15
Distributed multi-tenant cloud/fog and heterogeneous SDN/NFV orchestration for 5G services Ricard Vilalta, A. Mayoral, Raul Muñoz, Ramon Casellas, Ricardo Martínez

Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Embed Size (px)

Citation preview

Page 1: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Distributed multi-tenant cloud/fog and heterogeneous SDN/NFV orchestration for 5G servicesRicard Vilalta, A. Mayoral, Raul Muñoz, Ramon Casellas, Ricardo Martínez

Page 2: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

The NBI of the domain controllers are typically technology and vendor dependent.

The multi-domain SDN orchestrator shall implement different plugins for each of the controller’s NBI.

The ONF Transport API defines a generic functional model of a control plane that can be used regardless of a particular vendor, and defines the associated protocol.

The need for generic control functions and a Transport API

WAN(e.g. WDM/Flexi-grid)

MAN (Packet Transport

Network)

MAN (Packet Transport

Network)

OF 1.3 OF 1.3 OF 1.3 OF 1.0 OF 1.0 OF 1.0

MAN Controller (SDN)

WAN Controller (GMPLS/PCE)

MAN Controller (SDN)

Transport API (T-API)

Multi-domain SDN controller

2

Page 3: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

ONF Transport API Overview Objective – realize the software-centric approach

to standardization

Purpose-specific API to facilitate SDNcontrol of Transport networks

Focus is on functional aspects of transport network control/mgmt

Target is YANG & JSON API libraries

Demonstrable code

Activity scoped based on use case contributions and discussions. Examples include

Bandwidth on Demand

E2E Connectivity Service

Multi-layer Resource Optimization and Restoration

Multi-Domain Topology and Monitoring

Network Slicing and Virtualization

Topology Service

Retrieve Topology, Node, Link & Edge-Point details

Connectivity Service

Retrieve & Request P2P, P2MP, MP2MP connectivity

Across (L0/L1/L2) layers

Path Computation Service

Request for Computation & Optimization of paths

Virtual network Service

Create, Update, Delete Virtual Network topologies

Notification Framework

Subscription and filtering

Autonomous mechanism

3

Page 4: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Architecture includes:

PCE

Topology Manager

Provisioning Manager

VNTM

Flow Server

OAM Handler

Abstraction Manager

Cognition Policer

Multi-domain SDN controller for handling networkcomplexity

Multi-domain SDN controller

4

Page 5: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

T-API enables integration of heterogeneous wireless and transport networks 5G services requires the integration of all network segments (radio/fixed access,

metro and core) with heterogeneous wireless and optical technologies.

T-API enables the integration of multiple Radio Access Technologies (RAT) with heterogeneous control planes and technologies (5G, mmWave, LTE/LTE-A, Wi-Fi, etc.)

Metro Access/AggregattionNetwork

Core Transport  Network

RAT2

MAN  Controller

E2E Network Controller

RAT1

RAT1 Controller

RAT2  controller

WAN Controller 

T-API T-API T-API T-API

5

Page 6: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Hierarchical SDN Control using T-API

We have proposed a hierarchical control approach with different levels of hierarchy (parent/child architecture) for scalability, modularity, and security purposes in multi-technology multi-domain heterogeneous wireless/optical networks

Each successively higher level has the potential for greater abstraction and broader scope, and each level may exist in a different trust domain.

T-API can be used as the NBI of the child SDN controller and as SouthBound Interface (SBI) of a parent SDN controller in order to provision E2E services

Metro Access/AggregattionNetwork

Core Transport  Network

RAT2

MAN Controller

Wireless  Network Controller

E2E Network Controller

RAT1

RAT1  Controller

RAT2 controller

WAN  Controller

T-API

Transport Network Controller

T-API T-API

T-API T-API T-API

6

Page 7: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Peer SDN Control using T-API

In a multi-carrier scenario there's no hierarchy, no cross-domain control, no cross-domain visibility. It is reasonable that a peer interconnection model is needed.

The Peer SDN model corresponds to a set of controllers, interconnected in an arbitrary mesh, which cooperate to provision end-to-end services.

The controllers hide the internal control technology and synchronize state using East/West interfaces. T-API can be used as the East/West interface.

Metro Access/AggregattionNetwork

Core Transport  Network

RAT2

MAN Controller

Wireless  Network Controller 

RAT1

RAT1  Controller

RAT2 controller

WAN  Controller

T-API T-API

Transport Network Controller 

T-API T-API

WAN  Controller

MAN Controller

Transport Network Controller 

RAT2 controller

RAT1  Controller

Wireless  Network Controller 

7

Page 8: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

A Global orchestrator acts as a unified cloud and network operating system enabling the dynamic management of the virtual cloud and network resources allocated to the specific tenants (slices)

T-API is a key enabler for the integration of cloud and network resources

T-API enables global orchestration of cloud and networkresources

Metro Access/AggregattionNetwork

Core Transport  Network

RAT2

MAN Controller

Wireless  Network Controller

E2E Network Controller

RAT1

RAT1  Controller

RAT2 controller

WAN  Controller

Transport Network Controller

T-API T-API

Core DC cloud orchestrator

Global cloud and network orchestrator

T-API Virtual computing and storage resoruces

Virtual network resources

T-API T-API T-API T-API

8

Page 9: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

5G Network Slicing

9

Page 10: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

5G Network Slicing Proof-of-Concept

Multi-tenant 5G Network Slicing Architecture with Dynamic Deployment of Virtualized Tenant Management and Orchestration (MANO) Instances, A. Mayoral et al., submitted at ECOC 2016.

10

Page 11: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

The need to unify fog and cloud computing for Telcos: The TelcoFog node

We propose a highly distributed and ultra-dense fog infrastructure which can be allocated to the extreme edge of the network for a Telecom Operator network to provide services based on NFV, MEC or IoT services.

The proposed flexible and programmable Fog computing architecture will be based on:

containers,

software-defined virtual switches and networking,

Multi-layer security enabling multi-tenancy, network and service virtualization

Smart resource migration and orchestration for mobility support

open APIs, and

big data and analytics.

Interoperability between different services, orchestrators, nodes, sensors and actuators will be provided with the extensive and massive usage of YANG information models.

11

Page 12: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

TelcoFog Scenarios

12

UE

UE

TelcoFog Tenant1 TelcoFog Tenant2

TelcoFog Controller

Big Data

Smart City

Telco Cloud

Public Cloud

Access SDN controller

SD-WAN controllerONT

PONOLT

MACs

Scenario 1: Network Operator

Scenario 2: Smart City

TelcoFog node

TelcoFog Edge Network

NFV MEC

Page 13: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

TelcoFog Proof-of-Concept

End-to-End SDN Orchestration of IoT Services Using an SDN/NFV-enabled Edge Node

13

Page 14: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Conclusion

ONF Transport API as an enabler for multi-vendor inter-operability

Multi-domain SDN controller handles network heterogeneity and complexity

Hierarchical/Peer SDN control are both sides of the same coin

IT and SDN joint orchestration in future NFV deployments will be needed

5G Network Slicing – Adding new functionalities to Network Virtualization

TelcoFog: unifying fog and cloud computing for Telcos

14

Page 15: Distributed multi-tenant cloud/fog and heterogeneous …5g-crosshaul.eu/wp-content/uploads/2016/09/NetVirt16_RVilalta_v1.pdf · Distributed multi-tenant cloud/fog and heterogeneous

Thank you! Questions?

[email protected]://networks.cttc.es/ons

The research leading to these results has received funding from EU FP7 project COMBO (317762), EU H2020 5G-Crosshaul (H2020-671598) and Spanish MINECO project

DESTELLO (TEC2015-69256-R).

15