18
Rev. 1.1 (April 2012) 1 © DLP Design, Inc. D D L L P P - - H H S S - - F F P P G G A A 3 3 LEAD FREE U U S S B B - - F F P P G G A A M M O O D D U U L L E E FEATURES : Xilinx XC3S1400A-4FTG256C FPGA Utilized on the DLP-HS-FPGA3 Micron 32M x 8 DDR2 SDRAM Memory Built-In Configuration Loader; Writes the Bit File Directly to SPI Flash via High-Speed USB 2.0 Interface 63 User I/O Channels: 21 Differential Pairs and 8 Global Clocks 66.666 MHz Oscillator 133 MHz DDR2 Interface Reference Design Provided USB Port Powered or 5V External Power Barrel Jack USB 1.1 and 2.0 Compatible Interface Small Footprint: 3.0 x 1.2-Inch PCB and Standard 50-Pin, 0.9-Inch DIP Interface

DLP-HS-FPGA3 · The DLP-HS-FPGA3 module is a low-cost, compact prototyping tool that can be used for rapid proof of concept or within educational environments. The module is based

  • Upload
    buithu

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Rev. 1.1 (April 2012) 1 © DLP Design, Inc.

DDLLPP--HHSS--FFPPGGAA33LEAD FREE

UUSSBB -- FFPPGGAA MMOODDUULLEE

FEATURES: • Xilinx XC3S1400A-4FTG256C FPGA Utilized on the DLP-HS-FPGA3 • Micron 32M x 8 DDR2 SDRAM Memory • Built-In Configuration Loader; Writes the Bit File Directly to SPI Flash via High-Speed USB 2.0

Interface • 63 User I/O Channels: 21 Differential Pairs and 8 Global Clocks • 66.666 MHz Oscillator • 133 MHz DDR2 Interface Reference Design Provided • USB Port Powered or 5V External Power Barrel Jack • USB 1.1 and 2.0 Compatible Interface • Small Footprint: 3.0 x 1.2-Inch PCB and Standard 50-Pin, 0.9-Inch DIP Interface

Rev. 1.1 (April 2012) 2 © DLP Design, Inc.

APPLICATIONS: • Rapid Prototyping • Educational Tool • Industrial/Process Control • Data Acquisition/Processing • Embedded Processor 1.0 INTRODUCTION The DLP-HS-FPGA3 module is a low-cost, compact prototyping tool that can be used for rapid proof of concept or within educational environments. The module is based on the Xilinx Spartan™ 3A and Future Technology Devices International’s FT2232H Dual-Channel High-Speed USB IC. The DLP-HS-FPGA3 provides both the beginner as well as the experienced engineer with a rapid path to developing FPGA-based designs. When combined with the free ISE™ WebPACK™ tools from Xilinx, this module is more than sufficient for creating anything from basic logical functions to a highly complex system controller. As a bonus feature, one channel of the dual-channel USB interface is used to load user bit files directly to the SPI Flash—no external programmer is required. This represents a savings of as much as $200 in that no additional programming cable is required for configuring the FPGA. All that is needed to load bit files to the DLP-HS-FPGA3 is a Windows software utility (free with purchase), a Windows PC and a USB cable. The module can also be programmed from within the Xilinx ISE tool environment using a Xilinx programming cable (purchased separately). The DLP-HS-FPGA3 is fully compatible with the free ISE™ WebPACK™ tools from Xilinx. ISE™ WebPACK™ offers the ideal development environment for FPGA designs with HDL synthesis and simulation, implementation, device fitting and JTAG programming. The DLP-HS-FPGA3 has on-board voltage regulators that generate all required power supply voltages from a single, 5-volt source. Power for the module can be taken from either the host USB port or from a user-supplied, external 5-volt power supply via an onboard standard barrel connector.

Connection to user electronics is made via a 50-pin, 0.9-inch wide, industry-standard 0.025-square inch post DIP header on the bottom of the board and a 26-pin, 0.05-inch wide top-side 2x13 header. The bottom-side 50-pin header provides access to 41 of the FPGA user input/output pins. The top-side header provides access to 22 of the FPGA user input/output pins. The bottom-side header mates with a user-supplied, standard, 50-pin, 0.9-inch spaced DIP socket. The top-side header mates with a user-supplied, 0.05-inch spaced, 2x13 connector such as the FFSD-13-D-xx.xx-01 (xx.xx = cable length) ribbon cable assembly from Samtec.

Rev. 1.1 (April 2012) 3 © DLP Design, Inc.

DIP Socket

Ribbon Cable

Other on-board features include a 32M x 8 DDR2 SDRAM memory IC for user projects and both JTAG and SPI Flash interface ports for connection to Xilinx programming tools. 2.0 REFERENCE DESIGN A 10,000-line reference design is available for the Spartan™ 3A FPGA on the DLP-HS-FPGA3 to those who purchase the module. The design was written in VHDL and built using the free Xilinx ISE™ WebPACK™ tools. The reference design consists of the following blocks:

It contains a USB Interface Block, a User I/0 Block, a DDR2 SDRAM interface, a Heartbeat Pulse Generator and a Clock Generator. The SPI Flash is used to store the design’s FPGA configuration file. The USB interface captures, interprets and returns command and data information sent from the host PC through the FTDI USB interface to the FPGA. Commands include Ping, Return Status, Loopback Data, Set a User I/O Pin High or Low, Read a User I/O Pin, Initialize the DDR2 SDRAM Memory and Read (from) or Write (to) the DDR2 SDRAM Memory. (Section 11 explains these in detail.)

Rev. 1.1 (April 2012) 4 © DLP Design, Inc.

The User I/O Block controls access to the 63 user I/O pins accessible through the top- and bottom- side headers. Every one of these pins can be either an input or an output. The User I/O Block can configure these pins as inputs and read their state, or as outputs and drive them high or low. (As a side note, 48 of these user I/O pins can be configured as 24 differential pairs, 8 can be configured as global clock inputs and 6 can be configured as regional clock inputs.) The DDR2 SDRAM interface block manages the memory’s initialization, the refresh cycle and the read and write access. Read and write access is available in 4-byte bursts. The traces between the DDR2 SDRAM and FPGA are matched within 10 mils to accommodate reliable data transfer at 266 Mbit/s (clocked at 133MHz). The interface creates and aligns the Data Strobes (DQS) based on an external feedback trace that matches two times the trace length between the FPGA and the DDR2 SDRAM. The Initialization, Read and Write commands are initiated by the USB interface block and executed by the DDR2 SDRAM interface block. The Heartbeat Pulse Generator takes the internal system clock and divides it down so that the onboard Heartbeat LED will be turned on and off for a duration of approximately one-half second. The Clock Generator Block receives the 66.666-MHz clock and produces both the 133-MHz clocks required to run the DDR2 SDRAM memory device and the 100-MHz clock for the remaining internal logic in the FPGA. It also handles reset and lock synchronization between internal DCM blocks. The design occupies the following FPGA resources on the DLP-HS-FPGA3 module’s XC3S1400A:

More reference designs are planned. Please contact DLP Design with any specific requests.

Rev. 1.1 (April 2012) 5 © DLP Design, Inc.

3.0 FPGA SPECIFICATIONS

The FPGA device used on the DLP-HS-FPGA3 is the Xilinx Spartan™ 3A: • Part Number: XC3S1400A-4FTG256C • System Gates: 1,400,000 • Equivalent Logic Cells: 25,344 • CLB Array:

Rows: 72 Columns: 40 Total CLB’s: 2,816 Total Slices: 11,264 Total Flip Flops: 22,528 Total 4-Input LUT’s: 22,528

• Distributed RAM Bits: 176K • Block RAM Bits: 576K • Dedicated Multipliers: 32 • DCM’s: 8 4.0 ABSOLUTE MAXIMUM RATINGS Stresses above those listed here may cause permanent damage to the DLP-HS-FPGA3: Operating Temperature: 0-70°C Voltage on Digital Inputs with Respect to Ground: -0.5V to +4.1 V Sink/Source Current on Any I/O: 24 mA (using LVTTL as the FPGA I/O standard) 5.0 WARNINGS • Unplug from the host PC and power adapter before connecting to I/O on the DLP-HS-FPGA3.

• Isolate the bottom of the board from all conductive surfaces.

• Observe static precautions to prevent damage to the DLP-HS-FPGA3 module.

Rev. 1.1 (April 2012) 6 © DLP Design, Inc.

6.0 BITLOADAPP SOFTWARE Windows software is provided for use with the DLP-HS-FPGA3 that will load an FPGA configuration (*.bit) file directly to the SPI Flash device via the USB interface. This application (illustrated below) will allow the user to erase the Flash, verify the erasure and then program and verify the Flash:

7.0 JTAG INTERFACE The easiest way to load an FPGA configuration (*.bit) file to the FPGA is to run the BitLoadApp software then select and program a file from the local hard drive directly to the SPI Flash. Once written to the SPI Flash, the configuration will load to the FPGA and execute. Alternatively, a traditional JTAG header location is provided on the DLP-HS-FPGA3 giving the user access to the specific pins required by the development tools. (Refer to the schematic contained within this datasheet for details.) 8.0 EEPROM SETUP / MPROG The DLP-HS-FPGA3 has a dual-channel USB interface to the host PC. Channel B is used exclusively to load an FPGA configuration (*.bit) file to the SPI Flash. This configuration data is automatically transferred to the FPGA when power is applied to the module or when the PROG pin is driven low and then released by the application software. Channel A is used for communication between the FPGA and the host PC at run time. A 93LC56B EEPROM connected to the USB interface IC is used to store the setup for the two channels. The parameters stored in the EEPROM include the Vendor ID (VID), Product ID (PID), Serial Number, Description String, driver selection (VCP or D2XX) and port type (UART serial or FIFO parallel). As mentioned above, Channel B is used exclusively for loading the FPGA’s configuration to the SPI Flash, and Channel A is used for communication between the host PC and the DLP-HS-FPGA3. As such, the D2XX drivers and 245 FIFO mode must be selected in the EEPROM for Channel B. Channel A must use the 245 FIFO mode, but it can use either the VCP or D2XX drivers. The VCP drivers make the DLP-HS-FPGA3 appear as an RS232 port to the host application. The D2XX drivers provide faster throughput but require working with a *.lib or *.dll library in the host application. The operational modes and other EEPROM selections are written to the EEPROM using the MPROG utility. This utility and its manual are available for download from the bottom of the page at www.dlpdesign.com.

Rev. 1.1 (April 2012) 7 © DLP Design, Inc.

9.0 TEST BIT FILE A test file is provided as a download from the DLP Design website that provides rudimentary access to the I/O features of the DLP-HS-FPGA3. The following features are provided: • Ping

• Read the High/Low State of the Input-Only Pins

• Drive I/O Pins High/Low or Read their High/Low State

• Simple Loopback on Channel A

• 4-Byte Read/Write Access of the Row, Column, and Bank Address in the DDR2 SDRAM This bit file is available from the DLP-HS-FPGA3 download page. The command structure that supports these features is explained in Section 11. 10.0 USB DRIVERS USB drivers for the following operating systems are available for download from the DLP Design website at www.dlpdesign.com:

OPERATING SYSTEM SUPPORT Windows 7 32-bit Windows 7 64-bit

Windows Vista, Vista x64 Mac OSX Windows XP, XP x64 Mac OS9

Windows Server 2008, x64 Mac OS8 Windows Server 2003, x64 Linux

Windows 2000 Windows CE 4.2 – 6.0 Notes: 1. The bit file load utility only runs on the Windows platforms. 2. The bit file load utility requires the use of USB channel B, and channel B is dedicated to this

function. 3. If you are utilizing the dual-mode drivers from FTDI (CDM2.x.x) and you want to use the Virtual COM Port (VCP) drivers, then it may be necessary to disable the D2XX drivers first via Device Manager. To do so, right click on the entry under USB Controllers that appears when the

DLP-HS-FPGA3 is connected, select Properties, select the Advanced tab, check the option for “Load VCP” and click OK. Then unplug and replug the DLP-HS-FPGA3, and a COM port should appear in Device Manager under Ports (COM & LPT).

Rev. 1.1 (April 2012) 8 © DLP Design, Inc.

11.0 USING THE DLP-HS-FPGA3 Select a power source via Header Pins 23 and 24, and connect the DLP-HS-FPGA3 to the PC to initiate loading of the USB drivers. The easiest way to do this is to connect Pins 23 and 24 to each other. This will result in operational power being taken from the host PC. Once the drivers are loaded, the DLP-HS-FPGA3 is ready for use.

Simply connect the DLP-HS-FPGA3 to the PC to initiate the loading of USB drivers.

You can either utilize the Test Application available from http://www.dlpdesign.com/test.shtml with the DLP-HS-FPGA3 (as described in Section 12), or you can write your own program in your language of choice. If you are using the VCP drivers, begin by opening the COM port, and send multi-byte commands as shown in Table 1 below. There is no need to set the baud rate because the DLP-HS-FPGA3 uses a parallel interface between the USB IC and the FPGA. (The Ping Command can be used to locate the correct COM port used for communicating with the DLP-HS-FPGA3, or you can look in Device Manager to see which port was assigned by Windows.) If you are using the D2XX drivers as with the Test Application, no COM port selection is necessary.

TABLE 1

Rev. 1.1 (April 2012) 9 © DLP Design, Inc.

Command Packets Command

Packet Description

Byte

Hex Value

Return/Comments

Ping Issues Ping 0 0x00 Ping Command - 0x56 will be returned indicating that the DLP-HS-FPGA3 is found on the selected port.

Read Version/ Status

Accesses the internal version/ status registers

0 0x10 Read Version/Status Registers Command 1 0xnn Register Address: 0xnn =

0x00 = Board ID (0x30 = Production PCB) 0x01 = FPGA Type ID : 0x6A = XC3S1400A 0x02 = Design Version ID 1 (Design Month) 0x03 = Design Version ID 2 (Design Day) 0x04 = Design Version ID 3 (Design Year) 0x05 = Design Version ID 4 (Design Version) 0x06 = DDR2 Status: 0x00 = Not Initialized 0x01 = Initialized

Loopback Returns the data byte received

0 0x20 Loopback Command 1 0xnn The byte sent to the DLP-HS-FPGA3 (0xnn) will be

returned back. Loopback

Compliment Returns the compliment of data byte received

0 0x21 Loopback Compliment Command 1 0xnn The byte sent to the DLP-HS-FPGA3 (0xnn) will be

complimented and returned back.

Read Pin Reads the state of one of the user I/O pins

0 0x30 Read Pin Command 1 0x00

– 0x3E

The user I/O pin numbers are described in Table 2. User I/O pin 0xnn is read and returns: 0x00 = User I/O pin 0xnn is low 0x01 = User I/O pin 0xnn is high

Clear Pin Forces the selected user I/O pin low

0 0x40 Clear Pin Command 1 0x00

– 0x3E

The user I/O pin numbers are described in Table 2. User I/O pin 0xnn is cleared. The specified user I/O number is returned.

Set Pin Forces the selected user I/O pin high

0 0x41 Set Pin Command 1 0x00

– 0x3E

The user I/O pin numbers are described in Table 2. User I/O pin 0xnn is set. The specified user I/O number is returned.

Initialize Memory

Initializes DDR2 SDRAM

0 0x70 The Initialize Memory Command configures the DDR2 SDRAM for access by the FPGA. The memory cannot be accessed without being initialized.

IMPORTANT NOTE ON DDR2 SDRAM DATA ACCESS: Writes and reads made to and from the DDR2 SDRAM using the reference design on the DLP-HS-FPGA3 module are always performed 4 bytes at a time due to the fact that the device is configured for a burst length of four. What this means is that Column Address Bits 0 and 1 only change the order of the read or write bytes; they still refer to the same 4 bytes. Therefore, to increment the DDR2 SDRAM address for consecutive memory locations, the column address must be incremented by 4. Incrementing the column address by anything less than 4 simply changes the order in which the 4 bytes specified by Column Address 9:3 are written to the memory or returned to the user.

Rev. 1.1 (April 2012) 10 © DLP Design, Inc.

For example, a write to a column starting address of 0 will write to column locations 0, 1, 2 and 3. But if the user then writes to column address 1, they will actually be writing to column locations 1, 2, 3 and 0, which will overwrite the previous write operation. More details on how the DDR2 SDRAM column bits 1 and 0 function can be found in Figure 4 and Table 40 of the Micron™ MT47H32M8 datasheet. For details on how the bank, row and column bits are sent via USB to the memory, refer to the commands below:

Memory Read

Reads 4 bytes from the DDR2 SDRAM

0 0x8n Reads 4 bytes from the DDR2 SDRAM starting with the address specified. The command byte is OR’d with the Most Significant Row Address Bit (24). n = 0 the Most Sig Row Address Bit is low (0x80) n = 1 the Most Sig Row Address Bit is high (0x81)

1 0xah Bits 23-16: Middle 8 bits of Row Address to be read from

2 0xam Bits 15-12: Lower 4 bits of Row Address to be read from Bits 11-8: Upper 4 bits of Column Address to be read from

3 0xal Bits 7-2: Lower 6 bits of Column Address to be read from NOTES: Refer to the text above regarding Column Bits 1 and 0 (equates to 0xal bits 3-2). Bits 1-0: Bank Address to be read from. If the memory has not been initialized, the data returned will be invalid, and the command returned will be 0xE7 indicating the error.

Memory Write

Writes 4 bytes to the DDR2 SDRAM

0 0x9n Writes 4 bytes to the DDR2 SDRAM starting with the address specified. The command byte is OR’d with the Most Significant Row Address bit (24). n = 0 the Most Sig Row Address Bit is low (0x90) n = 1 the Most Sig Row Address Bit is high (0x91)

1 0xah Bits 23-16: Middle 8 bits of Row Address to be written to

2 0xam Bits 15-12: Lower 4 bits of Row Address to be written to Bits 11-8: Upper 4 bits of Column Address to be written to

3 0xal Bits 7-2: Lower 6 bits of column address to be written to NOTE: Refer to the text above regarding Column Bits 1 and 0 (equates to 0xal bits 3-2). Bits 1-0: Bank Address to be written to

4 0xd0 Data Byte 0 written to Address Specified 5 0xd1 Data Byte 1 written to Address Specified + 1 6 0xd2 Data Byte 2 written to Address Specified + 2 7 0xd3 Data Byte 3 written to Address Specified + 3. Returns

the 4 bytes written followed by an echo back of the command and address data sent. NOTE: If the memory has not been initialized, the command returned will be 0xE7 indicating the error.

Rev. 1.1 (April 2012) 11 © DLP Design, Inc.

The USER I/O Pin Read/Set/Clear Commands I/O number mapping to the physical I/O pins on the DLP-HS-FPGA3 board are described in the following table:

TABLE 2 User I/O

I/O Number DLP-HS-FPGA3

Pin XC3S1400A

Pin XC3S1400A

Bank

FPGA Pin Configurations Available

0x00 (0) J1 Pin 2 D13 0 Digital Input, Output, Differential Pair 0+ 0x01 (1) J1 Pin 3 C13 0 Digital Input, Output, Differential Pair 0- 0x02 (2) J1 Pin 4 D12 0 Digital Input, Output, Differential Pair 1-0x03 (3) J1 Pin 5 C12 0 Digital Input, Output, Differential Pair 1+

0x04 (4) J1 Pin 6 C10 0 Digital Input, Output, Differential Pair 2+, Global Clock

0x05 (5) J1 Pin 7 D9 0 Digital Input, Output, Differential Pair 2-, Global Clock

0x06 (6) J1 Pin 8 C8 0 Digital Input, Output, Differential Pair 3+, Global Clock

0x07 (7) J1 Pin 9 D8 0 Digital Input, Output, Differential Pair 3-, Global Clock

0x08 (8) J1 Pin 10 A14 0 Digital Input, Output, Differential Pair 4+0x09 (9) J1 Pin 12 A13 0 Digital Input, Output, Differential Pair 4-

0x0A (10) J1 Pin 13 A6 0 Digital Input, Output, Differential Pair 5+0x0B (11) J1 Pin 14 B6 0 Digital Input, Output, Differential Pair 5-0x0C (12) J1 Pin 15 C11 0 Digital Input, Output, Differential Pair 6+0x0D (13) J1 Pin 16 A11 0 Digital Input, Output, Differential Pair 6-

0x0E (14) J1 Pin 17 B8 0 Digital Input, Output, Differential Pair 7-, Global Clock

0x0F (15) J1 Pin 18 A8 0 Digital Input, Output, Differential Pair 7+, Global Clock

0x10 (16) J1 Pin 19 C5 0 Digital Input, Output, Differential Pair 8-0x11 (17) J1 Pin 20 A5 0 Digital Input, Output, Differential Pair 8+0x12 (18) J1 Pin 21 B3 0 Digital Input, Output, Differential Pair 9-0x13 (19) J1 Pin 22 A3 0 Digital Input, Output, Differential Pair 9+0x14 (20) J1 Pin 27 F3 3 Digital Input, Output 0x15 (21) J1 Pin 29 G2 3 Digital Input, Output 0x16 (22) J1 Pin 30 C2 3 Digital Input, Output, Differential Pair 11+0x17 (23) J1 Pin 31 C1 3 Digital Input, Output, Differential Pair 11-0x18 (24) J1 Pin 32 E1 3 Digital Input, Output, Differential Pair 12-0x19 (25) J1 Pin 33 D1 3 Digital Input, Output, Differential Pair 12+0x1A (26) J1 Pin 34 F4 3 Digital Input, Output 0x1B (27) J1 Pin 35 J2 3 Digital Input, Output 0x1C (28) J1 Pin 36 C6 0 Digital Input, Output 0x1D (29) J1 Pin 37 G3 3 Digital Input, Output 0x1E (30) J1 Pin 38 M4 3 Digital Input, Output, Differential Pair 15-0x1F (31) J1 Pin 39 N3 3 Digital Input, Output, Differential Pair 15+0x20 (32) J1 Pin 41 E3 3 Digital Input, Output, Differential Pair 16+0x21 (33) J1 Pin 42 E2 3 Digital Input, Output, Differential Pair 16-0x22 (34) J1 Pin 43 H3 3 Digital Input, Output, Differential Pair 17+0x23 (35) J1 Pin 44 J3 3 Digital Input, Output, Differential Pair 17-

Rev. 1.1 (April 2012) 12 © DLP Design, Inc.

0x24 (36) J1 Pin 45 K1 3 Digital Input, Output, Differential Pair 18, Regional Clock

0x25 (37) J1 Pin 46 K3 3 Digital Input, Output, Differential Pair 18, Regional Clock

0x26 (38) J1 Pin 47 P1 3 Digital Input, Output, Differential Pair 19-0x27 (39) J1 Pin 48 N2 3 Digital Input, Output, Differential Pair 19+0x28 (40) J1 Pin 49 T9 2 Digital Input, Output, Global Clock0x29 (41) J4 Pin 1 B15 0 Digital Input, Output 0x2A (42) J4 Pin 3 A12 0 Digital Input, Output 0x2B (43) J4 Pin 5 B10 0 Digital Input, Output, Differential Pair 20+0x2C (44) J4 Pin 7 A10 0 Digital Input, Output, Differential Pair 20-0x2D (45) J4 Pin 9 A9 0 Digital Input, Output, Global Clock0x2E (46) J4 Pin 11 N1 3 Digital Input, Output 0x2F (47) J4 Pin 13 E7 0 Digital Input, Output 0x30 (48) J4 Pin 15 C4 0 Digital Input, Output 0x31 (49) J4 Pin 17 C7 0 Digital Input, Output 0x32 (50) J4 Pin 19 K4 3 Digital Input, Output 0x33 (51) J4 Pin 21 R1 3 Digital Input, Output 0x34 (52) J4 Pin 2 A7 0 Digital Input, Output 0x35 (53) J4 Pin 4 A4 0 Digital Input, Output, Differential Pair 21+0x36 (54) J4 Pin 6 B4 0 Digital Input, Output, Differential Pair 21-0x37 (55) J4 Pin 8 F1 3 Digital Input, Output, Differential Pair 22+0x38 (56) J4 Pin 10 G1 3 Digital Input, Output, Differential Pair 22-0x39 (57) J4 Pin 12 H1 3 Digital Input, Output, Regional Clock0x3A (58) J4 Pin 14 J1 3 Digital Input, Output, Regional Clock0x3B (59) J4 Pin 16 L1 3 Digital Input, Output 0x3C (60) J4 Pin 18 M1 3 Digital Input, Output 0x3D (61) J4 Pin 20 M3 3 Digital Input, Output, Differential Pair 23+0x3E (62) J4 Pin 22 L4 3 Digital Input, Output, Differential Pair 23-SUSPEND J4 Pin 23 R16 1 Force Suspend Mode (when enabled)

AWAKE J4 Pin 24 T11 2 Return from Suspend Mode Operation +5V IN J1 Pin 23 - - +5V input to the DLP-HS-FPGA3

+5V USB J1 Pin 24 - - +5V supplied by host PC USB port

+3.3V OUT J1 Pin 28, J4 Pin 26 - - +3.3V supplied by the onboard regulator

after module enumerated

GND

J1 Pin 1, J1 Pin 11, J1 Pin 25, J1 Pin 26, J1 Pin 40, J1 Pin 50, J4 Pin 25

- -

Ground

Rev. 1.1 (April 2012) 13 © DLP Design, Inc.

12.0 USING THE DLP TEST APPLICATION (OPTIONAL) Users can design their own application interface to send USB commands to the DLP-HS-FPGA3 module or utilize the test application tool available from DLP Design. The DLP Test Application is available in a free version for download from the DLP Design website at www.dlpdesign.com/ test.shtml. Using this tool, single- and multi-byte commands can be sent to the DLP-HS-FPGA3 board. Once installed the test application is used as follows:

The commands used to interface to the DLP-HS-FPGA3 are detailed in Section 11 of this datasheet.

Rev. 1.1 (April 2012) 14 © DLP Design, Inc.

13.0 MECHANICAL DIMENSIONS IN INCHES (MM) (PRELIMINARY)

Rev. 1.1 (April 2012) 15 © DLP Design, Inc.

14.0 DISCLAIMER © DLP Design, Inc., 2000-2012 Neither the whole nor any part of the information contained herein nor the product described in this manual may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis, and no warranty as to their suitability for any particular purpose is either made or implied. DLP Design, Inc. will not accept any claim for damages whatsoever arising as a result of the use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. 15.0 CONTACT INFORMATION DLP Design, Inc. 1605 Roma Lane Allen, TX 75013 Phone: 469-964-8027 Fax: 415-901-4859 Email Sales: [email protected] Email Support: [email protected] Website URL: http://www.dlpdesign.com

55

44

33

22

11

DD

CC

BB

AA

PRELIMINARY

DL

P-H

S-F

PG

A3

Pa

ge

1

v1.0

1000 mA

DC

:+3.6

to +

6.0

V

13

2

Bottom side FPGA IO (top view)

Top side FPGA IO

For FPGA configuration

via SPI only.

DNS

Downloading

FPGA Code

UPLOAD

DNS

DNS

DNS

DNSPOWER-UP DELAY CAP C78

200uS (No cap) to 300mS (0.1uF)

EE

DA

TA

PW

RE

N#

EE

CS

P1V

8

EE

SK

P5V

0U

SE

R_IO

39_D

P19

US

ER

_IO

36_D

N18_R

C

US

ER

_IO

31_D

P15

US

ER

_IO

2_D

N1

US

ER

_IO

33_D

N16

US

ER

_IO

38_D

N19

US

ER

_IO

40_G

C

US

ER

_IO

3_D

P1

US

ER

_IO

32_D

P16

US

ER

_IO

34_D

P17_R

CU

SE

R_IO

5_D

N2_G

CU

SE

R_IO

35_D

N17_R

C

US

ER

_IO

0_D

P0

US

ER

_IO

18_D

N9

US

ER

_IO

13_D

N6

US

ER

_IO

17_D

P8

US

ER

_IO

24_D

N12

US

ER

_IO

23_D

N11

US

ER

_IO

12_D

P6

US

ER

_IO

20

US

ER

_IO

26

US

ER

_IO

21

US

ER

_IO

25_D

P12

US

ER

_IO

37_D

P18_R

C

US

ER

_IO

22_D

P11

US

ER

_IO

11_D

N5

US

ER

_IO

16_D

N8

US

ER

_IO

19_D

P9

US

ER

_IO

15_D

P7_G

CU

SE

R_IO

14_D

N7_G

CU

SE

R_IO

27

US

ER

_IO

7_D

N3_G

C

US

ER

_IO

29

US

ER

_IO

6_D

P3_G

C

US

ER

_IO

8_D

P4

US

ER

_IO

28

US

ER

_IO

9_D

N4

US

ER

_IO

30_D

N15

US

ER

_IO

4_D

P2_G

C

US

ER

_IO

1_D

N0

VP

LL

VP

HY

VP

LL

VP

HY

PO

RT

VC

C

5V

IN

VC

CS

W

PO

RT

VC

C

5V

INU

SE

R_IO

10_D

P5

US

ER

_IO

41

US

ER

_IO

52

US

ER

_IO

42

US

ER

_IO

43_D

P20

US

ER

_IO

44_D

N20

US

ER

_IO

45_G

CU

SE

R_IO

46

US

ER

_IO

47

US

ER

_IO

48

US

ER

_IO

49

US

ER

_IO

50

US

ER

_IO

51

FP

GA

_S

US

PE

ND

US

ER

_IO

53_D

P21

US

ER

_IO

54_D

N21

US

ER

_IO

55_D

P22

US

ER

_IO

56_D

N22

US

ER

_IO

57_R

CU

SE

R_IO

58_R

CU

SE

R_IO

59

US

ER

_IO

60

US

ER

_IO

61_D

P23

US

ER

_IO

62_D

N23

FP

GA

_A

WA

KE

VC

CS

W

FT

DI_

RD

FT

DI_

SI

FT

DI_

RX

F

FT

DI_

WR

FT

DI_

D6

FT

DI_

D5

FT

DI_

D2

FT

DI_

D4

FT

DI_

D3

FT

DI_

TX

E

FT

DI_

D7

FT

DI_

D0

FT

DI_

D1

SP

I_C

LK

SP

I_M

OS

IS

PI_

DIN

SP

I_C

SO

_B

SP

I_P

RO

G

FP

GA

_A

WA

KE

FP

GA

_S

US

PE

ND

FP

GA

_R

ES

ET

FT

DI_

CLK

OU

T

US

ER

_IO

63

VC

CS

W

US

ER

_IO

64

5V

0

3V

3

3V

3

3V

3

3V

3

3V

3

3V

33V

3

5V

0

3V

3

5V

0

3V

3

R36

0

CN

1C

N-U

SB

1234

5

C8

1.0

uF

/0603

C77

.1uF

CN

2DC

BA

RR

EL J

AC

K

2 3 1

D4

MB

R130T

1G

C2

.1uF

TP

4S

PA

RE

_B

DB

US

31

C1

.01

C47

.1uF

C78

1000pF

R38

0

R24

2.2

K

C18

0.1

uF

JP

3

PR

OG

Dis

able

12

R31

1K

J1

CO

NN

PC

B 2

5x2

8 7 6 12345

10 9

12

11

13

15

14

17

16

18

20

19

25

24

23

22

21

34

33

32

31

30

29

28

27

26

40

39

38

37

36

35

50

49

48

47

46

45

44

43

42

41

8 7 6 1234510

912

11

13

15

14

17

16

18

20

19

25

24

23

22

21

34

33

32

31

30

29

28

27

26

40

39

38

37

36

35

50

49

48

47

46

45

44

43

42

41

Q2

IRLM

L6402

R27

24.9

K

Y1

12M

Hz

FB

2240-1

018-1

12

C5

.1uF

C48

.1uF

R3

10K

R33

27

C39

10uF

/10V

C17

0.1

uF

R28

10K

5%

R4

2.2

K

C3

.1uF

R19

0

U1

FT

1232H

Q

5147

4256

8

62

3120

643712

94

507

10

1511152535

59

58

57

55

54

53

52

48

16

17

18

19

21

22

23

24

26

27

28

29

30

32

33

34

38

39

40

41

43

44

45

46

3 2

146

49

63

61

13

60

36

GNDGND

VCCIOVCCIO

DP

EE

CLK

VCCIOVCCIO

VCOREVCOREVCORE

VPLLVPHY

VR

EG

IN

DM

AGND

GNDGNDGNDGNDGNDGND

BC

BU

S7/P

WR

SA

V#/P

WR

SA

V#/G

PIO

H7

BC

BU

S6/-/-/G

PIO

H6

BC

BU

S5/-/-/G

PIO

H5

BC

BU

S4/R

XLE

D#/S

IWU

B/G

PIO

H4

BC

BU

S3/T

XLE

D#/W

R#/G

PIO

H3

BC

BU

S2/R

DS

TB

#/R

D#/G

PIO

H2

BC

BU

S1/W

RS

TB

#/T

XE

#/G

PIO

H1

BC

BU

S0/T

XD

EN

/RX

F#/G

PIO

H0

AD

BU

S0/T

XD

/D0/T

CK

SK

AD

BU

S1/R

XD

/D1/T

DI D

OA

DB

US

2/R

TS

#/D

2/T

DO

DI

AD

BU

S3/C

TS

#/D

3/T

MS

CS

AD

BU

S4/D

TR

#/D

4/G

PIO

L0

AD

BU

S5/D

SR

#/D

5/G

PIO

L1

AD

BU

S6/D

CD

#/D

6/G

PIO

L2

AD

BU

S7/R

I#/D

7/G

PIO

L3

AC

BU

S0/T

XD

EN

/RX

F#/G

PIO

H0

AC

BU

S1/W

RS

TB

#/T

XE

#/G

PIO

H1

AC

BU

S2/R

DS

TB

#/R

D#/G

PIO

H2

AC

BU

S3/T

XLE

D#/W

R#/G

PIO

H3

AC

BU

S4/R

XLE

D#/S

IWU

A/G

PIO

H4

AC

BU

S5/-/C

LK

OU

T/G

PIO

H5

AC

BU

S6/-/O

E#/G

PIO

H6

AC

BU

S7/-/-/G

PIO

H7

BD

BU

S0/T

XD

/DO

/TC

K S

KB

DB

US

1/R

XD

/D1/T

DI D

OB

DB

US

2/R

TS

#/D

2/T

DO

DI

BD

BU

S3/C

TS

#/D

3/T

MS

CS

BD

BU

S4/D

TR

#/D

4/G

PIO

L0

BD

BU

S5/D

SR

#/D

5/G

PIO

L1

BD

BU

S6/D

CD

#/D

6/G

PIO

L3

BD

BU

S7/R

I#/D

7/G

PIO

L4

OS

CO

OS

CI

RE

SE

T#

RE

F

VR

EG

OU

T

EE

CS

EE

DA

TA

TE

ST

PW

RE

N#

SU

SP

EN

D#

C33

.1uF

C34

10/1

0 T

ant

Q4

MM

BT

3904L

3

1

2

R39

100K

FB

3240-1

018-1

12

J4

CO

NN

HD

R 1

3x2

15

13

11 13579

19

17

23

21

25

22

24

26

246810

12

14

16

18

20

15

13

11

1357919

17

23

21

25

22

24

26 2468

10

12

14

16

18

20

FB

1240-1

018-1

12

R34

0

C4

.1uF

R37

0

D5

RE

D

C9

.1uF

C49

.1uF

R35

0

R6

10K

R32

0

C10

4.7

uF

C11

27pF

U3

93LC

46

1234

8765

CS

SK

DIN

DO

UT

VC

CN

CN

C/O

RG

GN

D

R16

27

TP

5S

PA

RE

_B

DB

US

51

C6

4.7

uF

R17

27

R2

12K

C26

.1uF

R13

150

C85

.1uF

C19

10/1

0 T

ant

R7

10K

C25

4.7

uF

TP

6S

PA

RE

_B

CB

US

11

U2

MC

P1726-3

302E

/MF

81

5

4 23

76

VO

UT

VIN

PW

RG

D

GN

D

VIN

SH

DN

VO

UT

CD

ELA

Y

C46

.1uF

C12

27pF

55

44

33

22

11

DD

CC

BB

AA

PRELIMINARY

Pa

ge

2

DL

P-H

S-F

PG

A3

TDI

SPI

Flash

TMS

TDO

TCK

350mA Maximum

1.5A Maximum

1.2

V R

EG

UL

AT

OR

1.8

V R

EG

UL

AT

OR

2.5 mS ramp up

DD

R II p

ara

llel

term

ina

tion

s

Use Ceramic caps

DNS

DNS

V1

.0

DNS

DNS

DNS

DNSDNS

DNS

DNS

DNS

SP

I_P

RO

G

JT

AG

_D

INJT

AG

_T

MS

JT

AG

_T

CK

JT

AG

_D

OU

T

JT

AG

_T

MS

JT

AG

_T

CK

JT

AG

_D

INJT

AG

_D

OU

TLE

DG

_D

ON

E

SP

I_D

IN

SP

I_C

LK

SP

I_M

OS

I

SP

I_C

SO

_B

VC

CS

W

VR

EF

_0V

9

VT

T_0V

9

DD

R2_A

10

DD

R2_R

FU

_B

A2

VT

T_0V

9

VT

T_0V

9

DD

R2_A

11

DD

R2_A

6D

DR

2_R

FU

_A

15

DD

R2_A

4

DD

R2_B

A1

DD

R2_B

A0

VT

T_0V

9

DD

R2_A

7D

DR

2_A

12

DD

R2_A

3D

DR

2_W

En

DD

R2_R

FU

_A

14

DD

R2_A

9

DD

R2_A

1D

DR

2_A

5

DD

R2_A

2

DD

R2_C

KE

DD

R2_R

FU

_A

13

DD

R2_A

8D

DR

2_O

DT

DD

R2_R

AS

nD

DR

2_C

Sn

DD

R2_C

AS

nD

DR

2_A

0

VT

T_0V

9

VT

T_0V

9

VT

T_0V

9

CLK

IN

VC

CS

W

1V

2

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

1V

2

1V

8

VC

CS

W

VC

CS

W

VC

CS

W

1V

8V

CC

SW

RN

2

CA

T25-5

00JA

LF

50 O

hm

1 2 3 4 56789

10

R1

27

C14

0.01 uF

0603

C42

0.1uF

0603

C20

0.1uF

0603

R5

4.7

K

C73

22 u

F

C63

0.1

uF

R94.7

K

R14

0

Y2

FX

O-H

C735-6

6.6

66M

HZ

12

3

4

EN

GN

D

OU

T

VD

D

C62

2.2 uF

0603

C32

0.0

1uF

C22

22 uF

TANT

C74

0.1

uF

Q3

IRLM

L6401

R8

4.7

K

C15

2.2 uF

0603

C69

2.2 uF

0603

C23

4.7uF

0603

C71

0.0

1uF

J2

Tra

ditio

nal J

TA

G

123456

R21

4.7

K

R18

50

D2

GR

EE

N

U4

M25P

80

678

3 1

4

52

CHO

LD

VCC

W S

VSS

>D

in<

Dout

C66

0.0

1uF

C76

0.1

uF

RN

3

CA

T25-5

00JA

LF

50 O

hm

1 2 3 4 56789

10

U8

ST

1S

06P

U1Z

R

3

21

456

SW

GN

DF

B

VIN

_S

WV

IN_A

INH

IBIT

J3

Xilin

x Para

llel C

able

Header

123456

C68

0.0

1uF

R30

100 5

%

C72

2.2

uF

C13

0.1

uF

R11

4.7

K

R12

220K

5%

C75

0.1

uF

U5E

XC

3S

1400A

_F

T256

B1

B2

T15

B16

A15

A2

TD

IT

MS

DO

NE

TD

OT

CK

PR

OG

_B

RN

1

CA

T25-5

00JA

LF

50 O

hm

1 2 3 4 56789

10

C70

0.1

uF

U5F

XC

3S

1400A

_F

T256

A1

T1

F2

K2

C3

P3

E5

M5

F6

R6

B7

K7

G8

J8

H9

K9

G10

R10

B11

L11

E12

M12

C14

P14

G15

L15

A16

T16

L12

E11

M6

F5

K10

J9

G9

K8

H8

G7

E10

F11

F7

F8

F9

G12

G5

G6

H11

H5

H7

J10

J6

K11

K12

K5

L10

L6

L8

M8

N10

N7

D6

F12

H14

H4

L5

M10

F10

G11

H10

H6

J11

J7

K6

L7

L9

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CIN

TV

CC

INT

VC

CIN

TV

CC

INT

VC

CIN

TV

CC

INT

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CA

UX

VC

CIN

TV

CC

INT

VC

CIN

TV

CC

INT

VC

CIN

TV

CC

INT

VC

CIN

TV

CC

INT

VC

CIN

T

U7

AD

130A

UJZ

-1.8

-R7C

T

1234 5

INGN

D

EN

BY

PA

SS

OU

T

R15

49.9

K 1

%

R25

330

R10

4.7

K

C64

0.0

1uF

U6

LP

2997 S

OIC

8

4

1 2 67583

VR

EF

GN

D

SD

#

AV

INP

VIN

VD

DQ

VT

T

VS

EN

SE

L1

3.3

uH

JP

1P

RO

G12

C67

0.1

uF

C65

0.1

uF

55

44

33

22

11

DD

CC

BB

AA

Suspend powered by Vccaux (3.3V)

Mode 001 = SPI Flash

Variant Select =

111 (Fast Read

0x0B)

v1.0

Pa

ge

3

DL

P-H

S-F

PG

A3

PRELIMINARY

HEARTBEAT

DNS

DD

R2_D

QS

DD

R2_D

QS

n

DD

R2_C

Kn

DD

R2_C

K

DD

R2_C

KD

DR

2_C

Kn

DD

R2_D

QS

DD

R2_D

QS

n

FD

BK

US

ER

_IO

3_D

P1

US

ER

_IO

2_D

N1

US

ER

_IO

34_D

P17_R

C

US

ER

_IO

32_D

P16

US

ER

_IO

21

US

ER

_IO

33_D

N16

US

ER

_IO

20

US

ER

_IO

29

US

ER

_IO

9_D

N4

US

ER

_IO

28

DD

R2_C

KE

DD

R2_C

AS

nD

DR

2_R

AS

nD

DR

2_W

En

DD

R2_C

Sn D

DR

2_B

A1

DD

R2_B

A0

DD

R2_A

12

DD

R2_A

11

DD

R2_A

10

DD

R2_A

9D

DR

2_A

8D

DR

2_A

7D

DR

2_A

6D

DR

2_A

5D

DR

2_A

4D

DR

2_A

3D

DR

2_A

2D

DR

2_A

1D

DR

2_A

0

DD

R2_D

Q0

DD

R2_D

Q1

DD

R2_D

Q2

DD

R2_D

Q3

DD

R2_D

Q4

DD

R2_D

Q5

DD

R2_D

Q6

DD

R2_D

Q7

DD

R2_O

DT

DD

R2_A

10

DD

R2_A

11

DD

R2_A

12

DD

R2_D

Q0

DD

R2_D

Q1

DD

R2_D

Q2

DD

R2_D

Q3

DD

R2_D

Q4

DD

R2_D

Q5

DD

R2_D

Q6

DD

R2_D

Q7

DD

R2_O

DT

DD

R2_W

En

DD

R2_C

AS

n

DD

R2_A

8

DD

R2_C

Sn

DD

R2_A

1D

DR

2_A

2

DD

R2_A

6

DD

R2_C

KE

DD

R2_A

5

DD

R2_A

0D

DR

2_B

A1

DD

R2_A

4

DD

R2_A

7

DD

R2_A

3

DD

R2_R

AS

n

DD

R2_B

A0

DD

R2_A

9

DD

R2_R

FU

_B

A2

DD

R2_R

FU

_A

13

DD

R2_R

FU

_A

14

DD

R2_R

FU

_A

15

DD

R2_R

FU

_A

14

VR

EF

_0V

9

VR

EF

_0V

9

VR

EF

_0V

9V

RE

F_0V

9

DD

R2_R

FU

_A

13

VR

EF

_0V

9

FP

GA

_S

US

PE

ND

US

ER

_IO

35_D

N17_R

C

US

ER

_IO

36_D

N18_R

CU

SE

R_IO

37_D

P18_R

C

US

ER

_IO

27

US

ER

_IO

26

US

ER

_IO

61_D

P23

US

ER

_IO

62_D

N23

US

ER

_IO

39_D

P19

US

ER

_IO

31_D

P15

US

ER

_IO

30_D

N15

US

ER

_IO

38_D

N19

US

ER

_IO

5_D

N2_G

CU

SE

R_IO

4_D

P2_G

C

US

ER

_IO

0_D

P0

US

ER

_IO

1_D

N0

SP

I_M

OS

I

DD

R2_ID

ON

E

FP

GA

_A

WA

KE

DD

R2_E

RR

OR

CLK

IN

FP

GA

_R

ES

ET

DD

R2_D

VA

LID

LE

DR

_H

EA

RT

B

US

ER

_IO

24_D

N12

US

ER

_IO

25_D

P12

US

ER

_IO

23_D

N11

US

ER

_IO

22_D

P11

SP

I_IN

ITU

SE

R_IO

13_D

N6

US

ER

_IO

10_D

P5

US

ER

_IO

11_D

N5

US

ER

_IO

14_D

N7_G

C

US

ER

_IO

17_D

P8

US

ER

_IO

16_D

N8

SP

I_C

SO

_B

US

ER

_IO

7_D

N3_G

C

US

ER

_IO

18_D

N9

US

ER

_IO

19_D

P9

US

ER

_IO

40

US

ER

_IO

41

US

ER

_IO

42

US

ER

_IO

43_D

P20

US

ER

_IO

44_D

N20

US

ER

_IO

45_G

C

US

ER

_IO

46

US

ER

_IO

47

US

ER

_IO

48

US

ER

_IO

50

US

ER

_IO

52

US

ER

_IO

53_D

P21

US

ER

_IO

54_D

N21

US

ER

_IO

55_D

P22

US

ER

_IO

56_D

N22

US

ER

_IO

57_R

C

US

ER

_IO

58_R

C

US

ER

_IO

59

US

ER

_IO

60

DD

R2_E

RR

OR

DD

R2_D

VA

LID

DD

R2_ID

ON

E

FT

DI_

D4

FD

TI_

D7

FD

TI_

D2

FT

DI_

TX

E

FD

TI_

D3

FT

DI_

SI

FD

TI_

D6

FT

DI_

D0

FT

DI_

WR

FT

DI_

RD

FD

TI_

D1

SP

I_C

LK

SP

I_D

IN

DD

R2_R

FU

_B

A0

DD

R2_R

FU

_A

15

US

ER

_IO

12_D

P6

US

ER

_IO

8_D

P4

US

ER

_IO

6_D

P3_G

C

US

ER

_IO

15_D

P7_G

C

US

ER

_IO

49

US

ER

_IO

51

FD

TI_

CLK

OU

T

FT

DI_

RX

F

FT

DI_

D5

US

ER

_IO

63

US

ER

_IO

64

1V

8

1V

8

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

VC

CS

W

TP

1D

DR

2_E

RR

OR

1

C35

0.0

1uF

D3

GR

EE

N

U5B

XC

3S

1400A

_F

T256

R16

N13

N14

R15

P15

P16

N16

M14

L13

K13

M15

M16

L14

L16

J12

J13

K15

K14

K16

J16

J15

E15

H12

C15

C16

D14

E13

D15

D16

F13

E14

F14

G13

F15

E16

G14

H13

F16

G16

H16

H15

J14

N15

M13

SU

SP

EN

DIO

_L01P

_1/H

DC

IO_L01N

_1/L

DC

2IO

_L02P

_1/L

DC

1IO

_L02N

_1/L

DC

0IO

_L03P

_1/A

0IO

_L03N

_1/A

1

IP_1/V

RE

F_1

IO_L06P

_1/A

2IO

_L06N

_1/A

3IO

_L07P

_1/A

4IO

_L07N

_1/A

5IO

_L08P

_1/A

6IO

_L08N

_1/A

7

IO_L10P

_1/A

8IO

_L10N

_1/A

9IO

_L11P

_1/R

HC

LK

0IO

_L11N

_1/R

HC

LK

1IO

_L12P

_1/R

HC

LK

2IO

_L12N

_1/T

RD

Y1/R

HC

LK

3V

CC

O_1

VC

CO

_1

IP_1/V

RE

F_1

IO_L24N

_1/A

25

IO_L24P

_1/A

24

IO_L23N

_1/A

23

IO_L23P

_1/A

22

IO_L22N

_1/A

21

IO_L22P

_1/A

20

IO_L20N

_1/A

19

IO_L20P

_1/A

18

IO_L19N

_1/A

17

IO_L19P

_1/A

16

IO_L18N

_1/A

15

IO_L18P

_1/A

14

IO_L17N

_1/A

13

IO_L17P

_1/A

12

IO_L16N

_1/A

11

IO_L16P

_1/A

10

IO_L15N

_1/R

HC

LK

7IO

_L15P

_1/IR

DY

1/R

HC

LK

6

IP_1/V

RE

F_1

VC

CO

_1

IP_1/V

RE

F_1

C54

0.0

1uF

C59

0.1

uF

C52

0.1

uF

C28

0.0

1uF

C31

0.1

uF

C57

0.1

uF

C37

0.0

1uF

R26

330

JP

2S

US

PE

ND

12

R23

4.7

K

U5D

XC

3S

1400A

_F

T256

C2

C1

D4

D3

D1

E1

E4

F4

E3

E2

F3

F1

G1

G3

G2

H1

H3

J3

M2

H2

D2

M4

N3

P2

R1

P1

N2

N1

M1

L4

M3

L3

K4

J4

L2

L1

K1

K3

J1

J2

J5

G4

IO_L01P

_3

IO_L01N

_3

IO_L02P

_3

IO_L02N

_3

IO_L03P

_3

IO_L03N

_3

IO_L04P

_3

IO_L04N

_3

IO_L05P

_3

IO_L05N

_3

IO_L07P

_3

IO_L08P

_3

IO_L08N

_3/V

RE

F_3

IO_L07N

_3

IO_L11P

_3/L

HC

LK

0IO

_L11N

_3/L

HC

LK

1IO

_L12P

_3/L

HC

LK

2IO

_L12N

_3/IR

DY

2/L

HC

LK

3

VC

CO

_3

VC

CO

_3

VC

CO

_3

IO_L24N

_3

IO_L24P

_3

IO_L23N

_3

IO_L23P

_3

IO_L22N

_3

IO_L22P

_3/V

RE

F_3

IO_L20N

_3

IO_L20P

_3

IO_L19N

_3

IO_L19P

_3

IO_L18N

_3

IO_L18P

_3

IP_3

IO_L16N

_3

IO_L16P

_3/V

RE

F_3

IO_L15N

_3/L

HC

LK

7IO

_L15P

_3/T

RD

Y2/L

HC

LK

6IO

_L14N

_3/L

HC

LK

5

IO_L14P

_3/L

HC

LK

4IP

_3/V

RE

F_3

IP_3/V

RE

F_3

C27

0.1

uF

R22100

TP

2D

DR

2_D

VA

LID

1

U5C

XC

3S

1400A

_F

T256

N4

P4

N5

R2

T2

R3

T3

N6

P5

M7

T4

R5

T5

T6

P6

P7

N8

R7

T7

P8

T8

N9

P9

R12

M9

R8

R4

R14

T14

M11

P13

N12

R13

T13

P12

T12

N11

P11

R11

T11

P10

T10

T9

R9

IO_L01P

_2/M

1IO

_L01N

_2/M

0IP

_2/V

RE

F_2

IO_L02P

_2/M

2IO

_L02N

_2/C

SO

_B

IO_L03P

_2/R

DW

R_B

IO_L03N

_2/V

S2

IO_L04P

_2/V

S1

IO_L04N

_2/V

S0

IP_2/V

RE

F_2

IO_L05P

_2

IO_L05N

_2

IO_L06P

_2/D

7IO

_L06N

_2/D

6

IP_2/V

RE

F_2

IO_L08P

_2/D

5IO

_L08N

_2/D

4IO

_L09P

_2/G

CLK

12

IO_L09N

_2/G

CLK

13

IO_L10P

_2/G

CLK

14

IO_L10N

_2/G

CLK

15

IO_L11P

_2/G

CLK

0IO

_L11N

_2/G

CLK

1V

CC

O_2

IP_2/V

RE

F_2

VC

CO

_2

VC

CO

_2

IO_L20N

_2/C

CLK

IO_L20P

_2/D

0/D

IN/M

ISO

IP_2/V

RE

F_2

IO_L19N

_2

IO_L19P

_2

IO_L18N

_2/D

1IO

_L18P

_2/D

2IO

_L17N

_2/D

3IO

_L17P

_2/IN

IT_B

IO_L16N

_2

IO_L16P

_2

IO_L15N

_2/D

OU

TIO

_L15P

_2/A

WA

KE

IO_L14N

_2/M

OS

I/CS

I_B

IO_L14P

_2

IO_L12N

_2/G

CLK

3IO

_L12P

_2/G

CLK

2

C40

0.0

1uF

C55

0.1

uF

C41

0.0

1uF

C38

0.0

1uF

C61

2.2 uF

0603

C29

0.0

1uF

C30

0.1

uF

C56

0.0

1uF

C24

0.1

uF

R20100

TP

3D

DR

2_ID

ON

E1

C50

2.2 uF

0603

VIA

UNUSED_R3

1

C44

0.1

uF

C60

0.0

1uF

C53

0.1

uF

C43

0.1

uF

C58

0.1

uF

U9

MT

47H

32M

8B

P-3

7E

C8

C2

D7

D3

F3

G7

F7

G8

G2

G3

H2

H8

H3

H7

J2

F8

J8

J3

J7

K2

K8

K3

K7

F2

E8

B7

A3E3

D1

D9

B1

B9

A1E9H9L1

A9C1C3B8

D2

B2A7

C9D8C7

L2

K9J1

E7

A8

E1

G1

L8

L3

L7

E2

F9

B3

A2

DQ

0D

Q1

DQ

2D

Q3

WE

CA

SR

AS

CS

BA

0B

A1

A10

A0

A1

A2

A3

CK

#

A4

A5

A6

A7

A8

A9

A11

CK

E

CK

DQ

S

VSSVSS

DQ

4D

Q5

DQ

6D

Q7

VDDVDDVDDVDD

VDDQVDDQVDDQVSSQ

VSSQ

VSSQVSSQ

VDDQVSSQVDDQ

A12

VSSVSS

VSSDL

DQ

S#

VDDL

RF

U_B

A2

RF

U_A

13

RF

U_A

14

RF

U_A

15

VR

EF

OD

T

DM

RD

SQ

#/N

U

C21

0.0

1uF

C51

2.2 uF

0603

C7

0.1

uF

R29

4.7

K

C36

0.1

uF

C45

0.1

uF

U5A

XC

3S

1400A

_F

T256

D13

C13

B15

B14

C12

D12

A14

A13

B12

A12

D10

D11

C11

A11

B10

A10

C10

D9

C9

A9

C8

D8

B13

B9

E8

B5

D5

C4

E6

B3

A3

B4

A4

C5

A5

C6

D7

B6

A6

E7

E9

C7

A7

B8

A8

IO_L01P

_0

IO_L01N

_0

IO_L02P

_0/V

RE

F_0

IO_L02N

_0

IO_L03P

_0

IO_L03N

_0

IO_L04P

_0

IO_L04N

_0

IO_L05P

_0

IO_L05N

_0

IO_L06N

_0/V

RE

F_0

IO_L06P

_0

IO_L07P

_0

IO_L07N

_0

IO_L08P

_0

IO_L08N

_0

IO_L09P

_0/G

CLK

4IO

_L09N

_0/G

CLK

5

IO_L10P

_0/G

CLK

6IO

_L10N

_0/G

CLK

7IO

_L11P

_0/G

CLK

8IO

_L11N

_0/G

CLK

9V

CC

O_0

VC

CO

_0

VC

CO

_0

VC

CO

_0

IO_L20N

_0/P

UD

C_B

IO_L20P

_0/V

RE

F_0

IP_0

IO_L19N

_0

IO_L19P

_0

IO_L18N

_0

IO_L18P

_0

IO_L17N

_0

IO_L17P

_0

IO_L16N

_0

IO_L16P

_0

IO_L15N

_0

IO_L15P

_0

IO_L14N

_0/V

RE

F_0

IO_L14P

_0

IO_L13N

_0

IO_L13P

_0

IO_L12N

_0/G

CLK

11

IO_L12P

_0/G

CLK

10

C16

0.1

uF