22
195 Distance Learning. Higher Mathematics. Period: 17 March 2020 – 2 April 2020 An indefinite integral. Methods of integrating. 6.1 Antiderivative, properties of an indefinite integral. The function ( ) x F is called an antiderivative of the function ( ) x f in the interval ( ) b a , , if ( ) x F is differentiable ( ) b a x , and ( ) ( ) x f x F = . 1 о . If ( ) x F is an antiderivative in the interval ( ) b a , then ( ) C x F + , where C is any constant , is also an antiderivative. 2 о . If ( ) x F 1 и ( ) x F 2 are any two antiderivatives, then ( ) ( ) C x F x F = 2 1 , whence ( ) ( ) C x F x F + = 2 1 . The set of all antiderivatives ( ) x F of a function ( ) x f is called an indefinite integral and is designated by the symbol ( ) ( ) + = C x F dx x f . Properties of an indefinite integral 1 0 . ( ) ( ) ( ) . . x f dx x f = 2 0 . ( ) ( ) ( ) . dx x f dx x f d = 3 0 . ( ) ( ) + = . C x F x dF 4 0 . ( ) ( ) . = dx x f C dx x Cf 5 0 . ( ) ± = ± vdx udx dx v u . The table of basic indefinite integrals 1. . C x dx + = 13. C a x x a x dx + ± + = ± 2 2 2 2 ln . 2. ( ) . 1 1 1 + + = + n C n x dx x n n 14. . cos ln tg C x xdx + = 3. ( ) + = . 0 ln x C x x dx 15. . sin ln ctg C x xdx + = 4. ( ) . 1 0 ln < + = a C a a dx a x x 16. . arctg 1 2 2 C a x a a x dx + = +

Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

195

Distance Learning. Higher Mathematics. Period: 17 March 2020 – 2 April 2020

An indefinite integral. Methods of integrating.

6.1 Antiderivative, properties of an indefinite integral.

The function ( )xF is called an antiderivative of the function ( )xf in the interval ( )ba , , if ( )xF is differentiable ( )bax ,∈∀ and ( ) ( )xfxF =′ .

1о. If ( )xF is an antiderivative in the interval ( )ba , then ( ) CxF + , where C is any constant , is also an antiderivative.

2о. If ( )xF1 и ( )xF2 are any two antiderivatives, then ( ) ( ) CxFxF =− 21 , whence ( ) ( ) CxFxF += 21 .

The set of all antiderivatives ( )xF of a function ( )xf is called an indefinite integral and is designated by the symbol

( ) ( )∫ += CxFdxxf . Properties of an indefinite integral 10. ( )( ) ( ).. xfdxxf =

′∫

20. ( )( ) ( ) .dxxfdxxfd =∫ 30. ( ) ( )∫ += .CxFxdF 40. ( ) ( ) .∫∫ = dxxfCdxxCf 50. ( ) ∫ ∫∫ ±=± vdxudxdxvu . The table of basic indefinite integrals

1. .Cxdx +=∫ 13. Caxxax

dx+±+=

±∫ 22

22ln .

2. ( ).11

1−≠+

+=

+

∫ nCnxdxx

nn 14. .coslntg Cxxdx +−=∫

3. ( )∫ ≠+= .0ln xCxx

dx 15. .sinlnctg Cxxdx +=∫

4. ( ).10ln

≠<+=∫ aCa

adxax

x 16. .arctg122

Cax

aaxdx

+=+

Page 2: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

196

5. .Cedxe xx +=∫ 17. .arcsin22∫ +=

−C

ax

xa

dx

6. .sincos Cxxdx +=∫ 18. .2

tglnsin

Cxx

dx+=∫

7. .cossin Cxxdx +−=∫

8. ∫ += .tgcos 2

Cxx

dx 192 4

.cos

ln .dxx

x C= +

+∫ tg π

9. .ctgsin 2

Cxx

dx+−=∫ 20. ∫ += .Cchxdxshx

10.

+−+

=−

∫ CxCx

x

dxarccos

arcsin

1 2 21. .shch Cxxdx +=∫

11.

+−+

=+

∫ CxCx

xdx

arcctgarctg

1 2. 22. ∫ += .th

ch 2Cx

xdx

12. .ln21

22C

xaxa

axadx

+−+

=−

∫ 23. ∫ +−= .cthsh 2

Cxx

dx

While integrating the functions we rarely have an opportunity directly use the basic formulas. As a rule, the integrand has to be transformed in order to convert the integral to the tabular. Some examples of such transformations are presented below:

Example 1. ( )

=++=++

=+

∫∫∫∫∫ −− dxxdxxdxxdxx

xxdxxx

x 21212323

222211

.3242 232121 Cxxx +++−= −

Example 2. ( )

( )( )

( )∫ ∫ ∫∫ ++−=+

+=+

++=

+

+.1

11

1

1

212222

22

22

2Carctgx

xxdx

xdxdx

xx

xx

xx

dxx

Example 3.

( )( ) ( )( ) ( )∫ ∫ =≡−−+=+−

=+−

21111

221

1122

2222xxdx

xxxxdx

( )( )( ) .

21

11ln

21

121

121

11

1121

2222

22Carctgx

xx

xdx

xdxdx

xx

xx+−

+−

=+

−−

=+−

−−+= ∫ ∫∫

Example 4.

Page 3: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

197

.sincoscossin

cossin

cossin 2222

22

22Cctgxtgx

xdx

xdxdx

xxxx

xxdx

+−=+=+

= ∫∫∫∫

Example 5. Cctgx

xdx

xdx

+−==− ∫∫ 2

1

sin21

2cos1 2.

Example 6. ∫ −++=

1x1xdxJ .

Solution. Getting rid of irrationality in a denominator, we get the following:

( ) ( ) ( ) ( ) ( ) =−−−++=−−+= ∫∫ ∫ 1xd1x211xd1x

21dx1x1x

21J 2121

( ) ( ) C1x1x31 33 +−−+= .

Example 7.

( ) ( )=+===+= ∫∫ 23 2223 23 121

211 xdxxxdxdxdxxxI

( ) ( ) ( ) ( ) ( )=++−+++=++−+ ∫∫∫ 1121111

211111

21 23 223 2223 22 xdxxdxxxdxx

( ) ( ) ( ) ( ) ( ) ( ) Cxxxdxxdx ++−+=++−++= ∫∫

34237223122342 1831

14311

2111

21

. Note. While integrating the same function the results can be

different by their shape. Actually they are either identical, or differ on some constant value.

The theorem (about invariance of the formulas of integrating). The shape of the formulas of integrating remains invariable in spite of whether variable of integrating is an independent variable or some differentiable function, i.e. if ( ) ( ) CxFdxxf +=∫ then

( )( ) ( ) ( )( ) CxFxdxf +ϕ=ϕϕ∫ . This theorem allows converting of many integrals to the tabular. Examples.

1. ( ) ( ) Cexdexdxdxdxxe xxx +==== ∫∫222

21

21

21 22 .

Page 4: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

198

2. ( ) ( ) .6

sinsinsinsincoscossin6

55 Cxxxdxdxdxxdxx +==== ∫∫

3. ( ) ( ) ( ) ( ) ( ).

311

32

22

2Carctgxarctgxdarctgxarctgxd

xdxdx

xarctgx

+===+

=+

∫∫

4. ( )( )

.2

arcsin21

221

4

2

222

2

4Cx

x

xd

x

xdx+=

−=

−∫∫

5. ( ) ( ).lnln

lnln

lnln

Cxxxd

xdx

dxxx

dx+==== ∫∫

6. ( ) ( )( )

.2

arcsin24 222

Ce

e

ededdxe

e

dxe x

x

xxx

x

x+=

−===

−∫∫

7. ( ) ( ) =+=−=+

∫ xbxadxdxxbaxbxa

xdxx 2222222222

cossincossin2cossin

cossin

( )( )

( ) Cba

xbxa

xbxa

xbxadba

+−

+=

+

+

−= ∫ 22

2222

2222

2222

22cossin

cossin

cossin2

1 , ba ≠ .

8. ( )

( )=

−=

−=+

−=

=

=+ ∫∫

x

xd

xx

xx

xdxdx

xxdx

22

2

sin23

sin

sin232cos2

sin212cos

sincos

2cos2cos

( ).

3sin2arcsin

21

sin23

sin22

12

Cx

x

xd+=

−= ∫

9. =

=

=−

∫∫∫ dxdxdxx

x

xx

xx

xx

xx

125

25

14254

52

425

522

.

125

125

ln

25ln2

1

125

25

25ln

12

C

d

x

x

x

x

+

+

=

= ∫

Page 5: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

199

10. ( ) ( )∫ ∫ ∫ =+

=+

=+ xtgx

tgxdx

xtgx

xtgxdx

xxxdxx

4244

2

44 1cos1cos

cos

cossin

cossin

( ) ( )( ) ( )∫ +=+

=== Cxtgarctgxtg

xtgdxtgd

x

tgxdx 24

22

2 21

121

21

cos.

6.2 Methods of integrating

6.2.1 Integrating by Substitution (Change of variable) The method of substitution is one of the main methods for calculating indefinite integrals. Let the function ( )tx ϕ= be continuously differentiable and monotone, then

( ) ( )( ) ( )∫∫ ϕ′ϕ= dtttfdxxf . This method is present in several examples below: Examples. 1. .

1744

132∫

+−

−= dx

xxxI

Solution. Let’s allocate a full quadrate in the denominator.

.1621416

4141744

222 +

−=+

+−=+− xxxxx Then

=+

+

=

=

+=

=−

=

+

−= ∫∫ du

u

u

dudx

ux

ux

dx

x

xI4

1213

41.

21

21

421

1341

22

( ) =+++=+

++

= ∫∫ Cuarctguu

duu

udu216

14ln83

481

443 2

22

.4

12161

417ln

83 2 Cxarctgxx +

−+

+−=

2. .26

522∫

++

+= dx

xx

xI

Solution. Let's transform the subduplicate allocating the full quadrate:

( ) 7326 22 −+=++ xxx , then

Page 6: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

200

( )( ) ( )

∫ ∫∫∫ =−

−−

−=

+−=

=−==+

=−+

+=

77

7

7

532.3

3

73

5222

2

22 u

du

u

uddu

u

u

dudxux

uxdx

x

xI

Cxxx

xxCuu

u+++++−

++=+−+−

−263ln

26

27ln7

2 22

22

.

3. ( )∫

+=

232 1x

dxI .

Solution. The 1st way (change of variable):

( )t

x

tdtdxtgtx

I

3

232

2

cos

11

cos

=+

==

=

∫ =+== CttdtI sincos

22

2

22

11sin

sin

11

x

xttg

ttgt

ttctg

+=

+=

=+

Cx

x+

+=

21.

The 2nd way (direct calculus)

∫ ∫ =

+

+−=

+

=−

2

23

223

23

111121

11x

dx

xx

dxI

( ) .1

11221

2

21

2C

x

xCx

++

=+

+−−=

4. =

−+

=−+

∫∫16

cossin6

cos

sincoscos16cossin6sin

2

22

22

xx

xxx

dxxxxx

dx

( )( )

.8tg2tg

ln101

82ln

101

253tg

16tg6tg

tg22

Cxx

Ctt

tdtxt

xx

xd

++−

=

=++−

=−+

====−+

= ∫∫

Page 7: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

201

5. ( )=

+−+−=

+−

==+ ∫∫∫ dt

tt

tdtt

xtdxx

x2

322

1sin

sin2cos 23

( ) ( ) .sin2ln3sin22

sin2ln322

22CxxxCttt

++−+−=++−+−=

The integrals of the form ,,...,, dxxxxR rp

sl

nm

where R is a

rational function of its arguments are calculated by the substitute of the variable ktx = (k is a common denominator of the fractions), allowing to avoid irrationality.

6. ( )

.1∫ +

=xx

dxI

Solution. In the given example 2=k , therefore it is necessary to make a substitution 2tx = . Then

( ) Ctt

dttt

tdtI +=+

=+

= ∫∫ arctg21

21

222

.2 Cxarctg +=

This integral can be also calculated directly. The 2nd way:

( )( ) ( )

( )Cxarctg

x

xdxdx

dxxx

dxI +=+

===+

= ∫∫ 21

221 2

.

7. ( )=

++−

=+

=+

=

=

=

=

+∫ ∫∫∫ dt

tt

tdtt

ttdtt

dttdx

txtx

xxdx

111

41

44

4

22

2

3

3

4

4

4

( ) ( ) ( ) =+

++

−=

++−= ∫ ∫ Ct

ttdtdtt 1ln

21

41

142

( ) ( ) Cxx

+

++

−= 1ln

21

4 424

.

While integrating the expressions like

± 22, axxR we use the

following substitutions:

Page 8: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

202

a) chtdtadxshtax

dtt

adxtgtaxdxxaxR

⋅=⋅=

=⋅=

+∫

;cos

;, 222

b) tdtadxtax

tdtadxtaxdxxaxR

sin;cos

cos;sin, 22

−==

==

−∫

c) .;

sin

cos;sin, 222

shtdtadxchtax

dtttadx

tax

dtaxxR⋅=⋅=

−==

−∫

8.

∫ ∫ ∫ ∫ ===−=− tdttdtttdtttdxxx 2sin41cossincossin1sin1 2222222

( )

.4

arcsin4sinarcsin

81

44sin

81

24cos1

41 C

xxCttdtt

+

−=+

−=

−= ∫

9. ===−

===

=−

= ∫ ∫∫∫ dttchsht

shtdttch

tch

shtdttchshtdtdx

chtx

x

dxxI 22

2

2

2

2

11

( ) CarcchxsharcchxCtshtdttch+

+=+

+=

+∫ 2

21

212

21

21

221 .

10. ∫−

=2

5

x1dxxJ .

Solution. The 1st way (change of variable)

==−

==

−= ∫ tcosx1

tdtcosdx,tsinx

x1dxxJ

22

5 ( )∫ ∫ =−−= tcosdtcostdtsin225 1

( ) =−+−=+−−= ∫ tcos51tcos

32tcostcosdtcostcos21 5342

( ) ( ) =

−+−−−−=

−==

=2222

2 1511

3211

1xxx

xtcostsinx

( ) Cx3x48x1151 422 +++−−= .

The 2nd way.

( ) =+−−=+−=

−=−==−

= ∫ tdtttdxx,ttxxdxtdt,xt

x

dxxJ 425424

22

2

5

2121221

1

Page 9: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

203

( ) ( ) =+

+−−=+−−=

+−−= ∫∫ Ct

51t

32tdttt21dt

ttt21t 5342

42

( ) .Cx1x3x48151 242 +−++−

11.

∫ ∫ ∫ =

−=−

−==−

==

+=

12

2

2sincos

sin1cos

sin222

t

td

tt

dtdtxdx

tx

xx

xdxI

.cos

cos22ln2

1122ln2

1 2

2C

xxC

tt+

−+=+−+

While calculating the integrals like ∫ ++ xcxbadx

sincos we use

the universal trigonometric substitution txtg =2

or arctgtx 2= . Then:

22 1

2

21

22

sintt

xtg

xtgx

+=

+= ,

2

2

2

2

1

1

21

21

costt

xtg

xtgx

+

−=

+

−= ,

21

2

tdtdx+

=

12. ∫ ++=

xxdxI

sincos89.

Solution. Taking into consideration the formulas above, we get:

( )C

xtgCt

t

td

ttdtI +

+=+

+==

++

+=

++= ∫ ∫ 4

12arctg

21

41arctg

21

4)1(

12

172

2222

The integrals like

а) ( )

∫++ cbxax

dxxPm2

, b) ( )∫

++α− cbxaxx

dxn 2

.

The integral б) by the substitution z

x 1=α− is converted to the integral

а). The integral а) is calculated by the method of undetermined coefficients according to the following formula::

( ) ( ) ∫∫++

+++=++

−cbxax

dxAcbxaxxQcbxax

dxxPm

m2

212

Page 10: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

204

where mP is an m-degree polynomial, 1−mQ is an m-1-degree polynomial with undetermined coefficients, A – indefinite const.

13. I= ( )∫

−+−

+

23

12

2

xx

dxx .

Solution. ( ) ( ) ∫∫

−+−+−+−+=

−+−

+

2323

23

12

22

2

xx

dxAxxbaxxx

dxx .

Let us differentiate the both parts of the obtained equality: ( ) ( ) +−+−+

−+−

+−+=

−+−

+ 23232

32

23

1 222

2xxa

xx

xbaxxx

x

232 −+−+

xx

A .

Let’s multiply both parts of the equality on 232 −+− xx . Aaaxaxbbxaxaxx +−+−+−+−=+ 23

23

231 222 or

Aababaxaxx +−+

+−+−=+ 2

233

2321 22 .

Let's equate factors at identical degrees x:

2112 −=⇒=− aa .

49

229

290

29

−=⋅−

==⇒=− abba .

827

82711

232112

23

=+−=−+=⇒=+− baAAab .

Then ( ) +−+−

+−=

−−

+−+−+−= ∫ 234

92

23

418

27239241 2

22 xxx

x

dxxxxI

C)x(arcsin +−+ 32827 .

The integrals like ,,...,,1111

dxbxabax

bxabaxxR pm∫

++

++ where R is a

rational function of its arguments, are calculated by the substitution

Page 11: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

205

ktbxabax

=++

11 (where k is the least common multiply of the fractions)

allowing to avoid the irrationality. 14.

( ) ( )∫

+−=

4 53 21 xx

dxI .

Solution. Let’s transform the denominator:

( ) ( ) ( ) ( ) ( )( )

( ) =

−+

−=−

+−−=+− 4

584

5

5534 53

121

1

21121xxx

xxxxxx

( ) 4212

121

−+

−+

−=xx

xxx .

Then

( )

( ) ( )( )

( ) ( )

=−=

−=

=−

+−−=

−+

=

−+

−−+

= ∫dtt

xdxdtt

xdx

dttdxx

xxt

xx

xxx

xx

dxI3

23

2

32

4

4234

1,4

1

3

41

21,

12

121

12

CxxC

xx

Cttt

dtt+

+−

=+

−+

=+=⋅

−= ∫ 4

44

3

21

34

123

434

34 .

6.2.1 Method of integrating in parts

Let the functions ( ) ( )xvvxuu == , have the continuous

derivatives, then the following formula of integrating in parts is valid: ∫∫ −= vduuvudv .

Note. The formula doesn’t produce the final result but only transforms the problem from calculating the integral ∫ udv to calculating the integral ∫ vdu , that at the successful choice of u and v can be much more simple.

It should be mentioned there are no common methods for the right choice of u and v, but we can try to give some recommendations for certain cases.

Page 12: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

206

As a rule, the method of integrating in parts is used in the case when the integrand includes the product of rational and transcendental functions and other methods are unsuitable.

For example, ( ) ,cos xxdxPn∫ α ( ) ,sin∫ αxdxxPn ( ) xdexP xn∫ α ,

∫ arctgxdxx k , ∫ xdxx k ln , etc. If the integrand has a look like ( ) ,cos xxPn α ( ) ,sin xxPn α

( ) xn exP α , the polynomial ( )xPn is selected as u.

If the integrand is a product of logarithmic or inverse trigonometric functions and a polynomial, the mentioned functions are selected as u.

Examples.

1.

.sincoscoscoscossin

,

sin Cxxxxdxxxxv

xdxdvdxduxu

xdxx ++−=+−=−==

==

∫∫

2.

=+

−⋅=

==

+==

= ∫∫ 22

2

2

2

121

2

2;

1;

xdxxxarctgx

xvxdxdv

xdxduarctgxu

xarctgxdx

( )=

++−=

+

−+−= ∫∫∫ 2

2

2

22

121

21arctg

21

1121arctg

2 xdxdxxxdx

xxxx

Cxxxx++− arctg

21

2arctg

2

2.

In some cases due to the method of integrating in parts we manage to obtain the equation concerning the initial parameter.

3. ∫ += dxxaI 22 .

Solution. The 1st way (integrating in parts).

Page 13: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

207

( )

CaxxaIxax

xa

dxadxxaxax

dxxa

aaxxax

xa

dxxxax

xvdxdvxa

xdxduxaudxxaI

I

2ln

,

,

22222

2222222

22

22222

22

222

2222

22

+

+++−+=

=+

++−+

=+

−+−+=

+−+

=

==+

=+==+=

∫∫

∫∫

Thus, we obtain the equation concerning the initial parameter, i.e. concerning I . Solving this equation, we obtain:

CaxxaxaxI

CaxxaxaxI

+

++++=

+

++++=

22222

22222

ln21

2ln2

The 2nd way (integrating by method of change of variable).

∫∫ ==

=+

==

=+= tdtcha

achtxa

achtdtdxashtx

dxxaI 22

22

22

( ) =

+==

++=

>+±

=

−==

++=+=

2

22

22

22222

222

lnln

,0,

2

242

212

axaxtchtshtsh

aaxxt

ea

xaxe

eeaxsht

ctshatadttchatt

tt

Cxaxaxax+

++++= 22

222 ln

22.

4.

Page 14: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

208

CxtgIx

tgxx

dxx

dxx

tgxdx

xx

xtgx

dxxx

xtgx

dxx

xtgxtgxxtgxv

xdxdv

dxx

xdux

u

xdxI

242

lncos

coscoscoscos

cos1coscos

sincos

cos

sincos

1

,cos

cos

sin,cos

1

cos

33

2

3

2

2

2

2

3

+

π

++−=

=+−=−

−=−=

=−===

==

==

∫ ∫∫∫

∫∫

Similarly, like in the example 3, we obtain the equation concerning I , which solution gives us the following:

Cxtgx

tgxI +

π

++=42

lncos2

1 .

5. ∫= nxdxeI ax cos

.cossin

coscossin

cos,sin

,

sinsinsin,cos

,cos

2

2CI

na

nnxanx

ne

nxdxena

nnxe

na

nnxe

nnxvnxdxdv

dxaedueu

nxdxena

nnxe

nnxvnxdxdv

dxaedueunxdxe

axI

axaxax

axax

axaxaxax

ax

+−

+=

=

+−−=

=−==

===

=−===

===

∫∫

( ) Cnxanxnne

naI

ax++=

+ cossin1

22

2.

( ) =+

+++

= 22222

cossin nna

Cnxanxnna

eIax

( ) .cossin 122Cnxanxn

nae ax

+++

=

The method of integrating in parts is combined with the method of integrating by substitution of variables.

Page 15: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

209

For example, 6.

( ) =−

====== ∫∫∫ dttttdtt

tdtdxtxdxxI

22cos12sin2

2sin 2

22

=−= ∫ ttdtt 2cos2

2=+−=

==

==

∫ tdtttttvtdtdv

dtdutu2sin

21

22sin

222sin,2cos

, 2

−−=22sin

2

2 ttt ( ) .2cos412sin

22cos

41 CxxxxCt +−−=+

6.2.3 Integration of rational fractions

The antiderivative function exists for any continuous function (it can be strictly proved). However, the problem of finding the analytical expression of the antiderivative function in the elementary functions, i.e. in final combination of elementary function, has an exact solution only in some separate cases. Here is the table of “similar” integrals, but the integrals in the first line can be represented in the elementary functions, and at the second – those, can’t be integrated in the elementary functions.

∫ xdx

sin ∫ − dxe x ∫ x

xdxln ∫+12x

dx ∫ dxe xarcsin

∫ dxtgx

∫ xxdxsin ∫ − dxe x 2

∫ xdx

ln ∫

+13x

dx ∫ dxe arctgx ∫ dxxsin

Only rather small class of functions can be integrated in the elementary functions. For example, Chebishev has proved the theorem the integral from the differential polynomial ( )∫ + dxbxax

pnm , where n, m, p are the rational numbers, can be expressed through the elementary functions only in three following cases:

1. p is an integer (Consider Ntx = , where N is a common denominator of the fractions m and n)

Page 16: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

210

2. n

m 1+ is an integer. (Consider Nn tbxa =+ , where N is a common

denominator of the fraction p). 3.

nm 1+ +p is an integer. (Substitute Nn taxb =+ − , where N is

common denominator of the fraction p). The rational fractions belong to the functions, which integrals

can be expressed through the elementary functions. Rational fraction we call the following relation:

( ) ( )( ) mm

mmnn

nn

m

n

bxbxbxb

axaxaxaxQxP

xR++++

++++==

−−

−−

11

10

11

10

...

....

Any rational fraction can be represented as a sum of a polynomial and elementary fractions. Elementary fractions are the fractions of the four following types:

а)ax

A−

.

b)( )nax

A−

.

c)qpxx

BAx++

+2

, where .0)4( 2 <− qp

d) ( )nqpxx

BAx

++

+2

.

Finding the integrals of the rational fractions should be carried out according to the following scheme:

1. If n ≥ m (the improper fraction), we should secure an integer part, presenting the integrand as a sum of the integer part of a polynomial and proper rational fraction.

2. Disclose the denominator of a proper rational fraction ( )xQm on the factors, correspondent to real and couple of complex

roots, i.e. factors like ( ) ( )rk qpxxax ++− 2, where .0)4( 2 <− qp 3. Disclose a proper rational fraction on simplest according to

the following theorem: The theorem. If

( ) ( ) ( ) ( ) ( )νµβα ++++−−= slxxqpxxbxaxbxQm22

0 ...... ,

Page 17: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

211

then proper irreducible rational fraction ( ) ( )( )xQxP

xRm

n= can be

represented the following way:

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

++−

+−

+−

++−

+−

==−ββ

−α−αα

....1

111

1

bx

B

bxB

axA

ax

A

axA

xQxP

xRm

n

( ) ( ) ( ) ++++

+++

++

++

++

++

−µ−µ

−µµ......

211

12

11

2 qpxx

NxM

qpxx

NxM

qpxx

NMx

( ) ( ) ( )slxx

NxP

slxx

NxP

slxx

QPx

++

+++

++

++

++

++ −ν−ν

−νν 211

12

11

2... .

The coefficients ,...,,...,, 11 BBAA can be defined according to the following. The obtained equation is an identity, therefore reducing the fractions to the common denominator we obtain the identical polynomials in the numerators on the right and left. Equating the coefficients of the common degrees x we obtain a system of equations for defining the undetermined coefficients ,...,,...,, 11 BBAA .

Alongside with the mentioned we can use the next remark for defining the undetermined coefficients: as the polynomials, obtained in the left and right sides of the equation, after reducing to the common denominator are identically equal, their values are equal at any x. Giving x concrete values we’ll get the equations for defining the unknown coefficients. It’s convenient to choose real roots of the denominator. On practice we can use both methods for finding the undetermined coefficients simultaneously.

4. The integrals of the simplest rational fractions are calculated according to the following formulas:

а) CaxAax

Adx+−=

−∫ ln

b)( )

( ) ( )( )( )∫∫ +

−−=−−=

− −− C

axnAaxdaxAdx

axA

nn

n 11, 1≠n

c)( )

( )+++=++

+−+=

++

+∫ ∫ qpxxAdx

qpxx

BpApxA

dxqpxx

BAx 222

ln2

22

2

Page 18: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

212

( )∫ +++=

−+

+

+

−+ qpxxA

pq

px

pxdpAB 2

22ln

2

42

22

,

4

2

4

222

Cp

q

px

arctgp

q

pAB+

+

−where .0)4( 2 <− qp

While calculating the integrals of fractions of the 4th type we have to make the following conversions of the integrand:

e)

( )( )

( )( )

( )+

++

++=

++

+−+=

++

+∫ ∫∫ nnn

qpxx

qpxxdAdxqpxx

BpApxA

dxqpxx

BAx2

2

22 22

22

( )( )

∫ ⋅

−+

−++

=++

−+

+−

pABnqpxxA

qpxx

dxpABn

n 2122

12

2

=

=−

=

=+

=

−+

+

⋅ ∫2

222

4

2

42 apq

dtdx

tpx

pqpx

dxn

( )⋅

−+

−++

+−

pABnqpxxA

n

212

12

( )∫+

⋅n

at

dt22

, where 04

2>−

pq .

For calculating the integral ( )

Nnat

dtInn ∈

+= ∫ ,

22 we use either the

method allowing to represent the integral nI through the integral 1−nI ,

or substitution ztgat ⋅= .

Page 19: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

213

There are some examples of integrating the rational fractions.

1. ∫−

+= dx

xxxI

23

3 1 .

Solution. 1) The fraction 23

3 1

xxx−

+ is improper, as degree of the

numerator is equal to degree of the denominator. Let’s secure the integer part.

( )23

2

23

223

23

3 11)1(1

xxx

xx

xxx

xxx

++=

++−=

+ .

Then the initial integral will be converted to the following two integrals:

( )∫∫∫−

++=

++= dx

xxxdxdx

xxxI

1

1112

2

23

2.

2) Denominator of the fraction of the second integral has real multiple roots and can be represented as a product ( )12 −xx .

Let’s disclose the integrand on the simplest fractions.

( ) 111

22

2

−++=

+xC

xB

xA

xxx .

Let’s reduce to the common denominator and equate the numerators:

( ) ( ) 22 111 CxxxBxAx +−+−=+ . For finding the coefficients at first let’s assume 1=x and get C=2 , then considering 0=x we find the coefficient 1−=A . Equating the x coefficients, we find B from the equation: 0=− BA , 1−=B .

Therefore, ∫∫∫ +−

++=−

+−−= Cx

xx

xxdx

xdx

xdxxI

2

2

)1(ln1

12 .

2. ( )( );111 23∫ ∫

++−=

− xxxdx

xdx

Solution. Let’s disclose the fraction on the simplest:

( )( ) ;1111

122 ++

++

−=

++− xxcBx

xA

xxx

then ( ) ( )( )111 2 −++++= xcBxxxA Let 1=x then 31,31 == AA .

Page 20: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

214

Equating factors at identical degrees x (for example, the 1st and the 2nd) we obtain the set of equations for finding the rest coefficients:

32,01 −=−+=⋅ CBCAx 3102 −=⇒+=⋅ BBAx .

Then

( ) ( )=

++

+−+−−=

++

+−

−−

=−

∫∫ ∫ ∫ dxxx

xxdx

xxx

xxd

xdx

1

22112

21

311ln

31

1

231

11

31

1 223

( ) ( )

( )

( ) .3

123

11ln611ln

31

232/1

2/1211ln

611ln

31

2

22

2

Cxarctgxxx

x

xdxxx

++

−++−−=

=

++

+−++−−= ∫

3. ( )∫

+=

22 9x

dxI .

Solution. The integrand is the simplest rational fraction of the 4th type. Here are two ways for calculating the integral of this fraction. The 1st way

( )( )( ) ( )

=+

−+

=+

−+=

+∫∫∫∫ 22222

22

22 991

991

9

991

9 x

xdxxx

dxdxx

xx

x

dx

( )( )

( )

( )

=

+−=

=+

+==

+==

= ∫

92

19

921

9

2

22

2

22

x

x

xdvdxdu

x

xdxdvxu

( ) ( ) =

++

+−−

+∫∫

921

9291

991

222 xdx

xx

xdx

Cx

xxarctgx

xx

dx+

+⋅+=

+⋅+

+= ∫

9181

3541

9181

9181

222.

The 2nd way

Page 21: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

215

( ) ( ) ∫∫∫ ==+

==

===

+zdz

ztgz

dz

zdzdx

xtgztgzx

x

dx 2222

222

cos271

99cos3

cos

33

3

9

( )+++=+

⋅+=+

⋅+=

+∫

ztg

tgzzCzzzCzzdzz

2154541

227cossin2

541

2272sin

541

22cos1

271

C

xxxarctgC ++

⋅+=+918

1354

12

.

Note. While calculating the integrals of rational functions sometimes we can avoid disclosing them on the simplest using other methods, for example:

1. ( )∫

−= dt

t

tI22

2

1.

Solution. This integral can be calculated using the method of integrating in parts:

( )( )

( )( )

( ) ( )∫−

−=−

−==

−=

−==

12

1

1

121,;

1

121

1,

222

2

22

2

22 tt

tdvdtdu

t

td

t

tdtdvtu

we obtain

( ) ( )∫ −−+

+−

−=−

+−

−= Ctt

tt

tdt

ttI

11ln

41

12121

12 222.

2. ∫= xdxtgI 5 . Solution. The 1st way:

( ) ( )===

+===

+=

+=

==

= ∫∫∫ utt

tdttdtdtdt

tt

tdtdx

arctgtxttgx

xdxtg 22

242

2

5

2

5

121

21

1

1

=

++

+−

=+

+−=

+= ∫∫∫∫ u

duduu

uduu

uuduu

111

21

111

21

121 222

Page 22: Distance Learning. Higher Mathematics. Period: 17 March ...web.kpi.kharkov.ua/apm/wp-content/uploads/sites/82/... · Period: 17 March 2020 – 2 April 2020 . An indefinite integral

216

( ) ( )=

=

==

=+++−

=++−∫xtgu

tgxttu

Cuu

uduu2

22

,,

1ln21

21

211ln

211

21

( ) ( ) ( ) CxxtgCxtgxtg +−−=+++−= 222222 cosln211

411ln

211

41 .

The 2nd way:

∫ ∫ ∫∫ =−=

−= xdxtgxxdtgtgdx

xxtgxdxtg 33

235 1

cos

`1

−− dx

xxtg

xtg1

cos

14 2

4.Cxcoslnxtgxtg

+−−=24

24

3.

( )( ) ( ) ( )( )( )∫ ∫∫ −

−=

+−

−−+=≡−−+=

+− 151

41

1451514

41 222

2222

22 tdtdt

tt

tttt

ttdt

Ctarctgtt

tdt

+−+−

=+

− ∫ 2101

11ln

51

451

2.