESA40-A.

OMS as stand-alone NE 

In RN6.0 the integrated OMS can be optionally removed and substituted by a new

external OMS NE.

Page 44: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 44/122

44 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580841887

Confidential

Cabinet and Subrack Descriptions for RNC450

The OMS functional unit (MCP18-B) and the related two HDD (HD B in HDS-B PIUs)

must be removed. All SCSI connections between the OMS and the HDD, and the LAN

connection between OMS and the Ethernet Switch (ESA12/24/40) must be removed as

well.The stand-alone OMS will then be connected to the RNC through the external L2/L3

site switches or, if this solution is not possible, to ETH2 port of SWU.

6.4 RNC450 Upgrades and Expansions in RN5.0

6.4.1 Mandatory Upgrades for RNC450

Minimum hardware requirement for all configurations in RN5.0: the disk size for Inte-

grated OMS must be at least 147 GB.

Before RN5.0 software upgrade, all AL2S-B plug-in units in A2SU functional units must

be replaced with the plug-in unit variant AL2S-D.

For more information, prerequisites and the instructions, see Hardware Expansion for 

RNC450 and Upgrading RNC450 to RNC2600 .

6.4.2 Optional Upgrades and Expansions for RNC450

 As of RN5.0, the functional unit OMS can be selected between the current integrated

OMS or an external standalone OMS network element. For RN5.0 new deliveries, the

standalone OMS is recommended.

The upgrades supported in RN4.0 are also supported in RN5.0Full CDSP-DH upgrade (replacing all CDSP-C with CDSP-DH) is supported.

For more information, prerequisites and the instructions, see Hardware Expansion for 

RNC450 and Upgrading RNC450 to RNC2600 .

6.5 RNC450 Upgrades and Expansions in RN4.0

6.5.1 Mandatory Upgrades for RNC450

In RN4.0 software release, the RRMU functional unit is removed from configuration and

is configured as ICSU unit. RRMU functions are divided between the RSMU, ICSU, andOMU functional units. The location service feature moves to RSMU.

For more information, prerequisites and the instructions, see Hardware Expansion for 

RNC450 and Upgrading RNC450 to RNC2600 .

6.5.2 Optional Upgrades and Expansions for RNC450

• Upgrading RNC450 to RNC2600 

This optional upgrade changes an RNC450 hardware configuration to an RNC2600

hardware configuration. As a prerequisite, the RN4.0 software upgrade must have

been installed. This is a major upgrade which should be planned thoroughly in

advance and only performed during a time of low traffic, by experienced site person-

nel and by strict adherence to the prerequisites and upgrade process. Automated

Page 45: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 45/122

DN0938143 45

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC450

Id:0900d80580841887

Confidential

macros are available to support the upgrade process. Some of the main changes

to functional unit and plug-in unit configuration are

• NIS1(P) / NIP1 functional units are replaced by NPS1(P) functional units, using

new NP8S1-B plug-in units

•  All CDSPx plug-in units are replaced by CDSP-DH plug-in units

•  All MXU functional units receive the new MX1G6-A plug-in unit

• SF10 and SF10E units are replaced with SF20H units

• GTPU and A2SU units are removed and count of ICSU units increases

• Existing functional units are relocated inside the network element

For more information, prerequisites and the instructions, see Upgrading RNC450 to

RNC2600 .

• SFU upgrade

In SFU upgrade, the SF10 plug-in units are replaced by the SF10E plug-in units in

the RNAC cabinet. The SFU upgrade is prerequisite for IP upgrade. New RNAC

cabinet deliveries in RN4.0 use the SF10E plug-in unit, so they do not require anSFU upgrade.

For more information, see SFU and IP Upgrade.

• IP upgrade

IP upgrade deploys IP over Ethernet (IPoE) transport for the Iu-CS, Iu-PS and Iur 

interfaces of an RNC. This is achieved by equipping new NP2GE-B plug-in units into

an RNC cabinet and recreating existing ATM interfaces as Ethernet interfaces. The

NP2GE-B plug-in units can be equipped in a cabinet into slots specified in upgrade

documentation. The SFU upgrade must be completed before starting the IP

upgrade.

For more information, see SFU and IP Upgrade.

• Replacing CDSP-C with CDSP-DH (RAN1266, RAN1258)

CDSP-C plug-in units for DMCU can be replaced with CDSP-DH plug-in units

(RAN1266) in existing installations in the following cases:

• To expand the existing DMCU configuration with new units

• To replace a broken unit

• To enable DMCU for the feature RAN1258: HSDPA 14 Mbps per User (CDSP-

DH is mandatory equipment for RAN1258)

Mixed CDSP-C and CDSP-DH configurations are allowed. However, only specific

CDSP-DH units in the network element can be enabled for the RAN1258 feature.

For more information, see Replacing CDSP-C with CDSP-DH and Enabling HSDPA

Capacity Enhancement in CDSP-DH .

• Full CDSP-DH upgrade (replacing all CDSP-C with CDSP-DH is supported). For 

more information, see Replacing CDSP-C with CDSP-DH and Enabling HSDPA

Capacity Enhancement in CDSP-DH .

Page 46: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 46/122

46 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

7 Cabinet and Subrack Descriptions for 

RNC196

7.1 RNC196 Cabinet Types

The RNC196 features two different equipment cabinets, RNAC and RNBC, of the type

IC186-B or IC186. The subracks of the cabinets are assigned with numbers starting from

1 at the top of cabinet and ending to 4 at its bottom.

In RNC196, it is possible to include an optional cabling cabinet CEXT in the RNC con-

figuration. For more information on the cabling cabinet, see section Cabinets in WCDMA

RNC Engineering Description for previous releases.

The RNAC and RNBC cabinets can be configured from left to right or from right to left.

CEXT can be placed on either side of the RNAC and RNBC cabinets, at the end of the

row, but not in between. The positions of the cabinets in different layout options areshown in the figure below.

Figure 15  Layout options for the RNC196 (with optional cabling cabinet)

DN0426042

RNBCCEXT RNAC

CEXTRNACRNBC

RNBCCEXT RNAC

1500mm

RNBC CEXTRNAC600mm

Left-to-right configuration

Right-to-left configuration

Front side of the cabinets

Page 47: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 47/122

DN0938143 47

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

RNC196 has eight configuration steps. RNC cabinets delivered up to RN2.1 HW level

featured five configuration steps. In RN2.2/RN3.0 two new configuration expansion

steps are introduced for RNC196: configuration step 6 and step 7. In RN5.0, the eighth

configuration expansion step is introduced.

RNC196 configuration step 1 is supported in RN2.2/RN3.0, but is not available for new

deliveries. Configuration expansion steps 2–5 are also available for RNC196 in

RN2.2/RN3.0 level expansion deliveries, with the exception that configuration step 2

does not include the RNBC expansion cabinet. The RNBC expansion cabinet must be

ordered at RN2.1 level.

The following sections present the hardware configuration options and configuration

steps for the RNC196 cabinets.

Notation RNC196 step 5 is used to refer to configuration steps 1–5. Notation RNC196 

step 7 is used to refer to both RNC196 step 6 and RNC196 step 7. Notation RNC196 

step 8 is used to refer to configuration step 8.

g Note that at RN6.0 level, RNC196 step 5 – step 7 HW upgrade is no longer supported,

nor are the expansions.

7.1.1 RNC196 Step 5

Previously delivered RNC cabinets feature five configuration steps and are configured

as shown in the figures RNAC cabinet - RNC196 step 1 and RNBC cabinet - RNC196 

steps 2-5 .

Page 48: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 48/122

48 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

Figure 16  RNAC cabinet - RNC196 step 1

RNAC

DN70621517

    T    S     S     3 

    T    B    U     F

    T    B    U     F

    T    S     S     3 

    T    B    U     F

    T    B    U     F

    S     F    U     1

    N    I    S     1    (      P

    )       1

    R    R    M    U 

    1

    R    S     M    U 

    1

    M    X    U     1

    P    D    2    0 

    F    D    U     (      O     M    U     )  

    H    D    D    1

     (      N    E    M    U     /     O     M    S     )  

    O     M    U     1

    W    D    U     1

     (      O     M    U     )  

    S     F    U     0 

    N    I    S     1    (      P    )  

     0 

    R    R    M    U     0 

    R    S     M    U     0 

    M    X    U     0 

    P    D    2    0 

    E    H    U 

    E    S     A    1    2

     /      E

    S     A    2    4

     0 

    N    E    M    U 

    H    D    D    0 

     (      N    E    M    U     /     O     M    S     )  

    O     M    U     0 

    W    D    U     0 

     (      O     M    U     )  

    N    I    P    1

     1

    N    I    P    1

     0     / 

     N    P    G     E    (      P    )  

     0 

    I    C     S     U     0 

    I    C     S     U     1

    I    C     S     U     2

    D    M    C     U     0 

    D    M    C     U     1

    D    M    C     U     2

    M    X    U     2

    P    D    2    0 

    M    X    U     3 

    D    M    C     U     3 

    D    M    C     U     4

    D    M    C     U     5 

    A    2    S     U     1

    G     T    P    U     0 

     /      I    C 

    S     U     2    4

    N    I    S     1    (      P    )  

     2

    N    I    P    1

     3 

    N    I    P    1

     2    / 

     N    P    G     E    (      P    )  

     1

    I    C     S     U     3 

    I    C     S     U     4

    I    C     S     U     5 

    D    M    C     U     6 

    D    M    C     U     7

    D    M    C     U     8 

    M    X    U     4

    P    D    2    0 

    M    X    U     5 

    D    M    C     U     9 

    D    M    C     U     1    0 

    D    M    C     U     1    1

    A    2    S     U     2

    i    I    C     S     U     6 

    G     T    P    U     1

     /      I    C 

    S     U     2    5 

    N    I    S     1    (      P    )  

     3 

Configurationstep 1

    A    2    S     U     0 

    O    p      t     i   o    n

   a     l

     E    S     A    2    4

     1

    N    I    S     1    (      P

    )       5 

    /      N

    P    G     E    (      P    )  

     7

    N    I    S     1    (      P

    )       7

    N    I    S     1    (      P    )  

     4    / 

     N    P    G     E    (      P    )  

     6 

    N    I    S     1    (      P    )  

     6 

  -

    T    B    U     F

    T    B    U     F

FRONT VIEW

Page 49: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 49/122

DN0938143 49

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

Figure 17  RNBC cabinet - RNC196 steps 2-5

7.1.2 RNC196 Step 6 and RNC196 Step 7

The following figures show the maximum configuration after RNC196 configuration

steps 6 and 7 are taken into use. The two configuration steps are presented in the same

figures as the functional unit positions are the same. The two configuration steps differ 

in the type of plug-in unit variant used: in RNC196 step 7, the newest variants are

required for all units.

DN70621532

RNBC

FRONT VIEW

    N    I    P    1     7

    N    I    P    1     6 

    /      N

    P    G     E    (      P    )  

     3 

    I    C     S     U     1    0 

    I    C     S     U     1    1

    I    C     S     U     1    2

    D    M    C     U 

    2    0 

    D    M    C     U 

    2    1

    D    M    C     U 

    2    2

    M    X    U     8 

    P    D    2    0 

    M    X    U     9 

    D    M    C     U 

    2    3 

    D    M    C     U 

    2    4

    D    M    C     U 

    2    5 

    A    2    S     U 

    4

    G     T    P    U 

    3      /      I    C 

    S     U     2    7

    D    M    C     U 

    2    6 

    D    M    C     U 

    2    7

    N    I    P    1

     5 

    N    I    P    1

     4    / 

     N    P    G     E    (      P    )  

     2

    I    C     S     U     7

    I    C     S     U     8 

    I    C     S     U     9 

    D    M    C     U     1    2

    D    M    C     U     1    3 

    D    M    C     U     1    4

    M    X    U     6 

    P    D    2    0 

    M    X    U     7

    D    M    C     U     1    5 

    D    M    C     U     1    6 

    D    M    C     U     1    7

    A    2    S     U     3 

    G     T    P    U     2

     /      I    C 

    S     U     2    6 

    D    M    C     U     1    8 

    D    M    C     U     1    9 

    N    I    P    1

     9 

    N    I    P    1

     8     / 

     N    P    G     E    (      P    )  

     4

    I    C     S     U     1    3 

    I    C     S     U     1    4

    I    C     S     U     1    5 

    D    M    C     U     2    8 

    D    M    C     U     2    9 

    D    M    C     U     3     0 

    M    X    U     1    0 

    P    D    2    0 

    M    X    U     1    1

    D    M    C     U     3     1

    D    M    C     U     3     2

    D    M    C     U     3     3 

    A    2    S     U     5 

    G     T    P    U     4

     /      I    C 

    S     U     2    8 

    D    M    C     U     3     4

    D    M    C     U     3     5 

    N    I    P    1

     1    1

    N    I    P    1

     1    0     / 

     N    P    G     E    (      P    )  

     5 

    I    C     S     U     1    6 

    I    C     S     U     1    7

    I    C     S     U     1    8 

    D    M    C     U     3     6 

    D    M    C     U     3     7

    D    M    C     U     3     8 

    M    X    U     1    2

    P    D    2    0 

    M    X    U     1    3 

    D    M    C     U     3     9 

    D    M    C     U     4    0 

    D    M    C     U     4    1

    A    2    S     U     6 

    G     T    P    U     5 

     /      I    C 

    S     U     2    9 

    D    M    C     U     4    2

    D    M    C     U     4    3 

Configurationstep 2

Configurationstep 3

Configurationstep 4

Configurationstep 5

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    B    U     F

    T    B    U     F

Page 50: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 50/122

50 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

Figure 18  RNAC cabinet - RNC196 steps 6 and 7

RNAC

DN70623803

    T    B    U     0 

    T    B    U     1

    T    B    U     0 

    T    B    U     1

    T    B    U     0 

    T    B    U     1

    S     F    U     1

    A    2    S     U 

    8 

    I    C     S     U     2    3 

    R    S     M    U 

    1

    M    X    U     1

    4

    P    D    2    0 

    G     T    P    U 

    6 

    E    H    U 

    B   :

     H    D    D

    1     (      O 

    M    S     )  

    A   :

     W    D

    U     1

     (      O     M    U     )  

    O     M    U     1

    I    C     S     U     2    0 

    I    C     S     U 

    2    1

    S     F    U     0 

    A    2    S     U     7

    I    C     S     U     2    2

    R    S     M    U     0 

    M    X    U     0 

    P    D    2    0 

    M    X    U     1

    E    S     A    1    2

     /      E

    S     A    2    4

     0 

    O     M    S 

    A   :

     W    D    U     0 

     (      O     M    U     )  

    B   :

     H    D    D    0 

     (      O     M    S     )  

    O     M    U     0 

    I    C     S     U     6 

    I    C     S     U     1    9 

    D    M    C     U     3     4

    N    I    P    1

     0      (      O 

   p      t     i   o    n   a     l    )  

    I    C     S     U     0 

    I    C     S     U     1

    I    C     S     U     2

    D    M    C     U     0 

    D    M    C     U     1

    D    M    C     U     2

    M    X    U     2

    P    D    2    0 

    M    X    U     3 

    D    M    C     U     3 

    D    M    C     U     4

    D    M    C     U     5 

    A    2    S     U     1

    G     T    P    U     0 

    N    I    S    x

     2

    D    M    C     U     4    2

  - I    C     S     U     3 

    I    C     S     U     4

    I    C     S     U     5 

    D    M    C     U     6 

    D    M    C     U     7

    D    M    C     U     8 

    M    X    U     4

    P    D    2    0 

    M    X    U     5 

    D    M    C     U     9 

    D    M    C     U     1    0 

    D    M    C     U     1    1

    A    2    S     U     2

    N    I    S    x

     1

    G     T    P    U     1

    N    I    S    x

     3 

Configurationstep 1

    A    2    S     U     0 

    O    p      t     i   o    n

   a     l

     E    S     A    2    4

     1

    D    M    C     U 

    2    6 

    D    M    C     U 

    2    7

    D    M    C     U     1    8 

    D    M    C     U     1    9 

    N    I    S    x

     0 

    T    B    U     0 

    T    B    U     1

    M    X    U     1

    5 

FRONT VIEW

Page 51: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 51/122

DN0938143 51

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

Figure 19 RNBC cabinet - RNC196 steps 6 and 7

7.1.3 Hardware Upgrade to RNC196 Step 6 and RNC196 Step 7

The deliveries of capacity Step 7 upgrades have ended 30.6.2010. See RNC Technical

Note End of Capacity Step Upgrade Support for RNC196 .

 An overview of the configurations for the RNC196 configuration steps 6 and 7 is shown

in the figure and sections below. For more information on the hardware changes and

detailed instructions on how to carry out the configuration step expansion, see

document Hardware upgrades from RNC196 step 5 to steps 6 and 7 .

The configuration steps differ in the requirements for plug-in unit variant level. See the

tables Minimum hardware level for RNC196 step 6 and Minimum hardware level for 

DN70623815

RNBC

FRONT VIEW

  -  - I    C     S     U     1    0 

    I    C     S     U     1    1

    I    C     S     U     1    2

    D    M    C     U 

    2    0 

    D    M    C     U 

    2    1

    D    M    C     U 

    2    2

    M    X    U     8 

    P    D    2    0 

    M    X    U     9 

    D    M    C     U 

    2    3 

    D    M    C     U 

    2    4

    G     T    P    U 

    7

    A    2    S     U 

    4

    G     T    P    U 

    3 

    N    I    S     1    P

     5 

    N    I    S     1    P

     7

    D    M    C     U     2    5 

  - I    C     S     U     7

    I    C     S     U     8 

    I    C     S     U     9 

    D    M    C     U     1    2

    D    M    C     U     1    3 

    D    M    C     U     1    4

    M    X    U     6 

    P    D    2    0 

    M    X    U     7

    D    M    C     U     1    5 

    D    M    C     U     1    6 

    D    M    C     U     1    7

    A    2    S     U     3 

    G     T    P    U     2

    N    I    S     1    P

     /      N

    I    S     1

     4

    N    I    S     1    P

     /      N

    I    S     1

     6 

    D    M    C     U     3     5 

  - I    C     S     U     1    3 

    I    C     S     U     1    4

    I    C     S     U     1    5 

    D    M    C     U     2    8 

    D    M    C     U     2    9 

    D    M    C     U     3     0 

    M    X    U     1    0 

    P    D    2    0 

    M    X    U     1    1

    D    M    C     U     3     1

    D    M    C     U     3     2

    D    M    C     U     3     3 

    A    2    S     U     5 

    G     T    P    U     4

    N    I    S     1    P

     /      N

    I    S     1

     8 

    N    I    S     1    P

     /      N

    I    S     1

     1    0 

    D    M    C     U     4    3 

  - I    C     S     U     1    6 

    I    C     S     U     1    7

    I    C     S     U     1    8 

    D    M    C     U     3     6 

    D    M    C     U     3     7

    D    M    C     U     3     8 

    M    X    U     1    2

    P    D    2    0 

    M    X    U     1    3 

    D    M    C     U     3     9 

    D    M    C     U     4    0 

    D    M    C     U     4    1

    A    2    S     U     6 

    G     T    P    U     5 

    N    I    S     1    P

     9 

    N    I    S     1    P

     1    1

Configurationstep 2

Cstep 3

onfiguration

Cstep 4

onfiguration

Cstep 5

onfiguration    T    B    U     0 

    T    B    U     1

    T    B    U     0 

    T    B    U     1

    T    B    U     0 

    T    B    U     1

    T    B    U     0 

    T    B    U     1

Page 52: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 52/122

52 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

RNC196 step 7 for more information. Both of the configuration expansion steps require

cabling and configuration changes to the RNC.

The configuration of the RNC must be at least RNC196 step 5 before the RNC196 con-

figuration step 6 and 7 expansions.

g In the following figure Configuration steps RNC196 steps 6 and 7 with mandatory 

hardware changes: in slots which show two functional unit names, the lower one shows

the functional unit equipped in that slot in configuration steps 1–5 and the upper one

shows the functional unit equipped in that same slot after the mandatory hardware

changes have been carried out in the expansion to RNC196 step 6 and 7.

Figure 20  Configuration steps RNC196 step 6 and 7 with mandatory hardware

changes

RNAC RNBC

ConfigurationStep 1

Configuration

step 2

Configurationstep 5

    I     C      S     U      3 

    I     C      S     U     4

    I     C      S     U     5 

    D    M     C     U      6 

    D    M     C     U     7

    D    M     C     U      8 

    M    X    U     4

    P    D     2     0 

    M    X    U     5 

    D    M     C     U      9 

    D    M     C     U      1     0 

       T       B       U 

       1

       T       B       U 

       0 

    N    I    P     1

      3 

    N    I    P     1

      2

    A     2     S     U      2

    D    M     C     U      1     1

     G     T    P    U      1

    N    I     S    x

      3 

    I     C      S     U      6 

     S     F    U      0 

    A     2     S     U      0 

    A     2     S     U     7

    R    R    M    U      0 

    R     S     M    U      0 

    M    X    U      0 

    P    D     2     0 

    N    E    M    U 

    H    D    D     0 

     (      N    E    M    U      )  

     O     M    U      0 

       T       B       U 

       1

       T       B

       U 

       0 

    D    M     C     U 

     1     8 

    D    M     C     U 

     1     9 

    W    D    U      0 

     (       O     M    U      )  

Configuration

step 4

    I     C      S     U      0 

    I     C      S     U      1

    I     C      S     U      2

    D    M     C     U      0 

    D    M     C     U      1

    D    M     C     U      2

    M    X    U      2

    P    D     2     0 

    M    X    U      3 

    D    M     C     U      3 

    D    M     C     U     4

       T       B       U 

       1

       T       B

       U 

       0 

    N    I    P     1

      1

    N    I    P     1

      0 

    A     2     S     U      1

    D    M     C     U     5 

     G     T    P    U      0 

    N    I     S    x

      2

  - I     C      S     U      1     3 

    I     C      S     U      1    4

    I     C      S     U      1    5 

    D    M     C     U      2     8 

    D    M     C     U      2     9 

    D    M     C     U      3      0 

    M    X    U      1     0 

    P    D     2     0 

    M    X    U      1     1

    D    M     C     U      3      1

    D    M     C     U      3      2

       T       B       U 

       1

       T       B       U 

       0 

    N    I    P     1

      9 

    N    I    P     1

      8 

    A     2     S     U     5 

    D    M     C     U      3      3 

    D    M     C     U      3     4

    D    M     C     U      3     5 

     G     T    P    U     4

Configurationstep 3

     S     F    U      1

    N    I     S    x

      1

    R    R    M    U      1

    R     S     M    U      1

    M    X    U      1

    P    D     2     0 

     O     M    U      1

       T       B       U 

       1

       T       B       U 

       0 

    F    D    U 

    I     C      S     U      2     0 

    I     C      S     U      2     1

    N    I     S      1    P

     5 

    N    I     S      1    P

     7

    E     S     A     2    4

      1      (       O 

   p      t     i   o    n   a     l     )  

    H    D    D     0 

     (      N    E    M    U      )  

    W    D    U      0 

     (       O     M    U      )  

    I     C      S     U      1     0 

    I     C      S     U      1     1

    I     C      S     U      1     2

    D    M     C     U      2     0 

    D    M     C     U      2     1

    D    M     C     U      2     2

    M    X    U      8 

    P    D     2     0 

    M    X    U      9 

    D    M     C     U      2     3 

    D    M     C     U      2    4

       T       B       U 

       1

       T       B       U 

       0 

    N    I    P     1

     7

    N    I    P     1

      6 

    A     2     S     U     4

    D    M     C     U      2    5 

    D    M     C     U      2     6 

    D    M     C     U      2    7

     G     T    P    U      3 

    I     C      S     U     7

    I     C      S     U      8 

    I     C      S     U      9 

    D    M     C     U      1     2

    D    M     C     U      1     3 

    D    M     C     U      1    4

    M    X    U      6 

    P    D     2     0 

    M    X    U     7

    D    M     C     U      1    5 

    D    M     C     U      1     6 

       T       B       U 

       1

       T       B

       U 

       0 

    N    I    P     1

     5 

    N    I    P     1

     4

    A     2     S     U      3 

    D    M     C     U      1    7

    D    M     C     U      1     8 

    D    M     C     U      1     9 

     G     T    P    U      2

    I     C      S     U      1     6 

    I     C      S     U      1    7

    I     C      S     U      1     8 

    D    M     C     U      3      6 

    D    M     C     U      3     7

    D    M     C     U      3      8 

    M    X    U      1     2

    P    D     2     0 

    M    X    U      1     3 

    D    M     C     U      3      9 

    D    M     C     U     4     0 

       T       B       U 

       1

       T       B       U 

       0 

    N    I    P     1

      1     1

    N    I    P     1

      1     0 

    A     2     S     U      6 

    D    M     C     U     4     1

    D    M     C     U     4     2

    D    M     C     U     4     3 

     G     T    P    U     5 

    E    H    U 

    E     S     A     1     2

      /      E

     S     A     2    4      0 

= unit relocated or removed

= unit added

= unit upgraded to newest variant

Configuration step 6

= unit upgraded to newest variant

Configuration step 7

DN0638349

    N    I     S    x

      0 

    N    I     S    x

     4

    N    I     S    x

      6 

    M    X    U      1

    I     C      S     U      6 

    W    D    U      0 

     (       O     M    U      )  

    I     C      S     U      1

     9 

    A     2     S     U      8 

    D    M     C     U      2     6 

    D    M     C     U      2    7

    M    X    U      1    4

    M    X    U      1    5 

     G     T    P    U      6 

    E    H    U 

    W    D    U      1

     (       O     M    U      )  

    D    M     C     U 

     3     4

     O    p      t     i   o    n   a 

    l

    N    I     S    x      0 

    D    M     C     U     4     2

  - N    I     S    x

      1

    D    M     C     U     4     3 

  - N    I     S      1    P

      9 

    N    I     S      1    P

      1     1

    D    M     C     U 

     3     5 

  - N    I     S    x

      8 

    N    I     S    x

      1     0 

    N    I     S    x     4

    N    I     S    x      6 

    D    M     C     U 

     2    5 

  -

  -  - N    I     S      1    P

     5 

    N    I     S      1    P

     7

     G     T    P    U     7

Page 53: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 53/122

DN0938143 53

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

RNC196 step 6

RNC196 step 6 can be achieved with the following hardware changes. For detailed infor-

mation on the hardware changes and instructions on how to carry out the expansion,

see document Hardware upgrades from RNC196 step 5 to steps 6 and 7 .

RNC196 step 7

RNC196 step 7 can be achieved with the hardware changes listed below, required in

addition to the hardware changes made for configuration step RNC196 step 6. For 

detailed information on the hardware changes and instructions on how to carry out the

expansion, see document Hardware upgrades from RNC196 step 5 to steps 6 and 7 .

Functional unit Minimum HW level Configuration expansion step 6

 A2SU AL2S-B Add 2 AL2S-D units

GTPU CCP10 Add 3 CCP18-C/CCP18-A units

ICSU CCP10 Add 2 CCP18-C/CCP18-A units

MXU MX622-D Add 2 MX622-D units

or 

 Add 2 MX622-D units and upgrade all MX622-

C/-B units to MX622-D

NISx NI4S1-B Add up to 8 new NISx units

OMU CCP18-A Upgrade 2 CCP10 units to CCP18-A

OMU WDU HDD HDS-B Upgrade 2 OMU HDS/-A units to 2 HDS-B units

DMCU CDSP-C Reconfigure existing CDSP-Cs to new loca-

tions

In RN4.0, upgrade CDSP-C units to CDSP-DH

FDU Remove MDS-A (replaced by OMU's USB con-

nection for external USB devices. The USB

memory stick can be used only with CCP18-A.)

NIP1 NI16P1A Remove excessive NIP1 units – 1 unit remains

RRMU In RN4.0, remove and reconfigure as ICSU

units

RSMU CCP10

OMS MCP18-B Integrated OMS replaces NEMU as of RN3.0

 As of RN5.0, the functional unit OMS can be

selected between the current integrated OMS

or an external standalone OMS network

element. For RN5.0 new deliveries, the stand-

alone OMS is recommended.

Table 7  Minimum hardware level and configuration expansion for RNC196 step 6

Functional unit Minimum HW level Configuration expansion step 7

 A2SU AL2S-D Upgrade remaining 7 AL2S-B units to AL2S-D

Table 8  Minimum hardware level and configuration expansion for RNC196 step 7

Page 54: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 54/122

54 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

7.2 Equipment in the Subracks

The table below shows the configurations of the subracks for RNC196 step 5, RNC196

step 7 and RNC196 step 8. The RNC196 step 7 covers both RNC196 step 6 and

RNC196 step 7 maximum configurations.

GTPU CCP18-C

CCP18-A

Upgrade remaining 6 CCP10 units to CCP18-

C/CCP18-A

ICSU CCP18-C

CCP18-A

Upgrade remaining 19 CCP10 units to CCP18-

C/CCP18-A

RRMU In RN4.0, removed and reconfigured as ICSU

units

RSMU CCP18-C

CCP18-A

Upgrade 2 CCP10 units to CCP18-C/CCP18-A

MXU MX622-D

DMCU CDSP-C In RN4.0, upgrade CDSP-C units to CDSP-DH

OMU CCP18-A

OMU WDU HDD HDS-B

OMS MCP18-B Integrated OMS replaces NEMU as of RN3.0.

 As of RN5.0, the functional unit OMS can be

selected between the current integrated OMS

or an external standalone OMS network

element. For RN5.0 new deliveries, the stand-

alone OMS is recommended.

Functional unit Minimum HW level Configuration expansion step 7

Table 8  Minimum hardware level and configuration expansion for RNC196 step 7

Unit type Conf. RNAC RNBC Min Max

SR 1 SR 2 SR 3 SR 4 SRs 1–4 conf. conf.

 A2SU RNC196 step 5 1 — 1 1 1 3 7

RNC196 step 7 2 1 1 1 1 5 9

RNC196 step 8 — — — — — — —

DMCU RNC196 step 5 — — 6 6 8 12 44

RNC196 step 7 2 2 7 7 5–7 a) 18 44

RNC196 step 8 1 1 2 3 11 18 18

EHU RNC196 step 5 1 — — — — 1 1

RNC196 step 7 — 1 — — — 1 1

RNC196 step 8 — 1 — — — 1 1

GTPU RNC196 step 5 — — 1 1 1 2 6

RNC196 step 7 — 1 1 1 1–2 b) 4 8

RNC196 step 8 — — — — — — —

Table 9 Number of units in RNC196 subracks

Page 55: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 55/122

DN0938143 55

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

ICSU h) RNC196 step 5 1 1 3 4 3 9 21

RNC196 step 7 3 3 3 3 3 12 24

RNC196 step 8 3 4 4 4 17 32 32

MXU RNC196 step 5 1 1 2 2 2 6 14

RNC196 step 7 2 2 2 2 2 8 16

RNC196 step 8 2 2 2 2 8 16 16

OMS f) RNC196 step 5 1 — — — — 1 1

RNC196 step 7 1 — — — — 1 1

RNC196 step 8 0–1 — — — — — 1

OMS HDD e) RNC196 step 5 1 1 — — — 2 2RNC196 step 7 1 1 — — — 2 2

RNC196 step 8 0–1 0–1 — — — — 2

ESA24 c) 1 0–1 — — — 1 2

ESA12 c) 1 — — — — 1 1

NIP1 RNC196 step 5 1 — 0–2 0–2 0–2 — 12

RNC196 step 7 1 — — — — 1 1

RNC196 step 8 — — — — — — —

NIS1 RNC196 step 5 1–3 0–1 0–1 0–1 — 2 6

RNC196 step 7 — — 1–2 1–2 0–2 d) 2 6

RNC196 step 8 — — — — — — —

NIS1P RNC196 step 5 1–3 1–3 0–1 0–1 — 2 8

RNC196 step 7 — — 1–2 1–2 0–2 2 12

RNC196 step 8 — — — — — — —

NPGE(P) RNC196 step 5 0–1 0–1 0–1 0–1 0–1 — 8

RNC196 step 7 — — — — — — —

RNC196 step 8 — — 0–1 0–1 0–6 — 8

NPS1(P) RNC196 step 5 — — — — — — —

RNC196 step 7 — — — — — — —

RNC196 step 8 — — 0–1 0–1 0-4 0 6

OMU 1 1 — — — 2 2

OMU WDU 1 1 — — — 2 2

OMU FDU h) RNC196 step 5 — 1 — — — 1 1

PD20 1 1 1 1 1 4 8

RRMU f) 1 1 — — — 2 2

RSMU 1 1 — — — 2 2

Unit type Conf. RNAC RNBC Min Max

SR 1 SR 2 SR 3 SR 4 SRs 1–4 conf. conf.

Table 9 Number of units in RNC196 subracks (Cont.)

Page 56: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 56/122

56 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

SFU 1 1 — — — 2 2

TBUF 1 1 2 2 2 6 14

TSS3 1 1 — — — 2 2

a) In RNBC Sr2, there are 5 DMCUs.

b) In RNBC Sr2, there are 2 GTPUs.

c) RNC196 is configured with either ESA24 or ESA12.

d) 0-2 NIS1 units in RNBC Sr1 or Sr3: maximum number of NIS1 units is 6.

e) Integrated OMS replaces NEMU in RN3.0.

 As of RN5.0, the functional unit OMS can be selected between the current integrated OMS or an external stand-

alone OMS network element. For RN5.0 new deliveries, the standalone OMS is recommended.

f) ICSU replaces RRMU in both subracks after RN4.0 software release upgrade.

g) In RNBC Sr2, there are 6 DMCUs.

h) RNC196 step 5 only: FDU is removed when adding configuration step RNC196 step 6 and RNC196 step 7.

Unit type Conf. RNAC RNBC Min Max

SR 1 SR 2 SR 3 SR 4 SRs 1–4 conf. conf.

Table 9 Number of units in RNC196 subracks (Cont.)

Unit type Configuration steps

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

 A2SU 3 4 5 6 7 9 9 —

DMCU 12 20 28 36 44 44 44 18

EHU 1 for all configurations

ESA24 2 for all configurations

ESA12 1 for all configurations

GTPU 2 3 4 5 6 8 8 —

ICSU a) 7 10 13 16 19 22 22 32

MXU 6 8 10 12 14 16 16 16

OMS b)

* OMS replaces

NEMU as of RN3.0

1 for all configurations

OMS HDD b) 2 for all configurations

NIP1 4 6 8 10 12 1 1 —

NIS1 6 for all configurations —

NIS1P 8 for all configurations 12 12 —

NPGE(P) 4 5 6 7 8 — — 8

NPS1(P) — — — — — — — 6

OMU 2 for all configurations

OMU WDU 2 for all configurations

Table 10  Maximum number of units in RNC196 for each configuration step

Page 57: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 57/122

DN0938143 57

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

For information on the capacities of the alternative configurations, see RNC196 capacity  

in Product Description for RNC196 .

7.3 Upgrades and Expansions for RNC196 in RN6.0

7.3.1 Optional Upgrades and Expansions for RNC196

HSPA peak rate upgrade

In HSPA peak rate upgrade peak rate performance is controlled by SW license.

Control plane capacity upgrade

 All CCP18-A/C except for OMU are changed to CCP1D-A.Capacity increasing is con-

trolled by SW license.

In case of NPGE-only or NPS1-only configuration, RNC196 CS8 can be equipped with

max 4+4 NPGE(P) and max 3+3 NPS1(P).

CCP1D-A and HDS-C upgrade

Faulty CCP18-A/C units can be replaced with CCP1D-A in all configurations.

If CCP18-A OMU or RSMU is replaced by CCP1D-A the redundant unit must also bereplaced with CCP1D-A.

Faulty HDS-B can be replaced with HDS-C in all configurations.

g If OMU’s CCP18-As are replaced by CCP1D-As, a HSD-C upgrade is mandatory

because CCP1D-A is not compatible with HDS-B.

If HDS-B is replaced by HDS-C then CCP1D-A upgrade is required for CCP18-A OMU

(also for the redundant unit) because HDS-C is not compatible with CCP18-A.

In case of upgrading OMU’s CPU units as CCP1D-A, or HSD-B is repleced with HDS-

C, the integrated OMS should be also upgraded to stand alone OMS.

OMU FDU 1 for all configurations — — —

PD20 4 5 6 7 8 8 8 8

RRMU a) 2 for all configurations —

RSMU 2 for all configurations

SFU 2 for all configurations

TBUF 6 8 10 12 14 14 14 14

TSS3 2 for all configurations

a) ICSU replaces RRMU in both subracks after RN4.0 software release upgrade.

b) As of RN5.0, the functional unit OMS can be selected between the current integrated OMS or an external standalone OMS

network element. For RN5.0 new deliveries, the standalone OMS is recommended..

Unit type Configuration steps

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Table 10  Maximum number of units in RNC196 for each configuration step (Cont.)

Page 58: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 58/122

58 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821afb

Confidential

Cabinet and Subrack Descriptions for RNC196

ESA40-A upgrade

Faulty ESA24 can be replaced with ESA40-A.

OMS as stand-alone NE 

In RN6.0 the integrated OMS can be optionally removed and substituted by a new

external OMS NE.

The OMS functional unit (MCP18-B) and the related two HDD (HD B in HDS-B PIUs)

must be removed. All SCSI connections between the OMS and the HDD, and the LAN

connection between OMS and the Ethernet Switch (ESA12/24/40) must be removed as

well.The stand-alone OMS will then be connected to the RNC through the external L2/L3

site switches or, if this solution is not possible, to ETH2 port of SWU.

7.4 Upgrades and Expansions for RNC196 in RN5.0

7.4.1 Mandatory Upgrades for RNC196

Only CCP18-A can be used for OMU at RN6.0 level. All CCP10 used as OMU functional

units must be upgraded to CCP18-A. CCP10 can be used in all other functional units

RN196 capacity steps 1-6. Mixed use is allowed in N+1 redundant units, but 2N redun-

dant units must be of the same CPU type.

Minimum hardware requirement for all configurations in RN5.0: the disk size for Inte-

grated OMS must be at least 147 GB.

Before RN5.0 software upgrade, all AL2S-B plug-in units in A2SU functional units mustbe replaced with the plug-in unit variant AL2S-D.

7.4.2 Optional Upgrades for RNC196

 As of RN5.0, the functional unit OMS can be selected between the current integrated

OMS or an external standalone OMS network element. For RN5.0 new deliveries, the

standalone OMS is recommended.

RNC196 step 7 to step 8 upgrade is supported. For more informaiton, see Hardware

Expansion for RNC196 .

Full CDSP-DH upgrade (replacing all CDSP-C with CDSP-DH) is supported. For more

information, see Replacing CDSP-C with CDSP-DH and Enabling HSDPA Capacity Enhancement in CDSP-DH .

The upgrades supported in RN4.0 are also supported in RN5.0.

7.5 Upgrades and Expansions for RNC196 in RN4.0

7.5.1 Mandatory Upgrades for RNC196

In RN4.0 software release, the RRMU functional unit is removed from configuration and

is configured as ICSU unit. RRMU functions are divided between the RSMU, ICSU, and

OMU functional units. The location service feature moves to RSMU. For more informai-

ton, see Hardware Expansion for RNC196 .

Page 59: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 59/122

DN0938143 59

WCDMA RNC Engineering Description Cabinet and Subrack Descriptions for RNC196

Id:0900d80580821afb

Confidential

7.5.2 Optional Upgrades for RNC196

• RRMU to ICSU 

When the RRMU functional unit is removed, its CCP10/CCP18-A/CCP18-C plug-in

units are released. They can be configured as ICSU, which means that ICSUcapacity increases by two plug-in units. For more informaiton, see Hardware Expan-

sion for RNC196 .

• SFU upgrade

In SFU upgrade, the SF10 plug-in units are replaced by the SF10E plug-in units in

the RNAC cabinet. The SFU upgrade is prerequisite for IP upgrade.

For more information, see SFU and IP Upgrade.

• IP upgrade

IP upgrade deploys IP over Ethernet (IPoE) transport for the Iu-CS, Iu-PS and Iur 

interfaces of an RNC. This is achieved by equipping new NP2GE-B plug-in units into

an RNC cabinet and recreating existing ATM interfaces as Ethernet interfaces. The

NP2GE-B plug-in units can be equipped in a cabinet into slots specified in upgradedocumentation. The SFU upgrade must be completed before starting the IP

upgrade.

For more information, see SFU and IP Upgrade.

• Replacing CDSP-C with CDSP-DH (RAN1266, RAN1258)

CDSP-C plug-in units for DMCU can be replaced with CDSP-DH plug-in units

(RAN1266) in existing installations in the following cases:

• to expand the existing DMCU configuration with new units

• to replace a broken unit

• to enable DMCU for the feature RAN1258: HSDPA 14 Mbps per User (CDSP-

DH is mandatory equipment for RAN1258)

Mixed CDSP-C and CDSP-DH configurations are allowed. However, only specificCDSP-DH units in the network element can be enabled for the RAN1258 feature.

For more information, see Replacing CDSP-C with CDSP-DH and Enabling HSDPA

Capacity Enhancement in CDSP-DH .

Page 60: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 60/122

60 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

8 Functional Unit Descriptions

8.1 Functional Unit CategoriesThe functional units of the RNC fall into four general categories according to their main

functions:

• Management, control computer and data processing units

• Switching and multiplexing units

• Network element interface units

• Units in the timing, power distribution, and hardware management subsystems

The units in the first three categories make up the hardware system blocks which are

responsible for the main functions of the network element, such as switching, signalling,

and database handling. The units in the last category are mainly blocks in the different

subsystems, which are needed for the operation and maintenance of the networkelement, such as clock signal distribution, power distribution, and Hardware Manage-

ment System. All these subsystems are controlled up to a degree by one of the

computer units of the network element, the Operation and Maintenance Unit (OMU).

Notations

The following notations are used throughout this chapter:

• The index numbers of the plug-in units run from left to right and top to bottom.

• Even though the CCP18-A and CCP10 plug-in units are all equipped with onboard

LAN/Ethernet and SCSI interfaces, these are included in the functional unit interface

lists only when the LAN or SCSI facility is actually used (in OMU unit only).

8.2 Management, Control Computer and Data Processing

Units

The management and control computer units are on the highest level in the computing

hierarchy of the IPA2800 network elements. Their tasks are roughly the following:

• Operation and maintenance, including control of the Hardware Management

System (or alarm system) and activation of appropriate recovery and diagnostics

procedures when a fault occurs

• Switch fabric control and ATM circuit hunting

• Control of some of the signal processing units

• Maintenance of the radio network configuration and recovery

• Monitoring of the MS connections

• Handling of signalling functions and management of the associated protocols

• Interfacing with both local users and the higher-level network management system

The management and control computer unit category comprises the following functional

units:

8.2.1 DMCU, Data and Macro Diversity Combining Unit

Purpose: Although from the technical point of view DMCU is a signal processing

unit, it performs some control plane functions besides its signal pro-cessing tasks. Its tasks are the following:

Page 61: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 61/122

DN0938143 61

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

• WCDMA L1 functions, including macro diversity combining and

outer loop power control

• RLC-U and RLC-C protocol processing

MAC-C and MAC-D protocol processing• PDCP protocol processing

• GTP termination

• encryption

• HSDPA with CDSP-DH

 All DSPs and RISC processors of the unit are automatically allocated

within the RNC according to the capacity need.

Redundancy: SN+

Type: Signal processing unit with no sub-units

Plug-in unit: CDSP-DH / CDSP-C

Configurable Dynamic Signal Processing Platform

Interfaces: ATM interface to MXU

Figure 21 DMCU's interfaces - CDSP-DH

DN7088176

LED

SLAVE 3

SLAVE 2

SLAVE 1

MASTER

RS-232 CONNECTORS:

SLAVE 1

MASTER

LAN / ETHERNET:

SLAVE 2

SLAVE 3

BACKPLANE:

-TIMING & SYNC- HMS- POWER SUPPLY- MXU

Page 62: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 62/122

62 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 22  DMCU's interfaces - CDSP-C

8.2.2 GTPU, Gateway Tunneling Protocol Unit

Purpose: GTPU facilitates RNC connections towards the SGSN by performing

those RNC-specific Iu user plane functions which are related to GTP

protocols. These include:

• Routing based on GTP tunnel ID

• UDP/IP protocol termination

Redundancy: SN+

Type: Computer unit with no sub-units

Plug-in unit: CCP1D-A / CCP18-C / CCP18-A / CCP10

Control Computer, Dual Core with Intel Jasper Forest processor 

(CCP1D-A).

Control Computer, Pentium M (CCP18-C / CCP18-A)

Control Computer, Pentium III (CCP10)

Interfaces: ATM interface to MXU

CDSP DN00256144

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU

SERVICE TERMINAL

Page 63: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 63/122

DN0938143 63

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 23 GTPU’s interfaces - CCP1D-A

SER1

SER2

RST

USB1

USB 2

PCIe2

PC Ie 1

PCI Express Interface, P11

PCI Express Interface, P12

USB 2.0 Interface, P15

USB 2.0 Interface, P16

Bicolor HMS LED

Reset Button

Serial Interface, P13

Serial Interface, P14

DN0953479

Page 64: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 64/122

64 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 24 GTPU's interfaces - CCP18-C

BACKPLANE:

- HMS- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

DN70391828

RESET SWITCH

SERVICE TERMINAL

Page 65: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 65/122

DN0938143 65

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 25  GTPU's interfaces - CCP18-A

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES INSUBRACKS)

- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

USB

DN0621415

RESET SWITCH

SERVICE TERMINAL

Page 66: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 66/122

66 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 26  GTPU's interfaces - CCP10

8.2.3 ICSU, Interface Control and Signalling Unit

Purpose: ICSU handles signalling functions and the associated traffic control

functions, including the following tasks:

•  Admission control

• Radio resource management

• Handover control

• Packet scheduling

• Signalling protocols to Iu, Iub, and Iur interfaces, including NBAP,

RNSAP, and RANAP

• Monitoring and recovery of the signalling links

Redundancy: N+1

Type: Computer unit with no sub-units

Plug-in unit: CCP1D-A/ CCP18-C / CCP18-A / CCP10

Control Computer, Dual Core with Intel Jasper Forest processor 

(CCP1D-A). At RN6.0 level, only CCP1D-A is used.

Control Computer, Pentium M (CCP18-C / CCP18-A)

Control Computer, Pentium III (CCP10)

CCP10 DN00249775

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- SCSI (NOT USED)- LAN (NOT USED)

SERVICE TERMINAL

Page 67: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 67/122

DN0938143 67

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Interfaces: ATM interface to MXU

Figure 27  ICSU’s interfaces - CCP1D-A

SER1

SER2

RST

USB1

USB 2

PCIe2

PC Ie 1

PCI Express Interface, P11

PCI Express Interface, P12

USB 2.0 Interface, P15

USB 2.0 Interface, P16

Bicolor HMS LED

Reset Button

Serial Interface, P13

Serial Interface, P14

DN0953479

Page 68: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 68/122

68 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 28  ICSU's interfaces - CCP18-C

BACKPLANE:

- HMS- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

DN70391828

RESET SWITCH

SERVICE TERMINAL

Page 69: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 69/122

DN0938143 69

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 29 ICSU's interfaces - CCP18-A

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES INSUBRACKS)

- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

USB

DN0621415

RESET SWITCH

SERVICE TERMINAL

Page 70: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 70/122

70 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 30  ICSU's interfaces - CCP10

8.2.4 Integrated OMS, Operation and Maintenance Server and its sub-

units

 As of RN5.0, the functional unit OMS can be selected between the current integrated

OMS or an external standalone OMS network element. For RN5.0 new deliveries, the

standalone OMS is recommended.

Purpose: Integrated OMS provides the following facilities:

• Local user interface

• Interface towards the higher level network management system

• O&M functions which are not handled by other computer units of the

RNC

• Post-processing support for measurement and statistics

• Peripheral device control

Integrated OMS is equipped with storage devices for storing measure-

ment and statistical data, and an Ethernet switch with 12 or 24 physical

LAN interfaces for connections to the upper-level network management

system and the site LAN. Both facilities are implemented as separate

plug-in units and described in separate sections which follow this one.Redundancy: None

CCP10 DN00249775

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- SCSI (NOT USED)- LAN (NOT USED)

SERVICE TERMINAL

Page 71: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 71/122

DN0938143 71

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Type: Computer unit, with dedicated storage devices and the Ethernet Switch

unit (ESA12/ESA24) as sub-units.

Plug-in unit: MCP18-B

Management Computer, Pentium M 745 (MCP18-B)

MCP18-B Interfaces: Small Computer Systems Interface (SCSI)

LAN/Ethernet to NMS, OMU and Site LAN via ESA24/ESA12

LAN/Ethernet to OMU via ESA24/ESA12

USB *

VDU

*) The USB ports can be used to connect a keyboard, a mouse or a

bootable device to the MCP18-B. USB-PS/2 adapters are not sup-

ported.

Figure 31 Integrated OMS interfaces (MCP18-B)

Integrated OMS storage devices

Purpose: Integrated OMS is equipped with dedicated hard disks, which serve as

a storage for the measurement and statistical data it collects.

Redundancy: 2N (hard disk drive)

Type: Sub-unit to integrated OMS

Plug-in unit: HDS-B

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES IN

SUBRACKS)- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

SVGA

USB

DN05226345

RESET SWITCH

Page 72: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 72/122

72 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Hard Disk Drive with SCSI Interface

Interfaces: Small Computer System Interface (SCSI)

Figure 32  Integrated OMS storage device interfaces

Configuration and redundancy principles of integrated OMS storage devices

Integrated OMS has a duplicated hard disk unit for storing all crucial measurement and

statistical data. The disks are connected to integrated OMS by means of two SCSIbuses, the connection principles of which are shown in the figure below.

DN00256429

LED

BACKPLANE:

- HMS- POWER

SUPPLY

- SCSI

INTERFACES:

Page 73: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 73/122

DN0938143 73

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 33 SCSI connection principle for integrated OMS storage devices (MCP18-B)

8.2.5 ESA40-A, Ethernet Switch

 At RN6.0 release level, RNC uses the ESA40-A LAN/Ethernet switch.

Purpose: ESA40-A is an Ethernet switch, which provides physical LAN/Ethernet

interfaces for connections between OMU, integrated OMS and the other 

units of the network element.

Redundancy: None/2N

Type: Sub-unit to integrated OMS

Plug-in unit: ESA40-A

Ethernet Switch

Capacity/ Performance 236 physical 10/100 Base-T Ethernet interfaces

Interfaces: LAN/Ethernet to OMU, integrated OMS, and site LAN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RNC SUBRACK 1

RNC SUBRACK 2

RNAC

     W     D     U      1

     (       O      M     S      )  

DN0938779

BUS END POINT

     W     D     U      0 

     (       O      M     S      )  OMS

SCSI 1

SCSI 0

Page 74: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 74/122

74 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 34 ESA40-A’s interfaces

8.2.6 ESA24, Ethernet Switch

RNC can have either ESA24 or ESA12 LAN/Ethernet switch.

Purpose: ESA24 is an Ethernet switch, which provides physical LAN/Ethernet

interfaces for connections between OMU, integrated OMS and the other 

units of the network element. The ESA24 upgrade increases LAN

switching capacity. Redundant ESA24 is needed for AGPS feature.

Redundancy: None/2N

Type: Sub-unit to integrated OMS

Plug-in unit: ESA24

Ethernet Switch

Capacity/ Performance 24 physical 10/100 Base-T Ethernet interfaces

Interfaces: LAN/Ethernet to OMU, integrated OMS, and site LAN

Page 75: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 75/122

DN0938143 75

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 35  ESA24's interfaces

8.2.7 ESA12, Ethernet Switch

RNC can have either ESA24 or ESA12 LAN/Ethernet switch.

Purpose: ESA12 is an Ethernet switch which provides physical LAN/Ethernet

interfaces for connections between OMU, integrated OMS and the other 

units of the network element.

Redundancy: None

Type: Sub-unit to integrated OMS

Plug-in unit: ESA12

Ethernet Switch

Capacity/ Performance 12 physical 10/100 Base-T Ethernet interfaces

Interfaces: LAN/Ethernet to OMU, integrated OMS, and site LAN

Page 76: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 76/122

76 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 36  ESA12's interfaces

8.2.8 OMU, Operation and Maintenance Unit and Its Subunits

Purpose: OMU handles all RNC's crucial upper-level system maintenance func-

tions, such as hardware configuration management, Hardware Man-

agement System (HMS) supervision, and the associated centralised

recovery functions. It also serves as an interface between integrated

OMS and the other units of the network element.

In the event of a fault, OMU automatically activates appropriaterecovery and diagnostics procedures within RNC.

In addition, OMU is responsible for the maintenance of the radio

network configuration. It monitors the status of the network, separates

faulty units from the system if necessary, automatically initiates the

associated recovery procedures, and houses the databases that

contain information on the radio network configuration.

OMU has dedicated storage devices, which house the entire system

software and the event buffer for intermediate storing of alarms, along

with the radio network configuration files.

Redundancy: 2N

Type: Computer unit with a dedicated storage device unit as a sub-unit.

ESA12 DN02179274

INTERFACES:

12 x LAN / ETHERNET

BACKPLANE:

- HMS (NOT USED)- POWER SUPPLY

- TIMING & SYNC(NOT USED)

Page 77: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 77/122

DN0938143 77

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Plug-in unit: CCP1D-A / CCP18-A / CCP10

Control Computer, Dual Core with Intel Jasper Forest processor 

(CCP1D-A). At RN6.0 level, only CCP1D-A is used.

Control Computer, Pentium M (CCP18-A)

Control Computer, Pentium III (CCP10)

Interfaces: ATM virtual channels to MXU

LAN/Ethernet via ESA24/ESA12 to integrated OMS

Duplicated Small Computer Systems Interface (SCSI)

Service Terminal interface

Multiplexer Interface

Duplicated Hardware Management System (HMS) interface

Figure 37  OMU’s interfaces - CCP1D-A

SER1

SER2

RST

USB1

USB 2

PCIe2

PC Ie 1

PCI Express Interface, P11

PCI Express Interface, P12

USB 2.0 Interface, P15

USB 2.0 Interface, P16

Bicolor HMS LED

Reset Button

Serial Interface, P13

Serial Interface, P14

DN0953479

Page 78: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 78/122

78 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 38  OMU's interfaces - CCP18-A

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES INSUBRACKS)

- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

USB

DN0621415

RESET SWITCH

SERVICE TERMINAL

Page 79: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 79/122

DN0938143 79

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 39 OMU's interfaces - CCP10

OMU's storage devices

Purpose: OMU has two dedicated hard disk units, which serve as a redundant

storage for the entire system software, the event buffer for intermediate

storing of alarms, and the radio network configuration files.

Backup copies are made onto a USB memory stick that is connected to

the CCP18-A front plate. Only memory sticks can be used.

Redundancy: 2N (HDS-C / HDS-B)

none (MDS-A/B)

Type: Sub-unit to OMU

Plug-in unit: HDS-C Hard Disk Drive SAS, only used with CCP1D-A

HDS-A/-B: Hard Disk Drive with SCSI Interface

MDS-A/-B : Magneto Optical Drive with SCSI Interface

External devices: USB memory stick, one for each OMU (for CCP18-A only)

Interfaces: Small Computer System Interface (SCSI)

Universal Serial BUS (USB, CCP18-A)

DN00249799CCP10

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- SCSI- LAN

SERVICE TERMINAL

Page 80: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 80/122

80 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 40  OMU’s storage device interfaces - HDS-C

HDS-C

QSFP connector (PCIe)

MiniSAS connector 

LED

HDD tray

LED

Page 81: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 81/122

DN0938143 81

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 41 OMU's storage devices' interfaces

Configuration and redundancy principle of OMU's storage devices

The two mutually redundant WDUs are connected simultaneously to both OMUs by

means of separate SCSI buses. This ensures that a spare unit is immediately available

for either one of the mutually redundant OMUs, eliminating the need for OMU switchover 

in case of a memory unit failure.

The USB stick is an optional external device that is not automatically delivered. Only the

USB memory stick that is connected to the active OMU can be used. For OMU switcho-

ver, two USB memory sticks are needed: one for each OMU.

The connection principle for the memory units is illustrated in the figures below.

DN02179305

HDS /-AMDS /-A

INTERFACES:

BACKPLANE:

- HMS- POWER SUPPLY- SCSI

Page 82: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 82/122

82 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 42  SAS connection principle for OMU storage devices - CCP1D-A and HDS-C

Figure 43 SCSI connection principle for OMU storage devices - CCP18-A and HDS-B

1

0DN0959185

OMU

WDU

PCIe

SAS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RNAC SUBRACK 1

RNAC SUBRACK 2

RNAC

DN0640747 BUS END POINT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

SCSI 1

SCSI 0

     W     D     U      0 

     (       O      M     U      )  

     O      M     U      0 

     W     D     U      1

     (       O      M     U      )  

     O      M     U      1

Page 83: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 83/122

DN0938143 83

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 44 SCSI connection principle for OMU storage devices - CCP10, HDS-A and

MDS-A

8.2.9 RRMU, Radio Resource Management Unit

Purpose: RRMU performs RNC-wide paging and IPA2800 messaging.

Redundancy: 2N

Type: Computer unit

Plug-in unit: CCP18-C / CCP18-A / CCP18-A / CCP10

Control Computer, Pentium M (CCP18-C/CCP18-A)

Control Computer, Pentium III (CCP10)

Interfaces: ATM interface to MXU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RNC SUBRACK 1

RNC SUBRACK 2

RNAC

DN99573042 BUS END POINT

SCSI 0 SCSI 1

     W     D     U      0      (       O      M     U      )  

     F     D     U      (       O      M     U 

     )  

     O      M     U      1

     W     D     U      1     (       O      M     U      )  

     O      M     U      0 

Page 84: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 84/122

84 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 45  RRMU's interfaces - CCP18-C

BACKPLANE:

- HMS- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

DN70391828

RESET SWITCH

SERVICE TERMINAL

Page 85: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 85/122

DN0938143 85

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 46  RRMU's interfaces - CCP18-A

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES INSUBRACKS)

- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

USB

DN0621415

RESET SWITCH

SERVICE TERMINAL

Page 86: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 86/122

86 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 47  RRMU's interfaces - CCP10

8.2.10 RSMU, Resource and Switch Management Unit

Purpose: RSMU controls the switch fabrics in RNC and establishes connections

for calls according to requests from the signalling computer units

(ICSUs). It also handles DSP resource management.

 ATM switching management functions comprise:

• Establishment of both internal and external connections via SFU,

including ATM circuit hunting

• Management and control of SFU, A2SU and MXU

• Transmission resource management.

DSP resource management tasks comprise:

• Supervision and management of the DMCU units, including the

necessary software upload procedures

•  Allocation of the DSPs and associated computer resources to differ-

ent tasks, such as microdiversity combining and data traffic

• Management of the ATM connections within DMCU

Redundancy: 2N

Type: Computer unit

CCP10 DN00249775

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- SCSI (NOT USED)- LAN (NOT USED)

SERVICE TERMINAL

Page 87: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 87/122

DN0938143 87

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Plug-in unit: CCP1D-A / CCP18-C / CCP18-A / CCP10

Control Computer, Dual Core with Intel Jasper Forest processor 

(CCP1D-A). At RN6.0 level, only CCP1D-A is used.

Control Computer, Pentium M (CCP18-C/CCP18-A)

Control Computer, Pentium III (CCP10)

Interfaces: ATM interface to MXU

Figure 48  RSMU’s interfaces - CCP1D-A

SER1

SER2

RST

USB1

USB 2

PCIe2

PC Ie 1

PCI Express Interface, P11

PCI Express Interface, P12

USB 2.0 Interface, P15

USB 2.0 Interface, P16

Bicolor HMS LED

Reset Button

Serial Interface, P13

Serial Interface, P14

DN0953479

Page 88: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 88/122

88 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 49 RSMU's interfaces - CCP18-C

BACKPLANE:

- HMS- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

DN70391828

RESET SWITCH

SERVICE TERMINAL

Page 89: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 89/122

DN0938143 89

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 50  RSMU's interfaces - CCP18-A

BACKPLANE:

- HMS- SCSI (TO STORAGE

DEVICES INSUBRACKS)

- LAN / ETHERNET- POWER FEED- JTAG/ISP

INTERFACES:

USB

DN0621415

RESET SWITCH

SERVICE TERMINAL

Page 90: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 90/122

90 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 51 RSMU's interfaces - CCP10

8.3 Switching and Multiplexing Units

Switching and multiplexing in RNC is based on the Asynchronous Transfer Mode (ATM)

technology with full support to the various traffic types used in the network. The units in

this category are the following:

•  ATM Switching Fabric Units (SFUs) which are used for switching the calls processed

by the network element

• Multiplexer Units (MXUs), for connecting the low-bit-rate network interface units,along with the computer units and signal processing units (which typically have small

to moderate bandwidth requirements) to the ATM switch fabric

•  AAL2 Switching Units (A2SUs), which ensure efficient transport of information with

limited transfer delay for low-to-moderate bit-rate units connected to the main switch

fabric.

In addition, the units in this block provide the ATM interface, which serves as the main

message bus between the units in the network element. Upper-level control functions

for all three units are performed by the RSMU functional unit.

CCP10 DN00249775

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- SCSI (NOT USED)- LAN (NOT USED)

SERVICE TERMINAL

Page 91: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 91/122

DN0938143 91

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

MXU's connections within the RNC

The figure below shows how the ATM connections in RNC are allocated to its various

units in RNC450. The SFU switching fabric has 16 ports for connections to the other 

units in the network element, with an aggregate capacity of 10Gbit/s (equivalent to64STM-1 lines); each port, in turn, has a capacity of 622 Mbit/s. The connections

through the ports are allocated in the following manner:

RNC2600, RNC450, RNC196 step 6, RNC196 step 7 and RNC196 step 8

• 2–6 (12 redundant) ports are used for the external STM-1 connections provided by

the NIS1, NPGE and NPS1 units.

• Eight ports are used for connections to the low-bit-rate network interface units and

the computer units via the mutually redundant MXU pairs. One MXU pair requires

one port.

The equipment of RNC is organised as groups of units around its MXU pairs, with each

group connecting to a MXU pair of its own. When adding the RNC196 configuration step

6, the MXU 1 is moved to RNAC subrack 1 and a new MXU pair, MXU 14 and MXU 15

are added to RNAC subrack 2. After the configuration step RNC196 step 6 upgrade,

both MXU pairs in RNAC subracks 1–2 serve the subracks they are located in.

The figure below shows the MXU pairs and the devices connecting to each MXU pair in

RNC450. The number of units included in each subrack is given after each unit.

Page 92: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 92/122

92 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 52   ATM connections to SFU - RNC450

8.3.1 A2SU, AAL2 Switching Unit

Purpose: A2SU unit handles the ATM adaptation layer type 2, AAL2, switching.

 A2SU is an AAL type 2 CPS minipacket switching unit, which is used in

association with the Multiplexing Unit (MXU) for facilitating connections

between the main Switch Fabric (SFU) and the low-to-moderate bit-rate

units (computer units, signal processing units and low-bit-rate network

interface units).

The function of the A2SU unit is to switch the AAL type 2 CPS minipack-

ets. The AAL 2 minipackets coming into and going out of A2SU are

embedded in ATM cells. Before the switching the AAL 2 minipackets are

removed from the ATM cells, and after the switching they are packed

again into ATM cells.

Redundancy: SN+

OMU

DN01128575

2-12 pcs

SFU

DMCU

0-1 pcs ***

3 pcs

5-7 pcs*

1 pcs

1-2 pcs **

2 pcs A2SU

1 pcs RSMU

1 pcs OMU

1 pcs RRMUMXU

1

DMCU

 A2SU

GTPU

ICSU

NIP 1

MXU

3-8

ICSU2 pcs

DMCU2 pcs

NIS 1

5 DMCUs in RNBC Sr2*

2 GTPUs in RNBC Sr2**

*** 1 NIP1 in RNAC Sr3

1 pcs A2SU

1 pcs RSMU

1 pcs

1 pcs RRMUMXU

2

ICSU2 pcs

DMCU2 pcs

Page 93: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 93/122

DN0938143 93

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Type: Signal processing unit

Plug-in unit: AL2S-D / AL2S-B

 AAL type 2 switching unit

Interfaces: ATM interface to MXU

Figure 53  A2SU's interfaces - AL2S-D

DN7088176

LED

SLAVE 3

SLAVE 2

SLAVE 1

MASTER

RS-232 CONNECTORS:

SLAVE 1

MASTER

LAN / ETHERNET:

SLAVE 2

SLAVE 3

BACKPLANE:

-TIMING & SYNC- HMS- POWER SUPPLY- MXU

Page 94: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 94/122

94 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 54  A2SU's interfaces - AL2S-B

8.3.2 MXU, Multiplexer Unit

Purpose: The MXU units enable connection of the low-to-medium bit-rate signal

processing units and computer units, as well as low-bit-rate network

interface units, to the ATM switch fabric. The task of MXU is to perform

the multiplexing and demultiplexing of ATM cells and perform ATM layer 

management and processing functions such as header translation,

UPC/NPC parameter control, OAM functions, traffic management, per-

formance monitoring and collection of performance data.Redundancy: 2N

Type: Multiplexer unit

Plug-in unit: MX1G6-A / MX1G6 / MX622-D / MX622-C / MX622-B

 ATM Multiplexer plug-in unit 622 Mbit/s

Capacity: 622 Mbit/s

Interfaces: ATM interfaces to:

• SFU switching block

• SFU unit computer 

•Control computer units (including DMCU)

 AL2S-B DN00249833

INTERFACES:

BACK PLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU

SERVICE TERMINAL

Page 95: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 95/122

DN0938143 95

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

• Network interfaces

•  A2SU

• Connection between the passive MXU via the active one to OMU

(for OAM purposes)

Figure 55  MXU's interfaces - MX1G6 and MX1G6-A

MX1G6/ MX1G6-ADN70170272

SERVICE TERMINAL

INTERFACES:

BACKPLANE:

- TIMING & SYNC

- HMS

- POWER FEED

- SFU

- TRIBUTARY UNITS

- REDUNDANCY INTERFACE

- BOUNDARY SCAN INTERFACE

LED

Page 96: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 96/122

96 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 56  MXU's interfaces - MX622

8.3.3 SFU, Switching Fabric Unit

Purpose: SFU serves as the main switch fabric of the network element. It

operates according to a non-blocking connection principle, which

means that a connection can be established any time provided that the

needed input and output capacity is available. SFU supports both point-

to-point and point-to-multipoint connection topologies, as well as differ-

entiated handling of various ATM service categories.Redundancy: 2N

Type: Switching fabric

Plug-in unit: SF20H, SF10E, SF10

 ATM Switch Fabric Plug-in Unit 10 Gbit/s

Capacity: 10 Gbit/s

Interfaces: ATM interfaces to:

• NI4S1 network interfaces

• Low-bit-rate network interfaces and control computers (via MXUs)

OMU from the unit computer of SFU (for OAM purposes andsoftware uploads, via MXUs)

MX622 DN02179344

SERVICE TERMINAL

INTERFACES:

BACKPLANE:

- TIMING & SYNC

- HMS

- POWER FEED

- SFU

- TRIBUTARY UNITS

- SFU UNIT COMPUTER

- OMU FROM PASSIVE MUXVIATHE ACTIVE ONE

LED

Page 97: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 97/122

DN0938143 97

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 57  SFU's interfaces - SF20H

ETH

SER

DN70166955 SF20H

LED

Page 98: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 98/122

98 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 58  SFU's interfaces - SF10E

INTERFACES:

LAN (TESTING ONLY)

SERVICETERMINAL

SFP (SFPIF2G5)

BACKPLANE:

- TIMING & SYNC

- HMS

- POWER SUPPLY

- SWITCH PORT TOTRIBUTARY UNITS

- OMU (FROM UNIT

COMPUTER VIAMXU)

DN70498095

Page 99: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 99/122

DN0938143 99

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 59 SFU's interfaces - SF10

8.4 Network Interface Units

These units serve as the trunk network interfaces of the network element and execute

physical layer and ATM layer functions, such as policing, statistics, Operation Adminis-

tration Maintenance (OAM), buffer management, and scheduling. The category com-

prises the following units:

• NIP1, Network Interface Unit PDH

• NIS1 / NIS1P, Network Interface Unit STM-1

• NPS1 / NPS1P

• NPGE / NPGEP

One network interface unit contains more than one physical interface. Each interface

can be configured to be used as an Iu, Iub, or Iur interface within the total connection

capacity of the network element.

g To ensure at least partial backup for the power supply to the network interfaces,

SDH/TDM trunk connections from RNC to any direction should be divided between at

least two, preferably even more units, which are located in different subracks.

DN02179356

INTERFACES:

BACKPLANE:

- TIMING & SYNC

- HMS

- POWER SUPPLY

- SWITCH PORT TOTRIBUTARY UNITS

- OMU (FROM UNITCOMPUTER VIAMXU)

SF10

SERVICE TERMINAL

LAN

Page 100: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 100/122

100 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

8.4.1 NIP1

NIP1 is optional in RNC450, RNC196 step 6 and RNC196 step 7.

Purpose: This ATM network interface unit contains PDH E1/T1/JT1 interfaces

with Inverse Multiplexing for ATM (IMA) function, which allows for 

flexible grouping of physical links to logical IMA groups. Normally, the

PDH lines are used for connections between RNC and the BTSs.

Redundancy: None

Type: Interface unit

Plug-in unit: NI16P1A

 ATM Network Interface 16 × PDH E1/T1/JT1

Capacity/ performance: Sixteen physical PDH electrical interfaces, each with a band-

width of:

2048 kbit/s (E1) or • 1544 kbit/s (T1/JT1)

Interfaces: ATM interface to MXU

Clock reference output to TSS3/-A

Figure 60  NIP1's interfaces

NI16P1A

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- MXU- E1 / T1 / JT1- CLOCK

REFERENCEOUTPUT TO TSS3

SERVICE TERMINAL

LAN(NOT USED)

DN02179492

Page 101: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 101/122

DN0938143 101

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

8.4.2 NIS1 / NIS1P

Purpose: NIS1 provides SDH STM-1 interfaces and handles bit timing, line

coding, and timing recovery.

Redundancy: NIS1: none (organised by routing and/or MSP 1+1)

NIS1P: 2N

Type: Interface unit

Plug-in unit: NI4S1-B

Network Interface 4 × 155 Mbit/s STM-1

Capacity/ performance: Four physical SDH STM-1 interfaces, with a bandwidth of 

155,52 Mbit/s for each

Interfaces: ATM interface to SFU

Clock reference output to TSS3/-A

Figure 61 NIS1's interfaces

8.4.3 NPS1 / NPS1P

Purpose: NPS1(P) provides SDH STM-1/STM-4 interfaces and an RJ45 connec-

tor, and handles multiprotocol packet processing at wire speed and

network connectivity.

NI4S1-B DN02179368

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS- POWER SUPPLY- SFU- CLOCK

REFERENCEOUTPUT TO TSS3

LAN (NOT USED)

STM-1

SERVICE TERMINAL

Page 102: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 102/122

102 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Note that RN4.0 SW does not support STM-4 interface.

Redundancy: NPS1: none (organised by routing)

NPS1P: 2N (organised by routing and MSP and/or MSP 1+1)

Type: Interface unit

Plug-in unit: NP8S1, NP8S1-B

Network Interface 8 × 155 Mbit/s STM-1 or Network Interface 2 × 622

Mbit/s STM-4; one RJ45 connector 

Note that RN4.0 SW does not support STM-4 interface.

Capacity/ performance: Eight optical STM-1/OC-3 interfaces, with a bandwidth of 

155,52 Mbit/s each, or two optical STM-4/OC-12 interfaces, 622,08

Mbit/s each

Note that RN4.0 SW does not support STM-4 interface.

Interfaces: Fast Ethernet physical layer interfaceSwitch fabric interface

Timing and synchronization interface

Hardware management system interface

 ATM interface to SFU

Figure 62  NPS1(P) interfaces

DN70550849 NP8S1-B, NP8S1-A, NP8S1

1

2

3

4

5

6

7

8

STM-1 /STM-4*

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

STM-1

SERVICE TERMINAL

INTERFACES:

BACKPLANE:

- TIMING & SYNC- HMS

- POWER SUPPLY

- SFU

- CLOCK REFERENCE

OUTPUT TO TSS3- LAN 1-5

CLASS 1 LASER PRODUCTIEC/EN 60825-1

* STM-4 interface cannot be used

Page 103: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 103/122

DN0938143 103

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

8.4.4 NPGE / NPGEP

Purpose: NPGE(P) provides Ethernet interfaces and handles multiprotocol

packet processing at wire speed.

Redundancy: NPGE: none

NPGEP: 2N

Type: Interface unit

Plug-in unit: NP2GE, NP2GE-B

2 × Gigabit Ethernet interface 1000Base-LX/T (optical/electrical), 2 ×

Fast Ethernet interface 10/100 Base-T (electrical)

Capacity/ performance: Two 1000Base-LX/T (optical or electrical) Gigabit Ethernet

interfaces and two 10/100 Base-T (electrical) Fast Ethernet interfaces

Interfaces: Fast Ethernet physical layer interface

Switch fabric interface

Timing and synchronization interface

Hardware Management System interface

 ATM interface to SFU

Figure 63 NPGE(P) interfaces

Page 104: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 104/122

104 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

8.5 Timing, Power Distribution and Hardware Management

Subsystems

The timing, power distribution, and Hardware Management Subsystems form the lowest

level in the computing hierarchy of the IPA2800 network elements. Each subsystem is

composed of a redundant master unit and a duplicated data distribution/collection bus.

In each case, the bus actually extends through some lower level units to virtually all of 

the network element's plug-in units, which are equipped with dedicated hardware blocks

supporting the core parts of the subsystem.

The clock distribution and Hardware Management subsystems in the network element

use the same two types of plug-in units, namely:

• TSS3/-A, Timing and Synchronization, SDH Stratum 3

• TBUF, Timing Buffer.

The clock system meets Stratum 3 level accuracy requirement, as defined in the

Bellcore TA-NWT-1244 standard.

The power distribution subsystem in the network element uses the following type of 

plug-in units:

RNC450 with EC216:

• PD30, Power Distribution Plug-in Unit 30 A*

• CD120-A, Cabinet Power Distributor 120 A

* Note that with PD30, FTRA-B is required.

RNC196 with IC186-B:

• PD20, Power Distribution Plug-in Unit 20 A

CDP80-B, Cabinet Power Distributor 80 A

8.5.1 TBU, Timing and Hardware Management Bus Unit

The Timing and Hardware Management Bus Unit (TBU) is responsible for the network

element synchronisation, timing signal distribution and message transfer functions in the

hardware management system. TBU is a duplicated functional unit that consists of two

plug-in units in each subrack as well as a serial bus spanning all plug-in units of the

network element. The two plug-in units, the Timing and Synchronisation, SDH Stratum

3 (TSS3/-A) and Timing Buffer (TBUF) and their functions are described below.

TSS3/-A, Timing and Synchronisation, SDH Stratum 3

gNew clock plug-in unit variant TSS3-A is implemented in RN5.0 based RNC2600 deliv-

eries. However, TSS3-A can be used with RN4.0 software if Bridge HMX1BNGX version

inside the plug-in unit is newer than in RN4.0 release package. Refer to technical note

TS-RNC-HW-066 for more detail.

g Due to 2N redundancy a mixed configuration of TSS3 and TSS3-A is not allowed. The

same variant must be used for both clock units in each RNC.

Purpose: TSS3/-As generate the clock signals necessary for synchronising the

functions of RNC. Normally, TSS3/-A operates in a synchronous mode,

that is, it receives an input timing reference signal from an upper level

of the network and adjusts its local oscillator to the long time mean value

by filtering jitter and wander from the timing signal. It transmits the ref-

Page 105: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 105/122

DN0938143 105

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

erence to the plug-in units in the same subrack, as well as to the TBUF

units, which distribute the signals to units not directly fed by TSS3/-As.

TSS3/-A has inputs for both synchronisation references from other 

network elements via the network interfaces, and for those fromexternal sources (options are 2048 kbit/s, 2048 kHz, 64+8 kHz, 1544

kHz, or 1544 kbit/s (TSS3-A)). TSS3-A input is 5 V tolerant.

If all synchronisation references are lost, TSS3/-A can operate by inde-

pendently generating the synchronisation reference for the units in the

network element.

TSS3/-As are also involved in the functioning of the HMS bus. They

convey HMS messages through the HMS bridge node to the HMS

master node. Each OMU has one master node.

TSS3-A is designed to conform ITU-T G813, G.703 and Bellcore GR-

1244 recommendation.

Redundancy: 2N

Type: Functional unit with TBUF units as sub-units

Plug-in unit: TSS3/-A

Timing and Synchronisation, SDH Stratum 3

Interfaces: Synchronisation reference interfaces:

• Three line inputs (from STM-1 or PDH lines)

• Two external inputs (2048 kbit/s, 2048 kHz, 64+8 kHz, 1544 kHz, or 

1544 kbit/s (TSS3-A))

• Eight outputs to cabinet timing buses

• One output to subrack timing bus• One external timing output (2048 kHz, 2048 kbit/s (TSS3-A), 1544

kHz (TSS3-A), or 1544 kbit/s (TSS3-A))

HMS interface

Page 106: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 106/122

106 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 64 TSS3/-A's interfaces

TBUF, Timing Buffer 

Purpose: The TBUF unit is a clock buffer which distributes the synchronisation

signals generated by TSS3/-As to those plug-in units that are not

directly fed by TSS3/-As.

TBUFs are also involved in the functioning of the HMS bus. They

convey HMS messages through the HMS bridge node to the HMS

master node. Each OMU has one master node.

Redundancy: 2N

Type: Functional unit, sub-unit of TSS3/-A

Plug-in unit: TBUF

Timing Buffer 

Interfaces: Synchronisation reference interfaces:

• One input from TSS3/-A or another TBUF

• One output to subrack timing bus

• One output to another TBUF

Page 107: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 107/122

DN0938143 107

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

HMS interface

Figure 65  TBUF's interfaces

Connection principle and redundancy for the timing and synchronisation distri-

bution bus

RNC has two separate timing and synchronisation distribution buses to ensure 2N

redundancy for the internal t iming signal distribution. Each bus has its own system clock

(a TSS3/-A plug-in unit), distribution cabling, and timing buffers (TBUF plug-in units).

The two TSS3/-A units backing up each other are placed in different subracks (subracks1 and 2), each of which is powered by a power supply plug-in unit of its own to ensure

redundancy for the power supply. Each of these subracks is also equipped with a TBUF

plug-in unit, which connects the equipment in the subrack to the other clock distribution

bus. The RNAC subracks 3 and 4 and all RNBC subracks have two separate TBUF

units, which connect to different clock distribution buses by means of cables of their own.

In order to function correctly, the differential buses need terminations in the ends of the

bus by means of a termination cable. Due to the expansion of the network element

through the configuration steps, the end of the bus and similarly the termination point

changes. When a new subrack is taken into use in a configuration step, the cabling must

always be moved to the new subrack.

Duplicated buses need two terminations, which means that four terminators altogether 

in each cabinet are required for the HMS and the timing and synchronisation distribution

bus.

In RN6.0 the timing bus topology has been changed to a dual star configuration, shown

below

In this topology, both TSS3-A in subracks 1 and 2 are connected to all TBUFs in the

other subracks.

TBUF DN02179371

INTERFACES:

BACKPLANE:

- ONE CLOCKREFERENCEINPUT FROMTSS3 OR TBUF

- ONE TIMING &SYNC OUTPUTTO SUBRACKTIMING BUS

- ONE TIMING &SYNC OUTPUTTO ANOTHERTBUF

- HMS

Page 108: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 108/122

108 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 66  Dual Star timing bus cabling principles

Page 109: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 109/122

DN0938143 109

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 67  Connection principle of the duplicated clock distribution bus

8.5.2 HMS, Hardware Management Subsystem

The Hardware Management Subsystem has three hierarchically organised layers of 

equipment. The upmost level in the hierarchy is formed by the Hardware Management

Master Nodes (HMMNs), one in each OMU, which control the whole subsystem. TSS3/-

 As and TBUFs in the subracks have separate Hardware Management System Bridge

nodes (HMSBs), which form the next, intermediate level in the hierarchy. As the name

suggests, they serve as bridges which connect HMMNs to the lowest-level blocks in thehierarchy, Hardware Management System Slave Nodes. Implemented as dedicated

RNAC RNBC

HMS BUS 0HMS BUS 1

HMS BUS 0HMS BUS 1

DN70680727

RNBC

SUBRACK1

RNBC

SUBRACK2

RNBC

SUBRACK3

RNBCSUBRACK4

RNAC

SUBRACK1

RNAC

SUBRACK2

RNAC

SUBRACK3

RNAC

SUBRACK4

In RNC2600/Step1 In RNC2600/Step3

BUS STARTING POINT

Page 110: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 110/122

110 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

hardware blocks in all plug-in units, the latter are independent from the other blocks of 

the plug-in unit, for example, in terms of the power supply.

 A block diagram which illustrates the HMS subsystem implementation is shown in the

figure below.

Figure 68  Block diagram of the HMS subsystem

Connection principle and redundancy of the HMS bus

RNC has also two mutually redundant hardware management buses, which are imple-

mented by means of the same plug-in units as the timing and synchronisation buses,

TSS3/-As and TBUFs. The routing of the hardware management buses, however,

differs somewhat from that of the timing and synchronisation buses.

The hardware management bus is organised in such a way that TSS3/-As and TBUFs

are on an equal level of the subsystem; both act as parallel HMS bridges which convey

messages to the HMS master node. Each OMU has one master node.

HMSB 1TSS3

PIU

HMSS

PIU

HMSS

PIU

HMSSHMSS

HMMN

OMU 1

BACKPLANE BUS

BACKPLANE BUS

SUBRACK 2

HMSS

HMSB 0TBUF

HMSS

HMSB 1TBUF

PIU

HMSS

PIU

HMSS

PIU

HMSSHMSS

HMMN

OMU 0

BACKPLANE BUS

BACKPLANE BUS

SUBRACK 1

CABINET 1 CABINET 2

HMSS

HMSB 0TSS3

HMSS

HMSB 1TBUF

PIU

HMSS

PIU

HMSS

PIU

HMSS

BACKPLANE BUS

BACKPLANE BUS

SUBRACK 4

HMSS

HMSB 0TBUF

HMSS

HMSB 1TBUF

PIU

HMSS

PIU

HMSS

PIU

HMSS

BACKPLANE BUS

BACKPLANE BUS

SUBRACK 4

HMSS

HMSB 0TBUF

HMSS

HMSB 1TBUF

PIU

HMSS

PIU

HMSS

PIU

HMSS

BACKPLANE BUS

BACKPLANE BUS

SUBRACK 1

HMSS

HMSB 0TBUF

HMSS

TO OTHER RACKS

HMSB = HMS BRIDGEHMSS = HMS SLAVE NODEHMMN = HARDWARE MANAGEMENT MASTER NODE

DN99573245

Page 111: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 111/122

DN0938143 111

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

In order to function correctly, the differential buses need terminations in the ends of the

bus by means of cabling. Due to the expansion of the network element through the con-

figuration steps, the end of the bus and similarly the termination point changes. When a

new subrack is taken into use in a configuration step, the cabling must always be moved

to the new subrack.

Duplicated buses need two terminations, which means that four terminators altogether 

in each cabinet are required for the HMS and the timing and synchronisation distribution

bus.

The connection principle of the HMS buses in the network element is shown in the figure

below.

Figure 69 Connection principle of the duplicated HMS bus

RNAC RNBC

HMS BUS 0

HMS BUS 1

HMS BUS 0

HMS BUS 1

DN70680715

RNBC

SUBRACK1

RNBC

SUBRACK2

RNBC

SUBRACK3

RNBC

SUBRACK4

RNAC

SUBRACK1

RNACSUBRACK2

RNAC

SUBRACK3

RNAC

SUBRACK4

In RNC2600/Step1 In RNC2600/Step3

Page 112: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 112/122

112 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

8.5.3 Power Distribution Subsystem

The power distribution subsystem in the network element uses the following type of 

plug-in units:

EC216:

• PD30, Power Distribution Plug-in Unit 30 A*

• CD120-A, Cabinet Power Distributor 120 A

* Note that with PD30, FTRA-B is required.

IC186-B:

• PD20, Power Distribution Plug-in Unit 20 A

• CDP80-B, Cabinet Power Distributor 80 A

Purpose: The Power Distribution Subsystem distributes the -48V power from therectifiers or batteries to the equipment inside the RNC cabinets. This

subsystem consists of two CPD120-A or CPD80-B / CPD80-A power 

distribution panels at the top of each cabinet, one PD30/PD20 power 

distribution plug-in unit in each subrack, and the associated cabling.

See Cable Lists for RNC for a visual representation of the power feed

to each subrack.

The PD30/PD20 unit also controls the cooling equipment of its own

subrack on the basis of messages sent by OMU.

Redundancy: Power distribution subsystem is duplicated by providing two indepen-

dent feeding input branches from cabinet level to plug-in unit level.

Type: Power distribution

Plug-in unit: CPD120-A: Cabinet Power Distributor 120 A

and

PD30: Power Distribution Plug-in Unit 30 A

CPD80-B / CPD80-A: Cabinet Power Distributor 80 A

and

PD20: Power Distribution Plug-in Unit 20 A

Interfaces: One input for each of the two CPD120-As or CPD80-B/-As; or one dupli-

cated input from the site power supply to the CPD80

Four outputs to subracks (in CPD120-A/CPD80-B/-A) or four duplicated

outputs to subracks (in CPD80)

Outputs to four groups of plug-in units (in PD30/PD20)

Four duplicated inputs from CPD80 (in PD20)

Fan tray control and alarm interface

Page 113: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 113/122

DN0938143 113

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 70  PD30/PD20's interfaces

Power distribution principle and redundancy

To ensure 2N redundancy for the power distribution lines, the RNC cabinets are

provided with two independent feeding input branches. In EC216, each feeding branch

connects to a dedicated CPD120-A.

Each CPD120-A unit contains:

•Connectors for one of the two mutually redundant supply lines from the batter-ies/rectifiers. In this way the two independent input branches are kept separate until

the subrack level.

• Connectors for four supply lines to the subracks. Each subrack is supplied by a line

from both CPD120-As, giving 2N redundancy.

• Circuit breakers for the outgoing supply lines, each with 30-A rating

The CPD120-A allows for either grounding the 0V lead from the battery or for a use of a

separate grounding cable to achieve floating battery voltage. From the CPD120-A unit,

the voltage is fed through the subrack-specific PD30 power distribution plug-in units,

which have individual 10-A fuses for each outgoing distribution line, to the other plug-in

units in a likewise manner as to the cabinets, that is, through two mutually redundant

supply lines. The two distribution lines are finally combined in the power converter 

DN00256417

LED

FUSES

Page 114: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 114/122

114 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

blocks of individual plug-in units, which adapt the voltage so that it is appropriate for the

plug-in unit components.

In the IC186-B cabinet, each branch connects to a dedicated CPD80-B / CPD80-A unit,

which contains:• Connectors for one of the two mutually redundant supply lines from the batter-

ies/rectifiers. In this way the two independent input branches are kept separate until

the subrack level.

• Connectors for four supply lines to the subracks. Each subrack is supplied by a line

from both CPD80-B / -As, giving 2N redundancy.

• Circuit breakers for the outgoing supply lines, each with 20-A rating

In the IC186 cabinet both feeding branches connect into the same CPD80 unit, which

contains

• Connectors for the two mutually redundant supply lines from the batteries/rectifiers

Connectors for the four duplicated supply lines to the subracks• Circuit breakers for the outgoing supply lines, each with 20-A rating

The CPD80-B/-A /CPD80 power distribution unit allows for either grounding the 0V lead

from the battery or for a use of a separate grounding cable to achieve floating battery

voltage.

From the power distribution unit, the voltage is fed through the subrack-specific PD20

power distribution plug-in units, which have individual 8-A fuses for each outgoing dis-

tribution line, to the other plug-in units in a similar manner as to the cabinets, that is,

through two mutually redundant supply lines. The two distribution lines are finally

combined in the power converter blocks of individual plug-in units. The power converter 

blocks adapt the voltage so that it is appropriate for the plug-in unit components.

g Operating voltages must be fed in each cabinet of the network element using two

separate pairs of supply cables.

The general power distribution principle for RNC is shown in the figure below. The

internal DC/DC converter structure of the plug-in units is shown in the second figure.

Page 115: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 115/122

DN0938143 115

WCDMA RNC Engineering Description Functional Unit Descriptions

Id:0900d80580821b07

Confidential

Figure 71 General power distribution principle for RNC

Power distributionplug-in unit

Main fusesor circuitbreakersin power system

-UB2

Terminal blocksand circuitbreakers

Filter 

Protection area of the main fuse

Protection area of the circuitbreaker at the cabinet level

Protection areaof the glass

tube fuseat the

subrack level

DC

UB1

UB2

BOV 0

BOV 1

-UB1

-UB2

SMDfuseson PCB

-UB1

Backplane SubrackCabinet

Glass tubefuses in front

panel

Plug-in unit

Protectionarea of the fuse

at theplug-in unit

level

DC

UB1

UB2

dn02180104

Page 116: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 116/122

116 DN0938143

WCDMA RNC Engineering Description

Id:0900d80580821b07

Confidential

Functional Unit Descriptions

Figure 72  DC/DC converter structure in a plug-in unit

For information on power consumption, see Installation Site Requirements for MGW and 

RNC .

8.6 EHU, External Hardware Alarm Unit

Purpose: The purpose of the External Hardware Alarm Unit is to receive external

alarms and send indications of them as messages via HMS to theexternal alarm handler located in OMU.

 Another function of EHU is to drive the optional External Hardware

 Alarm panel (EXAU-A / EXAU), the cabinet integrated lamp, and

possible other external equipment.

Redundancy: None

Plug-in unit: EHAT

External Hardware Alarm Terminal

Interfaces: Interfaces include 32 voltage controlled inputs, 8 current controlled

inputs, 16 general purpose 20 mA current outputs. Connections to

external devices via CPSAL/-B back interface unit located at the rear of the RNAC cabinet or CPAL back interface unit in the cabling cabinet.

Location: One unit per network element, in RNAC subrack 1.

EXAU-A / EXAU, External hardware alarm unit

The optional peripheral EXAU-A / EXAU provides a visual alarm of the fault indications

of RNC. The EXAU-A / EXAU unit is located in the equipment room.

CAIND/-A, Cabinet alarm indicator 

The CAIND/-A is located on top of the RNAC cabinet and provides a visual alarm indi-

cating the network element with a fault.

INPUTCIRCUIT

ENABLE=

=

ON/OFF

ENABLE=

=

ON/OFF

 ALARM

CIRCUIT

UO 1

UO 2

GND

GND

B 0V

B 0V

UB 1

UB 2

POWER CONTROL FROM HMS NODE

 ALARM TO HMS NODE

DC/DC CONVERTER STRUCTUREIN A PLUG-IN UNIT

dn02179535

Page 117: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 117/122

DN0938143 117

WCDMA RNC Engineering Description Interfaces to the Environment

Id:0900d805807292ab

Confidential

9 Interfaces to the EnvironmentRNC has the following interfaces to the network it is used in:

•Power supply and grounding interfaces

• PDH/TDM trunk circuit interfaces (E1/T1/JT1)

• SDH/TDM trunk circuit interfaces (STM-1/OC-3)

• External synchronisation and HW alarm interfaces

• Ethernet/LAN interfaces to integrated OMS. As of RN5.0, the functional unit OMS

can be selected between the current integrated OMS or an external standalone

OMS network element. For RN5.0 new deliveries, the standalone OMS is recom-

mended.

• Interfaces for peripheral devices (keyboard, mouse, VDU, printer, external storage

device)

• Service terminal interfaces

There are two locations for making the connections:

• Rear side of the cabinet (the back interface units)

• Front side of the cabinet (front panels of the plug-in units)

These connections are briefly described in the following sections. For more information,

see Cabinet Interfaces and External Cables of MGW and RNC and Installation Site

Requirements for the MGW and RNC..

g The cables leaving the network element are not included in the network element deliv-

ery.

9.1 Power Supply and Grounding InterfacesThe interfaces for the power supply and grounding are located on the back panel of the

CPD120-A / CPD80-B / CPD80-A / CPD80 cabinet power distribution units at the top of 

the cabinet. Each cabinet is equipped with two cabinet distribution units. The power 

supply cables can be routed from top or bottom of the cabinet regardless of the location

of the unit.

The requirements for the power supply and grounding cables are described in sections

Site power supply and Grounding and bonding of the Installation Site Requirements.

Installation alternatives for the power supply and grounding cables are described in

section Installing the site power supply cables and grounding the network element in

Installing the MGW and RNC .

Page 118: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 118/122

118 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807292ab

Confidential

Interfaces to the Environment

(A) and (B): the two alternatives for connecting the grounding cable

(2) The CPD120-A is grounded to the cabinet grounding busbar with a grounding

strip.

Figure 73 Power supply interfaces of CPD120-A with DC/I principle

DN05158732

22

DC/I

 A

B

-UB2

+UB1

+UB2

-UB1

Page 119: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 119/122

DN0938143 119

WCDMA RNC Engineering Description Interfaces to the Environment

Id:0900d805807292ab

Confidential

(1): Grounding strip between the +UB terminal connector on the CPD120-A on the

top of the cabinet and the horizontal grounding busbar of the cabinet

(2): The CPD120-A is grounded to the cabinet grounding busbar with a grounding

strip.

Figure 74 Power supply interfaces of CPD120-A with DC/C principle

DN05160839

-UB2

B0V

B0V

-UB1

1 21 2

DC/C

Page 120: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 120/122

120 DN0938143

WCDMA RNC Engineering Description

Id:0900d805807292ab

Confidential

Interfaces to the Environment

Figure 75  Power supply interfaces of CPD80-B with two connection alternatives and

optional ETS grounding

-UB2

+UB2

+UB1

-UB1

-UB2

+UB2

+UB1

-UB1

+UB2

+UB1

DN02180143

CPD80-B 1

CPD80-B 1

CPD80-B 0

CPD80-B 0

For optionalETS 300 253B0V grounding

Page 121: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 121/122

DN0938143 121

WCDMA RNC Engineering Description Interfaces to the Environment

Id:0900d805807292ab

Confidential

Figure 76  Power supply interfaces of CPD80-A and their connection alternatives:

DC/I and DC/C principle

9.2 PDH TDM Interfaces

The network element's PDH connections from the NIP1 units are made via BIE1C /

BIE1T connector panels at the rear side of the cabinets. The BIE1C / BIE1T connector 

panels are located directly behind the NIP1 units that they serve. It is possible to cable

the back interface units directly into the environment or, alternatively, the cables can be

routed through the cabling cabinet panels.

The numbers of the PDH/TDM lines and the plug-in unit connectors they connect to arelisted in the Cable Lists for RNC .

The PDH and TDM circuit cables are usually cut and connected at the installation site,

but they can also be prepared at the factory. Cables with one connector are usually

prepared at the site.

9.3 SDH TDM Interfaces

The connectors for the STM-1/OC-3 cables are located on the front panels of the NIS1

or NP8S1-B plug-in units. The STM-1/OC-3 connections are routed to the BISFC panel.

The BISFC panel is located at the backside of the RNAC cabinet. The use of the BISFC

panel is optional. It is possible to route the STM-1 cables to the environment directlyfrom the front panels of the NIS1 or NP8S1-B units or from the BISFC panel.

9.4 External Synchronisation Interfaces

The synchronisation interfaces are located on the TSS3/-A plug-in unit. The connections

can be routed through the external synchronisation connector panel CPSY-A (TSS3/-A

0), CPSY-B (TSS3/-A 1), or CPSAL-B / CPSAL depending on the configuration. The

back interface units CPSY-A, CPSY-B and CPSAL-B are located at the rear side of the

RNAC cabinet.

RNC's external synchronisation interfaces support 2.048 Mbit/s and 2.048 MHz connec-

tions.

REAR SIDE

+UB0

-UB0

REAR SIDE

+UB0

-UB0

DN01154291

+UB1

-UB1

+UB1

-UB1

DC/I DC/C

Page 122: Dn 0938143

7/16/2019 Dn 0938143

http://slidepdf.com/reader/full/dn-0938143 122/122

WCDMA RNC Engineering DescriptionInterfaces to the Environment

9.5 External HW Alarm Interfaces

The external hardware alarms interfaces are located on the EHAT plug-in unit. The con-

nections can be routed through the alarms connector panel or unit CPAL-A or CPSAL-

B / CPSAL depending on the configuration. The CPAL-A and CPSAL/-B units arelocated at the rear side of the RNAC cabinet. The units also have EXAU-A / EXAU panel

control.

9.6 Ethernet/LAN Interfaces

The external LAN/Ethernet connections are routed directly out of the plug-in unit front

panel connectors.

The connectors for RNC's Ethernet/LAN interfaces to the NetAct, site LAN, and other 

destinations, for example, to printers, are placed on both the front panels and back inter-

face units of the ESA24 plug-in unit, whereas ESA12 has connectors only on the front

panel. The connection to OMS is protected by the MCP18-B's firewall.

The ESA24 has 24 LAN interfaces of which 22 are at the backplane connectors and 2

on the front panel (RJ45 connectors). There is also one additional serial port on the front

panel (RJ45 connector). The ESA12 has 12 LAN interfaces, up to nine of which can be

used for connections to the environment.

g  A cabinet is configured with either the ESA24 or ESA12.

 Although AL2S-D / AL2S-B, CCP18-C / CCP18-A / CCP10, CDSP-DH / CDSP-C,

MX1G6-A / MX1G6, MX622-D / MX622-C / MX622-B, NI4S1-B, and SF10E / SF10 units

include a LAN interface, they are provided for test use only.

9.7 Mouse, Keyboard, VDU, SCSI and Printer Interfaces

The MCP18-B plug-in unit has separate interfaces for a VDU and external storage

devices. It also has four USB ports that can be used to connect a keyboard, mouse or a

bootable device to the MCP18-B. USB-PS/2 adapters are not supported.

The form and pin-out of the SVGA and USB interfaces follow standard industry prac-