1
D l t fN l Lithi B tt i f I Sit Development of Nano-scale Lithium Batteries for In Situ Development of Nano-scale Lithium Batteries for In Situ Development of Nano scale Lithium Batteries for In Situ Observations in Analytical Electron Microscopy Observations in Analytical Electron Microscopy Observations in Analytical Electron Microscopy Observations in Analytical Electron Microscopy 12 3 3 14 5 4 3 1 Dongli Zeng 1,2 Thomas McGilvray 3 Danijel Gostovic 3 Feng Wang 1,4 Nancy Dudney 5 Yimei Zhu 4 Ying S Meng 3 and Jason Graetz 1 Dongli Zeng , Thomas McGilvray , Danijel Gostovic , Feng Wang , Nancy Dudney , Yimei Zhu , Ying S. Meng and Jason Graetz 1 Sustainable Energy Technologies Department Brookhaven National Laboratory Upton NY 11973 2 Department of Chemistry SUNY at Stony Brook Stony Brook NY 11794 1 Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY 11973, 2 Department of Chemistry, SUNY at Stony Brook, Stony Brook, NY 11794 3 D t t f N E i i Ui it f C lif i S Di L J ll CA 92093 4 C t f F ti l N t il B kh N ti lLb t Ut NY 11973 3 Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, 4 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 5 Ph i l Ch it fM t il G O k Rid N ti lLb t O k Rid TN 37831 5 Physical Chemistry of Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Physical Chemistry of Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 I d i Introduction E perimental set p design Problems enco ntered Introduction Experimental setup design Problems encountered Introduction Experimental setup design Problems encountered When coupled with spectroscopy (energy dispersive and When coupled with spectroscopy (energy dispersive and Pt Welds Shorting issue (OCV monitoring tests during milling) energy loss) transmission electron microscopy (TEM) and Pt Welds Shorting issue (OCV monitoring tests during milling) energy loss), transmission electron microscopy (TEM) and B tt O 2 diffraction is one of the most powerful tools for obtaining Batt O2 illi d 15 d Shorting occurs during diffraction is one of the most powerful tools for obtaining Deposited Pt Anode milling down to 1.5um deep Shorting occurs during information regarding the morphology structure and Deposited Pt the milling depth of 1 to information regarding the morphology, structure and the milling depth of 1 to d compositions at the nano scale. TEM studies of lithium d 1.5 um (3 rd step), when compositions at the nano scale. TEM studies of lithium b il h ld l bl if i SiN Layer 2 nd 1.5 um (3 step), when il f LiC O l battery materials have revealed valuable information on Electrolyte 1 st milling partial of LiCoO 2 layer t t l h h t iti d it f SiN Layer 1 st milling t 3 rd 2 t tt structural changes, phase transitions, and interface milling step 3 illi starts to expose. modifications that occ r d ring the lithi m (de)intercalation Cathode step milling A thicker electrolyte modifications that occur during the lithium (de)intercalation step step A thicker electrolyte processes Nonetheless observations of these phenomena step LiCoO 2 layer 5 layer (>>1 5um) should processes. Nonetheless, observations of these phenomena SiN Layer Gold Gold (0 5um depth/step) 2 exposure 5 um layer (>>1.5um) should on real in situ cells during cycling remain very challenging Gold Gold (0.5um depth/step) exposure 5 um help avoid shorting on real in situ cells during cycling remain very challenging. help avoid shorting. Recently several in situ TEM studies have been + Recently, several in situ TEM studies have been Potentiostat + reported 14 To avoid contamination in the high vacuum TEM Potentiostat P f t f LiC O l i & di ti it fA t ll t (+) reported. To avoid contamination in the high vacuum TEM Porous feature of LiCoO 2 , layer smearing, & discontinuity of Au current collector (+) column from evaporation of the organic liquid electrolyte Schematic (left) and SEM image (right) of the experiment setup showing a multi layer nano 2 column from evaporation of the organic liquid electrolyte, Schematic (left) and SEM image (right) of the experiment setup showing a multilayer nanoPorous films (SD method) cause difficulties in the in situ battery operations in these studies are realized by battery stack mounted on a special designed Triton TEM grid Porous films (SD method) cause difficulties in FIB f b i i ( dl i i ) the in situ battery operations in these studies are realized by i ih ll lid ll 1 ibl i i battery stack mounted on a special designed Triton TEM grid. P(R) LIPON FIB fabrications (e.g. delamination etc.). using either allsolidstate cell 1 or vacuum compatible ionic Nanobattery consists of protective layer +/current collectors +/electrodes and electrolyte P(R)LIPON L i bt LIPON & LCO i li id l t lt (ILE) 2 4 B i th ll lid tt b tt Nanobattery consists of protective layer, +/current collectors, +/electrodes and electrolyte Co(G)LCO Layer smearing between LIPON & LCO is liquid electrolytes (ILE). 24 By using the allsolidstate battery layers and connections to cycler is realized through the Au contact pads on the Triton grid Co(G) LCO Al(B) Al i observed in some region strategy the electric potential distribution around the layers, and connections to cycler is realized through the Au contact pads on the Triton grid. Al(B)Alumina observed in some region. strategy, the electric potential distribution around the Discontinuity of current collector (over non positive electrode (LiCoO )/electrolyte interface has been Discontinuity of current collector (over nonpositive electrode (LiCoO 2 )/electrolyte interface has been ll lid i b conductive substrate) causes disconnection of successfully quantified by using electron holography (EH) All solid state micro battery Au current conductive substrate) causes disconnection of successfully quantified by using electron holography (EH). Allsolidstate micro battery Au current collector nanobattery to current supply The in situ observations of morphology and structural ( ) collector nano battery to current supply. The in situ observations of morphology and structural Beam damage to LIPON (TEM) changes of SnO 2 nanowires during electrochemical lithiation i( d) Beam damage to LIPON (TEM) changes of SnO 2 nanowires during electrochemical lithiation l d d ff h Si(Red) 1 2 3 are realized in two different setups using ILEs. However, the P(Green) Au (+) 1 2 3 Significant electron beam (200kV) are realized in two different setups using ILEs. However, the l l l k f th i i li id li it th P(Green) Au (+) Significant electron beam (200kV) large plasmon loss peak from the ionic liquids limit the Co(Blue) damage to LIPON layer is observed tit ti l i f Li t ti Co(Blue) Deposition protective layer damage to LIPON layer is observed. bl l quantitative analysis of Li concentration. Deposition protective layer Possible solutions: LIPON I thi k f th d l t f Possible solutions: O i ii i di i LIPON In this work, we focus on the development of a 1 Optimizing operation conditions procedure to prepare nano batteries from all solid state 2 ( lt t ) procedure to prepare nanobatteries from allsolidstate 2 3 (voltage etc.) micro batteries To ensure its transparency to the electron Cu () 3 Consider other solid electrolytes Si microbatteries. To ensure its transparency to the electron Cu ( ) 4 Consider other solid electrolytes aSi beam and minimize artifacts the nanobattery must be very 4 5 that are more stable (oxides) Cu beam and minimize artifacts, the nanobattery must be very 5 b f that are more stable (oxides) Cu thin (<100 nm) The barriers need to be overcome include 6 battery features thin (<100 nm). The barriers need to be overcome include 6 Prepared by (1) ensure the electrochemical functionality of nanobattery, Rough area away from the cross section 7 Prepared by (1) ensure the electrochemical functionality of nano battery, (2) b l i l d (3) 7 sputtering deposition l h l (2) robust electric contacts to current supply, and (3) sputtering deposition 5x60 um area (Si) Electrochemical tests tl t ll d l t l ( A t A) (SD) method, 5x60 um area (Si) Electrochemical tests accurately controlled low current supply (pA to nA). (SD) method, 2 i di W Electrochemical tests 2 mm in diameter, W An isolated Si area of sub 1. K. Yamamoto et al., Angew . Chem. Int. Ed. 2010, 49, Au and Cu as current An isolated Si area of sub1. K. Yamamoto et al., Angew . Chem. Int. Ed. 2010, 49, 4419 Cross section layer assignment EDS element mapping Au and Cu as current micron size was successfully 4419. Cross section layer assignment EDS element mapping A d Si thi l tt th collectors (thickness micron size was successfully l ( ) 1Cu (current collector) 2Si (anode) Anode aSi : a thin layer next to the collectors (thickness created & tested 2. C. M. Wang et al., J. Mater . Res., 2010, 25 (8), 1541. 1Cu (current collector), 2Si (anode), current collector thickness <0 5um ~0.1um), 3.3V created & tested. 2. C. M. Wang et al., J. Mater . Res., 2010, 25 (8), 1541. 3LIPON (electrolyte), 4LiCoO2 (cathode), current collector, thickness <0.5um, 0.1um), N d ti 2 9V - Stable current supply @ 3. J. Y . Huang et al., Science, 2010, 330, 1515. 3 LIPON (electrolyte), 4 LiCoO2 (cathode), 5/6 A /Ni ( t ll t / dh i Electrolyte LIPON: ~1 5um Nonconductive 2.9V 2 6V - Stable current supply @ h d 3. J. Y . Huang et al., Science, 2010, 330, 1515. 5/6Au/Ni (current collector/adhesive Electrolyte LIPON : 1.5um alumina substrate 2.6V Current + 1nA was achieved. 4. C. M. Wang et al., Nano Lett., 2011, DOI layer) (interface region with LCO layer alumina substrate. Current l + 1nA was achieved. Ch bh i ( 4. C. M. Wang et al., Nano Lett., 2011, DOI 10 1021/l200272 layer), (interface region with LCO layer d k ) supply Charge behavior (e.g., 10.1021/nl200272n. 7Alumina (substrate) appears darker), @ 3 3V) bl 7 Alumina (substrate). Cathode LiCoO : ~2um thickness Charge @1nA Di h process @ 3.3V) resemble Cathode LiCoO 2 : 2um thickness. Charge @1nA Discharge normal LiCoO vs a Si @ 1nA normal LiCoO 2 vs. aSi Pt 2 batteries Pt batteries . General procedure for nano battery fabrication Discharge has a large over General procedure for nanobattery fabrication Cu/a-Si Discharge has a large over General procedure for nano battery fabrication Cu/a Si LIPON potential (~1 6V) LIPON potential ( 1.6V). Gradual loss of the top protective 8 Gradual loss of the top protective Pl d i hi d 8 Pt layer during thindown process l l (determine the ultimate trench Conclusions & Future Plans thickness can be achieved) Conclusions & Future Plans thickness can be achieved). Experimental set up of nano batteries designed for in situ TEM observations has been developed Experimental set up of nano batteries designed for in situ TEM observations has been developed. All solid state micro batteries prepared by sputtering deposition method are characterized All solidstate microbatteries prepared by sputtering deposition method are characterized. P bl t dd i b tt fbi ti ( ti ll ) id tifi d Problems encountered during nanobattery fabrications are (partially) identified. St 1 St 2 St 3 St 4 d l f l d dh h /d h bh f l d h f Step 1 Step 2 Step 3 Step 4 Steady current control of 1nA is realized and the charge/discharge behavior of an isolated Si trench of Step 1 Step 2 Step 3 Step 4 Steady current control of 1nA is realized and the charge/discharge behavior of an isolated Si trench of b i i i bt i d submicro size is obtained. i b i ihi dd i /f ill b d( ) S 1C i hf h b i f i b (FIB) i d lb FIB/SEM i h hi k 5 New micro batteries with improved design/features will be prepared (PLD). Step 1: Create a crosssection trench from the battery using focus ion beam (FIB) in a dual beam FIB/SEM instrument, trench thickness ~ 5m; New micro batteries with improved design/features will be prepared (PLD). St 2U i i lt t lift th td ti t h tf th b tt Further electrochemical tests and a pseudo in situ type experiment will be conducted Step 2: Use micromanipulator to lift the created crosssection trench out from the battery; Further electrochemical tests and a pseudo in situ type experiment will be conducted. Step 3: Mount the lift out cross section trench to a window on a Triton TEM grid & clean both sides trench thickness reduce to ~1m; Step 3: Mount the liftout crosssection trench to a window on a Triton TEM grid & clean both sides, trench thickness reduce to ~1m; Authors are grateful to the assist from Center of Functional Nanomaterials (CFN) in Brookhaven National Step 4: Create two end cuts to realize the nano battery configuration & further thin down the nano battery thickness to ~ 100 nm (or thinner) Authors are grateful to the assist from Center of Functional Nanomaterials (CFN) in Brookhaven National Step 4: Create two end cuts to realize the nanobattery configuration & further thin down the nanobattery thickness to 100 nm (or thinner). Laboratory (BNL): Fernando Carmino Kim Kisslinger Ming Lu and Lihua Zhang Laboratory (BNL): Fernando Carmino, Kim Kisslinger , Ming Lu, and Lihua Zhang. Thi t ili b d k td t f NECCES E F ti This material is based upon work supported as part of NECCES, an Energy Frontier Research Center funded by the U S Department of Energy Office of Science Office Research Center funded by the U.S. Department of Energy, Office of Science, Office fB i E Si d A dN b DE SC0001294 of Basic Energy Sciences under Award Number DE-SC0001294.

Dl tfNDevelopment of Nanop -scale Lithium Batteries ... · micro batteries To ensure its transparency to the electron Cu(‐) (g) ‐ . Si Consider other solid electrolytes 4 a‐

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dl tfNDevelopment of Nanop -scale Lithium Batteries ... · micro batteries To ensure its transparency to the electron Cu(‐) (g) ‐ . Si Consider other solid electrolytes 4 a‐

D l t f N l Lithi B tt i f I SitDevelopment of Nano-scale Lithium Batteries for In SituDevelopment of Nano-scale Lithium Batteries for In SituDevelopment of Nano scale Lithium Batteries for In Situ pObservations in Analytical Electron MicroscopyObservations in Analytical Electron MicroscopyObservations in Analytical Electron MicroscopyObservations in Analytical Electron Microscopy

1 2 3 3 1 4 5 4 3 1Dongli Zeng1,2 Thomas McGilvray3 Danijel Gostovic3 Feng Wang1,4 Nancy Dudney5 Yimei Zhu4 Ying S Meng3 and Jason Graetz1Dongli Zeng , Thomas McGilvray , Danijel Gostovic , Feng Wang , Nancy Dudney , Yimei Zhu , Ying S. Meng and Jason Graetz1Sustainable Energy Technologies Department Brookhaven National Laboratory Upton NY 11973 2Department of Chemistry SUNY at Stony Brook Stony Brook NY 117941Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY 11973, 2Department of Chemistry, SUNY at Stony Brook, Stony Brook, NY 11794

3D t t f N E i i U i it f C lif i S Di L J ll CA 92093 4C t f F ti l N t i l B kh N ti l L b t U t NY 119733Department of Nano Engineering, University of California San Diego, La Jolla, CA 92093, 4Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973p g g, y g , , , , y, p ,5Ph i l Ch i t f M t i l G O k Rid N ti l L b t O k Rid TN 378315Physical Chemistry of Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831Physical Chemistry of Materials Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831

I d iIntroduction E perimental set p design Problems enco nteredIntroduction Experimental setup design Problems encounteredIntroduction Experimental setup design Problems encounteredWhen coupled with spectroscopy (energy dispersive and

p p gWhen coupled with spectroscopy (energy dispersive and

PtWelds •Shorting issue (OCV monitoring tests during milling)energy loss) transmission electron microscopy (TEM) and

Pt Welds Shorting issue (OCV monitoring tests during milling)energy loss), transmission electron microscopy (TEM) and

B tt O 2diffraction is one of the most powerful tools for obtaining Batt O‐2illi d 1 5 d • Shorting occurs duringdiffraction is one of the most powerful tools for obtaining

DepositedPt Anode milling down to 1.5um deep • Shorting occurs during information regarding the morphology structure and

Deposited Pt g pthe milling depth of 1 toinformation regarding the morphology, structure and the milling depth of 1 to 

dcompositions at the nano scale. TEM studies of lithium d 1.5 um (3rd step), whencompositions at the nano scale. TEM studies of lithiumb i l h l d l bl i f i

SiN Layer 2nd1.5 um (3 step),  when 

i l f LiC O lbattery materials have revealed valuable information ony

Electrolyte 1st milling partial of LiCoO2 layer battery materials have revealed valuable information ont t l h h t iti d i t f

SiN Layery 1st milling 

t 3rdp 2 yt t tstructural changes, phase transitions, and interface

ymilling  step 3

illistarts to expose.g , p ,

modifications that occ r d ring the lithi m (de)intercalation Cathodeg

step milling p

• A thicker electrolytemodifications that occur during the lithium (de)intercalation Cathode stepstep • A thicker electrolyte g

processes Nonetheless observations of these phenomenastep

LiCoO2 layer 5 layer (>>1 5um) shouldprocesses. Nonetheless, observations of these phenomena SiN LayerGold Gold (0 5um depth/step)2 y

exposure5 um layer (>>1.5um) should on real in situ cells during cycling remain very challenging

yGold Gold (0.5um depth/step) exposure5 umhelp avoid shortingon real in situ cells during cycling remain very challenging. help avoid shorting. 

Recently several in situ TEM studies have been +Recently, several in situ TEM studies have beenPotentiostat‐ +

reported 1‐4 To avoid contamination in the high vacuum TEM PotentiostatP f t f LiC O l i & di ti it f A t ll t (+)reported. To avoid contamination in the high vacuum TEM • Porous feature of LiCoO2, layer smearing, & discontinuity of Au current collector (+)

column from evaporation of the organic liquid electrolyte • Schematic (left) and SEM image (right) of the experiment setup showing a multi layer nano2, y g, y ( )

column from evaporation of the organic liquid electrolyte, • Schematic (left) and SEM image (right) of the experiment setup showing a multi‐layer nano‐ • Porous films (SD method) cause difficulties inthe in situ battery operations in these studies are realized by battery stack mounted on a special designed Triton TEM grid

Porous films (SD method) cause difficulties in FIB f b i i ( d l i i )the in situ battery operations in these studies are realized by

i i h ll lid ll1 ibl i ibattery stack mounted on a special designed Triton TEM grid.

P(R) LIPON FIB fabrications (e.g. delamination etc.).using either all‐solid‐state cell1 or vacuum compatible ionic • Nano‐battery consists of protective layer +/‐ current collectors +/‐electrodes and electrolyte P(R)‐LIPON ab ca o s (e g de a a o e c )

L i b t LIPON & LCO ig pli id l t l t (ILE) 2 4 B i th ll lid t t b tt

• Nano‐battery consists of protective layer, +/‐ current collectors, +/‐electrodes and electrolyte Co(G)‐LCO • Layer smearing between LIPON & LCO is 

liquid electrolytes (ILE).2‐4 By using the all‐solid‐state battery layers and connections to cycler is realized through the Au contact pads on the Triton gridCo(G) LCOAl(B) Al i

y gobserved in some regionq y ( ) y g y

strategy the electric potential distribution around thelayers, and connections to cycler is realized through the Au contact pads on the Triton grid. Al(B)‐ Alumina observed in some region.

strategy, the electric potential distribution around the • Discontinuity of current collector (over nonpositive electrode (LiCoO )/electrolyte interface has been

• Discontinuity of current collector (over non‐positive electrode (LiCoO2)/electrolyte interface has been

ll lid i b conductive substrate) causes disconnection ofsuccessfully quantified by using electron holography (EH) All solid state micro battery Au current conductive substrate) causes disconnection of successfully quantified by using electron holography (EH). All‐solid‐state micro battery Au current 

collector nano‐battery to current supplyThe in situ observations of morphology and structural

All solid state micro battery( )

collector nano battery to current supply.The in situ observations of morphology and structural •Beam damage to LIPON (TEM)changes of SnO2 nanowires during electrochemical lithiation i( d)

Beam damage to LIPON (TEM)changes of SnO2 nanowires during electrochemical lithiation

l d d ff hSi(Red) 1 2 3are realized in two different setups using ILEs. However, the( )

P(Green)Au (+)1 2 3 • Significant electron beam (200kV)are realized in two different setups using ILEs. However, the

l l l k f th i i li id li it thP(Green)Au (+) Significant electron beam (200kV) 

large plasmon loss peak from the ionic liquids limit the Co(Blue) damage to LIPON layer is observedg p p qtit ti l i f Li t ti

Co(Blue)Deposition protective layer

damage to LIPON layer is observed.bl lquantitative analysis of Li concentration. Deposition protective layer • Possible solutions:LIPON

q yI thi k f th d l t f

Possible solutions:O i i i i di i

LIPONIn this work, we focus on the development of a 1 ‐ Optimizing operation conditions , p

procedure to prepare nano batteries from all solid state 2p g p

( lt t )procedure to prepare nano‐batteries from all‐solid‐state 23

(voltage etc.)micro batteries To ensure its transparency to the electron Cu (‐) 3

( g )Consider other solid electrolytesSimicro‐batteries. To ensure its transparency to the electron Cu ( )

4 ‐ Consider other solid electrolytes a‐Sibeam and minimize artifacts the nano‐battery must be very

45 that are more stable (oxides)Cubeam and minimize artifacts, the nano‐battery must be very 5

b fthat are more stable (oxides)Cu

thin (<100 nm) The barriers need to be overcome include 6‐battery featuresthin (<100 nm). The barriers need to be overcome include 6 y•Prepared by(1) ensure the electrochemical functionality of nano‐battery, Rough area away from the cross section7•Prepared by (1) ensure the electrochemical functionality of nano battery,

(2) b l i l d (3)g y7

sputtering deposition l h l(2) robust electric contacts to current supply, and (3) sputtering deposition 5x60 um area (Si) Electrochemical tests( ) robust electric contacts to current supply, and (3)

t l t ll d l t l ( A t A) (SD) method, 5x60 um area (Si) Electrochemical testsaccurately controlled low current supply (pA to nA). (SD) method, 2 i di W

Electrochemical testsy pp y (p )• 2 mm in diameter, W • An isolated Si area of sub1. K. Yamamoto et al., Angew. Chem. Int. Ed. 2010, 49,

,• Au and Cu as current

• An isolated Si area of sub‐1. K. Yamamoto et al., Angew. Chem. Int. Ed. 2010, 49,4419 Cross section layer assignment EDS element mapping• Au and Cu as current  micron size was successfully4419. Cross section layer assignment EDS element mapping

A d Si thi l t t thcollectors (thicknessmicron size was successfully 

l ( ) 1‐Cu (current collector) 2‐Si (anode) Anode a‐Si: a thin layer next to the collectors (thickness created & tested2. C. M. Wang et al., J. Mater. Res., 2010, 25 (8), 1541. 1‐Cu (current collector), 2‐Si (anode),  y

current collector thickness <0 5um~0.1um), 3.3V created & tested.2. C. M. Wang et al., J. Mater. Res., 2010, 25 (8), 1541.3‐LIPON (electrolyte), 4‐LiCoO2 (cathode), current collector, thickness <0.5um,0.1um),

N d ti 2 9V- • Stable current supply @3. J. Y. Huang et al., Science, 2010, 330, 1515.

3 LIPON (electrolyte), 4 LiCoO2 (cathode), 5/6 A /Ni ( t ll t / dh i Electrolyte LIPON: ~1 5um•Non‐conductive  2.9V

2 6V- Stable current supply @ 

h d3. J. Y. Huang et al., Science, 2010, 330, 1515. 5/6‐Au/Ni (current collector/adhesive  Electrolyte LIPON:   1.5um 

alumina substrate2.6VCurrent+ 1nA was achieved.

4. C. M. Wang et al., Nano Lett., 2011, DOI(

layer) (interface region with LCO layeralumina substrate. Current l+ 1nA was achieved. 

Ch b h i (4. C. M. Wang et al., Nano Lett., 2011, DOI10 1021/ l200272

layer),  (interface region with LCO layer d k )

supply •Charge behavior (e.g., 10.1021/nl200272n. 7‐Alumina (substrate) appears darker),

pp y g ( g ,@ 3 3V) bl

/ 7 Alumina (substrate). pp )Cathode LiCoO : ~2um thickness Charge @1nA Di h

process @ 3.3V) resemble Cathode LiCoO2:  2um thickness. Charge @1nA Discharge p )normal LiCoO vs a Si@ ‐1nA normal LiCoO2 vs. a‐Si 

Pt2

batteriesPt batteries .

General procedure for nano battery fabrication • Discharge has a large overGeneral procedure for nano‐battery fabrication Cu/a-Si • Discharge has a large over General procedure for nano battery fabrication Cu/a SiLIPON potential (~1 6V)LIPON potential ( 1.6V).

Gradual loss of the top protective 8Gradual loss of the top protective P l d i hi d

8

Pt layer during thin‐down process 

l l(determine the ultimate trench  Conclusions & Future Plans(thickness can be achieved) Conclusions & Future Plansthickness can be achieved).  Conclusions & Future Plans

• Experimental set up of nano batteries designed for in situ TEM observations has been developed• Experimental set up of nano batteries designed for in situ TEM observations has been developed. • All solid state micro batteries prepared by sputtering deposition method are characterized• All solid‐state micro‐batteries prepared by sputtering deposition method are characterized.p p y p g pP bl t d d i b tt f b i ti ( ti ll ) id tifi d• Problems encountered during nano‐battery fabrications are (partially) identified.

St 1 St 2 St 3 St 4g y (p y)

d l f l d d h h /d h b h f l d h fStep 1 Step 2 Step 3 Step 4 • Steady current control of 1nA is realized and the charge/discharge behavior of an isolated Si trench ofStep 1 Step 2 Step 3 Step 4 Steady current control of 1nA is realized and the charge/discharge behavior of an isolated Si trench of b i i i bt i dsub‐micro size is obtained.

i b i i h i d d i /f ill b d ( )S 1 C i h f h b i f i b (FIB) i d l b FIB/SEM i h hi k 5 • New micro batteries with improved design/features will be prepared (PLD).•Step 1: Create a cross‐section trench from the ‐battery using focus ion beam (FIB) in a dual beam FIB/SEM instrument, trench thickness ~ 5m; New micro batteries with improved design/features will be prepared (PLD).p y g ( ) / , ;St 2 U i i l t t lift th t d ti t h t f th b tt • Further electrochemical tests and a pseudo in situ type experiment will be conducted•Step 2: Use micro‐manipulator to lift the created cross‐section trench out from the ‐battery; Further electrochemical tests and a pseudo in situ type experiment will be conducted.p p y;

•Step 3: Mount the lift out cross section trench to a window on a Triton TEM grid & clean both sides trench thickness reduce to ~ 1m;•Step 3: Mount the lift‐out cross‐section trench to a window on a Triton TEM grid & clean both sides, trench thickness reduce to ~ 1m; Authors are grateful to the assist from Center of Functional Nanomaterials (CFN) in Brookhaven National• Step 4: Create two end cuts to realize the nano battery configuration & further thin down the nano battery thickness to ~ 100 nm (or thinner)

Authors are grateful to the assist from Center of Functional Nanomaterials (CFN) in Brookhaven National • Step 4: Create two end cuts to realize the nano‐battery configuration & further thin down the nano‐battery thickness to   100 nm (or thinner).Laboratory (BNL): Fernando Carmino Kim Kisslinger Ming Lu and Lihua ZhangLaboratory (BNL): Fernando Carmino, Kim Kisslinger, Ming Lu, and Lihua Zhang.y ( ) , g , g , g

Thi t i l i b d k t d t f NECCES E F tiThis material is based upon work supported as part of NECCES, an Energy Frontier gyResearch Center funded by the U S Department of Energy Office of Science OfficeResearch Center funded by the U.S. Department of Energy, Office of Science, Office

f B i E S i d A d N b DE SC0001294of Basic Energy Sciences under Award Number DE-SC0001294.gy