124
Development and Evaluation of a Webbased Electronic Medical Record System Without Borders Jose Francisco Saavedra A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Meliha YetisgenYildiz, Chair Barry A Aaronson Craig S Scott Program Authorized to Offer Degree: Biomedical Informatics and Medical Education

Dissertation EMR WB Saavedra Final 12-10-12

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dissertation EMR WB Saavedra Final 12-10-12

 

Development  and  Evaluation  of  a  Web-­‐based  Electronic  Medical  Record  System  Without  Borders  

 

Jose  Francisco  Saavedra  

 

 

A  dissertation  

submitted  in  partial  fulfillment  of  the  requirements  for  the  degree  of  

 

Doctor  of  Philosophy  

 

 

University  of  Washington  

2012  

 

 

Reading  Committee:  

 

Meliha  Yetisgen-­‐Yildiz,  Chair  

Barry  A  Aaronson  

Craig  S  Scott  

 

 

 

Program  Authorized  to  Offer  Degree:  

Biomedical  Informatics  and  Medical  Education  

Page 2: Dissertation EMR WB Saavedra Final 12-10-12

All rights reserved

INFORMATION TO ALL USERSThe quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscriptand there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.789 East Eisenhower Parkway

P.O. Box 1346Ann Arbor, MI 48106 - 1346

UMI 3552856Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3552856

Page 3: Dissertation EMR WB Saavedra Final 12-10-12

 

Abstract  

 

Development  and  Evaluation  of  a  Web-­‐based  Electronic  Medical  Record  System  Without  Borders    

Jose  Francisco  Saavedra      

Chair  of  the  Supervisory  Committee:    Professor  Fredric  M.  Wolf  

Department  of  Biomedical  Informatics  and  Medical  Education  Adjunct  Professor  of  Health  Services  and  Epidemiology  

 

Despite  implementation  of  electronic  medical  record  (EMR)  systems  in  the  United  States  

and  other  countries,  EMRs  often  lack  global  access,  standardization,  an  efficient  interface,  

and  effective  knowledge-­‐based  tools  at  the  point  of  care.  Consequently,  the  information  

needs  of  patients,  practitioners,  administrators,  researchers,  and  policymakers  often  go  

unmet,  leaving  providers  especially  dissatisfied.  To  address  this  multifaceted  problem,  a  

novel  EMR  design  referred  to  as  “Electronic  Medical  Records  Without  Borders”  (EMR  WB)  

was  created  to  ensure  that  the  most  vital  pieces  of  patient  clinical  records  are  available  to  

make  health  care  decisions.  A  web-­‐based,  standardized,  family  medicine,  clinical  history  

model  was  developed  and  evaluated  as  an  EMR  clinical  core  that  integrates  state-­‐of-­‐the-­‐art  

terminology,  peer-­‐reviewed,  evidence-­‐based  protocols  with  real-­‐time  access  to  diagnostic  

decision  support  systems  and  the  biomedical  literature,  using  a  unified,  navigable,  intuitive  

computer  interface.  This  project  aimed  to  facilitate  structured  clinical  documentation,  

usability,  global  access,  and  decision-­‐making  processes  to  better  address  not  only  local,  

clinical,  and  psychosocial  primary  care  problems  in  targeted  underserved  communities  in  

the  state  of  Guanajuato,  Mexico,  but  also  to  mitigate  transnational  migration  health  issues  

based  on  information  exchange  among  primary  care  settings.  A  survey  of  post-­‐exposure  

EMR  WB  use  indicated  a  measurable,  positive  effect  was  made  on  provider  satisfaction  

compared  with  a  previously  used,  paper-­‐based  record  system.  Data  were  analyzed  using  

descriptive  statistics.    

Page 4: Dissertation EMR WB Saavedra Final 12-10-12

 

ACKNOWLEDGEMENTS  

 

I  would  like  to  express  my  most  sincere  appreciation  to  the  faculty  and  staff  of  the  

Department  of  Biomedical  Informatics  and  Medical  Education  for  their  support,  and  most  

notably  to  Professor  Fredric  M.  Wolf  for  his  knowledge,  guidance  and  patience.  I  would  also  

like  to  thank  Professor  Meliha  Yetisgen-­‐Yildiz,  for  serving  as  Co-­‐Chair  of  my  committee  and  

providing  valuable  insight  and  leadership.    Also,  I  would  like  to  recognize  the  efforts  of  

Clinical  Associate  Professor  Barry  Aaronson,  Professor  Craig  Scott,  and  Professor  Kelly  

Edwards  for  their  encouragement  and  very  valuable  advice.    I  am  also  very  grateful  to  

Professor  Robert  Dickow  for  his  invaluable  help  with  the  programming.  Lastly,  this  

dissertation  would  not  have  been  possible  if  it  were  not  for  the  encouragement  and  

devotion  of  family  and  friends.  

 

Page 5: Dissertation EMR WB Saavedra Final 12-10-12

 

DEDICATION  

 

As  I  learned  throughout  this  journey,  it  takes  quite  a  bit  of  isolation  and  solitude  to  

undertake  a  project  of  this  scope  including  research,  implementation,  evaluation,  and  of  

course,  writing.    My  wife  Merrie  was  exceptionally  patient  and  supportive  during  this  

whole  process.    I  am  so  grateful  to  her,  as  well  as  the  committee  and  faculty  members  who  

all  helped  to  make  this  exciting  and  meaningful  endeavor  a  reality.    

                                                         

Page 6: Dissertation EMR WB Saavedra Final 12-10-12

 

TABLE  OF  CONTENTS  

                            Page  

List  of  Figures  ...................................................................................................................................iii  List  of  Tables  .....................................................................................................................................iv    Chapter  I:  Introduction....................................................................................................................1     1.1.  Statement  of  Problem...............................................................................................2       1.1.1.  Historical  context…………………………………………………………….2     1.2.  Proposed  Solution…...................................................................................................9       1.2.1.  EMR  WB  project  background………................................................11     1.3.  Research  Statements..............................................................................................25       1.3.1.  Thesis  statement....................................................................................25       1.3.2.  Research  questions…...........................................................................25       1.3.3.  Objectives..................................................................................................25     1.4.  Significance.................................................................................................................26     1.5.  Research  Goals……………………………………………………………………………27                                                        1.5.1.  Aim  1...........................................................................................................27       1.5.2.  Aim  2...........................................................................................................30     1.6.  Establishing  Feasibility  ........................................................................................31     1.7.  Resource  Sharing  Plans.........................................................................................33     1.8.  Summary……………………………………………………………………………………33    Chapter  II:  Methods—Designing  the  Solution………………………………………………..36     2.1.  Access............................................................................................................................37       2.1.1.  Strategy……………………………………………………………………...…37       2.1.2.  Server  hosting………………………………………...……………………..38       2.1.3.  Cloud  computing………………………………………………………..….38       2.1.4.  Administrative  management………………………………………….38       2.1.5.  Privacy………………………………………………………………………….39       2.1.6.  Concurrency…………………………….……………………………………40       2.1.7.  Scalability……………………………………………………………..………41       2.1.8.  Expandability………………………………………………………………..41     2.2.  Programming  Language………………………………………………………...……43     2.3  Standardization.........................................................................................................45       2.3.1.  Strategy……………………………………………….………………………..46       2.3.2.  Terminology…………………………………………..……………………...47     2.4.  Interface.......................................................................................................................51     2.5.  Decision  Support......................................................................................................  52     2.6.  EMR  WB  Definition..................................................................................................56     2.7.  Summary......................................................................................................................59    Chapter  III:  Evaluation..................................................................................................................60     3.1.  Testing  EMR  WB  Versions....................................................................................61      

i  

Page 7: Dissertation EMR WB Saavedra Final 12-10-12

 

  3.2.  Focus  Group  and  Survey.......................................................................................63       3.2.1.  Focus  group..............................................................................................63       3.2.2.  Survey.........................................................................................................66     3.3.  Subject  population..................................................................................................  71     3.4.  Analysis........................................................................................................................  72       3.4.1.  Confidentiality………………………………………………………………77     3.5.  Results..........................................................................................................................77       3.5.1.  Participants…………………………………………………………………..77       3.5.2.  User  satisfaction  with  EMR  WB…………………………..………….79     3.6.  Discussion...................................................................................................................85     3.7.  Summary.....................................................................................................................89     3.8.  Limitations  of  Study……………………………………………………………………91     3.9.  Suggestions  for  Further  Research………………………………………………..93    Chapter  IV:  Ethical  Dilemmas....................................................................................................95    Chapter  V:  Conclusions................................................................................................................97     5.1.  Conflicts  of  interest…………………………………………………………………….98    References.........................................................................................................................................99    Appendix  A:  Focus  Group  Study.  Outline  of  Question  Sequence.............................104  Appendix  B:  The  Evaluation  Tool.  EMR  WB  Questionnaire  for       User  Satisfaction……………………………………….....................................................105  Appendix  C:  The  National  Center  for  Biomedical  Ontology  BioPortal..................110  Appendix  D-­‐1:  Standardization  Process  Sample:  History  of    Present  Illness...............................................................................................................................111  Appendix  D-­‐2:  Standardization  Process  Sample:  Contents  of  the       History  of  Present  Illness...........................................................................................112  Appendix  E:  Example  of  Standardized  HPI  Content  within  the    Clinical  Core…………………………………………………………….....……………………………..113  

 

 

 

 

 

 

ii  

Page 8: Dissertation EMR WB Saavedra Final 12-10-12

 

 

LIST  OF  FIGURES  

 

             Figure  Number                                     Page  

1. Two  Anonymous  Examples  of  Handwritten  

Medical  Record  Documentation…………………………..……………………………...5  

 

2. The  EMR  WB  Interface…………………………………………………  …………………...52  

 

3. Clinical  Core-­‐centered  EMR  Definition……………………………………………….58  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii  

Page 9: Dissertation EMR WB Saavedra Final 12-10-12

 

 

LIST  OF  TABLES  

 

             Table  Number                                   Page  

1. Table  1:  Aspects  of  currently  available  web-­‐based  EMRs  

compared  to  EMR  WB.…………………………………..……………………………………9  

 

2. Table  2:  Philosophical  approach  to  standardization……………………………48  

 

3. Table  3:  Focus  group.  ……………………………………………………………………..…69  

 

4. Table  4:  Demographic  characteristics  of  study  participants………………...73  

 

5. Table  5:  Evaluation  summary  for  participants..………..…………………………74  

 6. Table  6:  User  satisfaction  question  groupings  ……………………………………78  

                               

    iv  

Page 10: Dissertation EMR WB Saavedra Final 12-10-12

  1  

Chapter  I:  Introduction  

The  patient  record  is  the  principal  repository  for  information  concerning  a  patient’s  health  

care  [1,9,10,12].  It  affects  virtually  everyone  associated  with  providing,  receiving,  or  

managing  health  care  services.  Despite  the  many  technological  advances  in  health  care  over  

the  past  few  decades,  the  typical  patient  record  of  today  is  remarkably  similar  to  the  

patient  record  of  60  years  ago  [9,57].  This  failure  of  patient  records  to  evolve  is  now  

creating  additional  stress  within  the  already  burdened  US  health  care  system  and  in  other  

countries  as  the  information  needs  of  patients,  practitioners,  administrators,  researchers,  

and  policymakers  often  go  unmet.    

Transferring  accurate  data  from  the  clinical  encounter  into  the  medical  record,  making  

health  care  decisions,  and  sharing  and  retrieving  patient  information  is  a  difficult  

undertaking,  but  all  are  instrumental  to  the  effective  practice  of  medicine  and  biomedical  

research.  Without  accurate  data,  patients  cannot  be  properly  diagnosed  and  treated,  and  

without  structured  data,  computer  tools  such  as  diagnostic  decision  support  systems  

cannot  parse  that  data  and  assist  health  care  providers.  Research  in  translational  medicine  

also  depends  on  the  ability  to  document  patient  medical  records  so  they  can  be  related  to  

the  vast  genome  data  [18,41].  Current  electronic  medical  records  (EMRs)  have  been  unable  

to  provide  evidence  that  clinical  documentation  and  practice  is  more  efficient  than  in  the  

past  [1,3,4,65].  In  addition,  many  studies  indicate  low  levels  of  satisfaction  with  overall  

EMR  use  and  deficiencies  in  the  record-­‐keeping  process  as  currently  practiced  by  health  

care  providers,  which  leads  to  medical  records  that  often  fail  to  include  and  share  critical  

information  [6,9,17,57].  

Page 11: Dissertation EMR WB Saavedra Final 12-10-12

  2  

1.1.  Statement  of  Problem    

The  literature  indicates  that  the  present  EMR  structure  fails  to  help  providers  effectively  

document,  store,  share,  and  access  clinical  findings;  achieve  independent  thinking  and  

integration  of  knowledge;  or  improve  clinical  care  workflows  and  decision-­‐making  

[1,2,3,4,13,57].  Also,  mixed  results  from  the  implementation  of  EMRs  in  specialized  settings  

suggest  that  their  use  has  had  a  limited  effect  on  quality  improvement  in  US  hospital  care  

[3].  Despite  the  expense,  time,  and  broad  implementation  of  EMRs,  there  is  little  hard  

evidence  of  benefits  in  the  form  of  provider  satisfaction,  patient  outcomes,  or  standardized  

terminology  [4,9].  The  importance  of  the  system  proposed  here,  Electronic  Medical  

Records  Without  Borders  (EMR  WB),  is  centered  on  the  premise  that  current  EMRs  lack  

open  global  access  [1,4,11],  standardization  [5,10,45],  efficient  interface  [4,10,13],  effective  

knowledge-­‐based  tools  at  the  point  of  care  [21-­‐27,36],  and  a  clear  definition  [5,10,19,45].  

Consequently,  the  information  needs  of  patients,  practitioners,  administrators,  researchers,  

and  policymakers  often  go  unmet.  These  critical  barriers  have  a  negative  impact  on  

provider  and  patient  satisfaction,  quality  of  life,  health  outcomes,  clinical  care  workflows,  

and  health  care  costs  [4,5,7,8,17,57,64].  

1.1.1.  Historical  context  

To  best  understand  the  nature  of  current  EMRs,  it  is  important  to  review  their  foundation  

and  evolution.  Many  current  EMRs  still  follow  the  traditional  organization  and  

characteristics  of  the  original  paper-­‐based  system  and  have  simply  automated  that  system.  

Narrative  documentation,  for  example,  is  far  more  prevalent  than  standardized  structured  

text  [65].  

Page 12: Dissertation EMR WB Saavedra Final 12-10-12

  3  

The  beginnings  of  medical  record-­‐keeping  

While  the  central  idea  of  this  project  is  to  bring  patient  records  out  of  the  ink-­‐and-­‐paper  

era  and  into  the  state-­‐of-­‐the-­‐art  computer  age,  the  paper-­‐based  record  is  not  all  negative.  

The  notion  that  an  EMR  is  inherently  better  than  a  paper  one  is  weak  [19].  The  content  in  

the  record  clearly  has  a  large  impact  on  a  record’s  effectiveness,  independent  of  the  

medium  of  delivery.  The  most  vital  aspect  of  the  medical  record  is  well-­‐defined  and  

structured  documentation  [45,65].  Knowing  this,  an  efficient  design  has  to  take  into  

consideration  the  well-­‐known,  mature,  structured,  and  clinically-­‐oriented  paper-­‐based  

system  that  has  been  supporting  the  health  care  system  for  centuries.  Nearly  2,500  years  

ago,  Hippocrates  called  for  the  careful  recording  and  sharing  of  evidence  about  patients  

and  their  illnesses.  He  developed  the  first  known  medical  record  in  the  fifth  century  BC1  

with  two  goals:  to  1)  accurately  reflect  the  course  of  disease  and  2)  indicate  the  probable  

cause  of  disease.  While  this  charge  sits  at  the  foundation  of  modern  medicine,  large  

amounts  of  valuable  health  care  data  still  go  unrecorded.  These  goals  are  still  appropriate,  

but  electronic  health  record  (EHR)  systems  can  also  provide  additional  functionality,  such  

as  standardized  structured  documentation  [65],  interactive  alerts,  interactive  flow  sheets,  

and  computerized  physician  order  entry  (CPOE)2  systems  [1,19].  Information  systems  

capturing  increasing  amounts  of  health  care  data  have  ignited  interest  in  the  exciting  

possibilities  ahead  for  leveraging  large  quantities  of  patient  and  hospital  data  to  increase  

the  quality  of  care  while  reducing  costs.    

                                                                                                               1  J.H.  van  Bemmel  and  M.A.  Musen,  ed.,  Handbook  of  Medical  Informatics,  Springer,  The  Netherlands,  1997,  p.  99.  2  CPOE   or   medical   order   entry   systems   are   computer-­‐assisted   information   networks   that   enable   providers   to   initiate   medical  procedures,  prescribe  medications,  etc.  These  systems  support  medical  decision-­‐making  and  error  reduction  during  patient  care.  NLM-­‐MeSH  Year  introduced:  2006.  

Page 13: Dissertation EMR WB Saavedra Final 12-10-12

  4  

Although  the  physical  nature  of  the  paper  record  has  remained  relatively  the  same,  the  

formal  structure  of  the  information  contained  within  the  record  has  undergone  

considerable  change  in  the  last  60  years  [2,19,51].  The  first  step  to  creating  effective  EMRs  

should  consider  simply  digitizing  a  well-­‐structured  paper  medical  record.  After  this  has  

been  proven  successful,  the  next  area  of  focus  should  be  ways  to  facilitate  providers  

sharing  insights  into  the  complexities  of  modern  medicine  to  support  specific  clinical  

decisions.  It  is  also  important  to  be  aware  that  EMRs  and  paper-­‐based  records  are  different  

artifacts  that  support  different  cognitive  processes,  and  therefore  do  not  have  the  same  

usability  problems  [19,51,52].  

To  fully  appreciation  these  differences,  it  is  necessary  to  have  a  clear  notion  of  the  physical  

aspects  of  the  paper  record.  Paper  is  portable  and  access  is  direct,  self-­‐contained,  and  

practical  (no  power  supply,  network,  information  technology  [IT]  support  systems,  or  

internet  access  required)  [19].  It  is  a  highly  familiar  method  of  recording  information  (no  

special  training  needed  as  compared  with  a  computer  system).  Another  advantage  of  paper  

is  how  little  structuring  it  demands  because  it  is  unconstrained  in  both  form  and  content  in  

a  relatively  informal  medium  (e.g.,  a  long  detailed  history  with  marginal  annotations,  

physical  exam  with  drawing  of  the  affected  area,  lab  results  using  special  characters,  and  

handwriting  diagrams),  and  it  can  be  classified  as  a  general-­‐purpose  tool  for  capturing  data  

(see  Figure  1)  [5,14,19].  

Despite  its  benefits,  a  paper  record  can  only  be  used  for  one  task  at  a  time,  has  access  

constraints  (e.g.,  lab  and  X-­‐ray  results  or  clinical  notes  might  be  in  a  different  office),  

consumes  space,  can  be  physically  cumbersome,  is  susceptible  to  damage  and  degradation  

Page 14: Dissertation EMR WB Saavedra Final 12-10-12

  5  

over  time,  and  is  dependent  on  production  practices  that  are  not  ecologically  sound  (e.g.,  

deforestation  and  water  pollution).  Also,  because  its  creation  and  modification  can  be  very  

personal,  it  may  be  difficult  to  understand  for  those  other  than  the  writer  (see  Figure  1).  In  

addition,  the  lack  of  any  formal  structure  to  guide  record  creation  increases  the  possibility  

for  errors,  misunderstandings,  and  omissions  of  relevance  [5,16,51].      

   

Figure  1:  Two  anonymous  examples  of  handwritten  medical  record  documentation.  

 

EMRs  as  the  next  step  

The  most  important  motivations  for  creating  EMRs  are  the  drawbacks  of  paper-­‐based  

records  outlined  above.  In  simple  terms,  the  current  EMR  is  the  computer  replacement  for  

the  paper  medical  record  system.  It  provides  a  mechanism  for  capturing  information  

Page 15: Dissertation EMR WB Saavedra Final 12-10-12

  6  

during  the  clinical  encounter,  stores  it  in  a  secure  and  organized  fashion,  and  permits  use  of  

that  information  only  by  those  with  a  clinical  need  [19].  The  EMR  has  a  number  of  powerful  

attributes  that  make  it  ideal  for  data  capture  and  storage,  including  the  enormous  quantity  

of  data  that  is  possible  to  store  in  a  small  space  (e.g.,  cloud  computing),  and  the  ease  of  

creating  copies,  backups,  and  secure  data  sharing.  Also,  it  facilitates  more  structured  data,  

portability,  access,  availability,  interoperability,  and  structured  care  around  automated  

protocol-­‐guided  care  (e.g.,  e-­‐prescribing,  alerts,  reminders,  task-­‐specific  views  of  data,  and  

clinical  audit  and  outcomes  assessment)  [17].    

The  current  EMR  allows  an  institution  to  replace  its  paper  charts  with  electronic  charts.  

This  offers  the  potential  for  improving  productivity  and  efficiency.  Some  EMR  systems  

provide  reminders  and  alerts,  CPOE  [14],  and  links  to  data  for  improved  health  care,  but  

the  impacts  on  health  indicators  are  mixed  or  not  well  understood.  Most  EMR  systems  in  

place  are  evolving  concepts  that  tend  to  respond  to  the  dynamic  nature  of  the  health  care  

environment  and  take  advantage  of  technological  advances  and  the  recent  financial  

motivation  for  their  implementation  and  meaningful  use  [10,14,15].    

Current  EMR  system  limitations    

As  W.E.  Hammond  pointed  out  in  2009  [9],  “For  much  of  the  world,  truly  productive  and  

functional  EMRs  remain  an  elusive  goal  of  the  future.”  Ellwood  added  that  since  1988,  “the  

intricate  machinery  of  our  health  care  system  can  no  longer  grasp  the  threads  of  

experience…  Too  often,  payers,  physicians,  and  health  care  executives  do  not  share  

common  insights  into  the  life  of  the  patient…  The  health  care  system  has  become  an  

organism  guided  by  misguided  choices;  it  is  unstable,  confused,  and  desperately  in  need  of  

Page 16: Dissertation EMR WB Saavedra Final 12-10-12

  7  

a  central  nervous  system  that  can  help  it  cope  with  the  complexities  of  modern  medicine”  

[2].    

Hammond  [9]  also  noted  that  “After  a  history  of  almost  60  years,  the  development  of  the  

use  of  computers  in  health  care—Healthcare  Information  Technology  (HIT)—is  still  lacking  

in  delivering  its  perceived  potential.  The  reasons  are  many:  1)  the  lack  of  definition  and  

clarity  of  what  is  important  and  required  in  health  care;  2)  the  lack  of  consistency  in  the  

practice  of  medicine;  3)  the  variety  in  evidence  in  an  evidenced-­‐based-­‐medicine  delivery  

model;  4)  the  lack  of  a  business  model  that  proves  a  return  on  investment  for  HIT;  5)  lack  

of  standards  to  support  interoperability  across  various  sites,  domains,  and  models  for  

health  care;  and  6)  the  lack  of  an  infrastructure  enabling  the  necessary  connectivity  to  

support  the  bringing  together  of  data  about  a  single  patient.”  His  overall  assessment  is  that  

“For  the  most  part,  today’s  EMR  is  not  even  a  good  representation  of  the  paper  record,  

which  is  still  unorganized  and  contains  unstructured  content.”  

According  to  Kush  et  al.  [18],  “We  can  travel  almost  anywhere  in  the  world  and  find  a  

machine  that  will  dispense  local  currency,  taking  the  money  from  our  home  account  with  

the  use  of  a  bank  card.  Yet,  when  we  go  from  a  primary  care  physician  to  a  specialist  in  our  

hometown,  we  must  begin  at  square  one,  providing  the  new  doctor's  office  with  all  our  

demographic  and  medical  information,  often  by  completing  paper  forms.”  Also,  they  

pointed  out  “if  we  were  traveling  abroad  and  needed  access  to  our  health  information,  we  

would  face  formidable  difficulties.”  Financial  institutions  in  particular  have  for  years  

developed  and  used  standards  for  electronic  exchange,  but  not  the  health  care  industry  

[1,18].    

Page 17: Dissertation EMR WB Saavedra Final 12-10-12

  8  

Finally,  low  usability,  concerns  about  privacy,  and  inability  to  use  secondary  information  

for  research  represent  additional  major  current  limitations  to  EMR  functionality  and  

adoption  across  institutions  not  only  in  the  United  States,  but  globally  [55,57].    

The  ideal  EMR  system  

Based  on  Mandl  and  Kohane’s  2012  [64]  assessment  of  what  is  still  needed  to  update  the  

management  of  health  care,  the  ideal  EMR  system  would  affordably  provide  efficient  means  

of  communication  among  providers  and  with  their  patients,  secure  private  storage  of  

health  care  data  in  the  cloud,  standardized  documentation  tools,  integrated  workflow  of  

multi-­‐disciplinary  users,  clinical  decision  support,  and  interoperability.  

Some  medical  institutions  in  the  United  States  are  approaching  this  ideal  by  adapting  

emerging  technologies  to  their  health  care  systems.  Harvard  Medical  School-­‐affiliated  Beth  

Israel  Deaconess  Medical  Center  (BIDMC)  in  Boston  was  selected  as  the  most  innovative  US  

user  of  business  technology  in  2012  by  InformationWeek  magazine  as  part  of  their  24th  

annual  ranking  based  on  BIDMC’s  IT  department  creating  “Clinical  Query,”  a  search  engine  

tied  to  a  database  of  patient  records,  along  with  a  Web-­‐based,  cloud-­‐hosted  EMR  system  

that  runs  on  tablets,  called  Online  Medical  Record,  which  allows  both  physicians  and  

patients  access  to  medical  information.3    

 

   

                                                                                                               3  Beth  Israel  Deaconess  Medical  Center  Embraces  Analytics  BIDMC,  the  No.  1  company  in  the  InformationWeek  500  2012.  http://www.informationweek.com/global-­‐cio/interviews/beth-­‐israel-­‐deaconess-­‐medical-­‐center-­‐emb/240006766    

Page 18: Dissertation EMR WB Saavedra Final 12-10-12

  9  

1.2.  Proposed  Solution  

This  dissertation  describes  the  approach  to  how  the  most  critical  problems  with  

conventional  EMR  systems  were  resolved  with  the  design,  implementation,  and  evaluation  

of  a  new  EMR  system  (see  Table  1).  The  proposed  changes  are  aimed  at  contributing  to  the  

EMR  of  the  future,  which  would  first  positively  impact  provider  satisfaction.  The  ultimate  

goal  is  higher  quality  of  life  as  a  result  of  improved  health  outcomes.      

 

Table  1:  Aspects  of  currently  available  web-­‐based  EMRs  compared  to  EMR  WB.  

  Themes   OpenEMR,  OpenMSR  

Practice  Fusion  

Epic,  Epocrates  

EMR  WB  

1   Access.  Openly  accessible  on  a  web-­‐based  system  from  any  platform.  

Limited   Yes   Limited   Yes  

2   Standardization.  Consistently  includes  patient  histories  as  part  of  a  standardized  clinical  family  medicine  core  EMR.    

No   No   No   Yes  

3   Interface.  Compiles  and  condenses  an  all-­‐inclusive  intuitive  EMR  interface  into  one  navigation  system.  

No   No   No   Yes  

4   Decision  Support.  Uses  knowledge-­‐based  point-­‐of-­‐care  systems  to  support  health  care  decision-­‐making  processes.  

Limited   Limited   Limited   Limited  

5   Structure.  Design  based  on  a  thorough  definition  centered  around  patient  histories.  

No   No   No   Yes  

6   Communication  Range.  Available  in  more  than  one  language  (i.e.,  English  and  Spanish)*    

No   No   No   Yes*  

7   Multidisciplinary.  Medicine,  psychology,  nutrition,  nursing,  and  social  work.    

No   No   No   Yes  

  Web  pages     http://www.oemr.org,  and    http://openmrs.org/    

http://www.practicefusion.com  

http://www.epic.com/,    and  http://www.epocrates.com/    

http://www.emrwithoutborders.com  

*EMR  WB  is  a  fully  bilingual  system,  and  the  structure  and  terminology  is  available  in  English  and  Spanish.  The  user  can  indicate  the  language  of  preference  when  logging  in.  The  system  does  not  automatically  translate  from  one  language  to  another.    

Page 19: Dissertation EMR WB Saavedra Final 12-10-12

  10  

EMR  WB  builds  the  technical  capability  to  1)  make  EMRs  accessible  on  a  web-­‐based  system  

from  any  platform;  2)  consistently  include  patient  histories  as  part  of  standardized  clinical  

core  EMR;  3)  compile  and  condense  an  all-­‐inclusive  intuitive  EMR  interface  onto  one  

navigation  system;  and  4)  provide  effective  knowledge-­‐based  tools  at  the  point  of  care  to  

support  health  care  decision-­‐making  processes.  These  features  will  provide  access  to  

scientific  knowledge  and  build  specific  needed  infrastructure  to  better  address  not  only  

local,  clinical,  and  psychosocial  primary  care  problems  in  targeted  underserved  

communities  around  the  globe,  but  transnational  migration  health  issues  based  on  data  

transfer  of  clinical  information  in  primary  care  settings,  in  particular  free  clinics  serving  

patients  traveling  between  Mexico  and  the  United  States.  

By  making  EMRs  accessible  on  a  web-­‐based  system  from  any  platform—PC,  Mac,  tablet,  or  

smartphone,  each  with  their  corresponding  operating  systems—there  will  be  a  substantial  

simplification  and  expansion  of  the  ways  in  which  health  care  providers  access  and  input  

clinical  information.  They  will  switch  from  local,  restricted  onsite  use  of  paper-­‐based  

medical  records  or  EMRs  to  a  system  that  takes  advantage  of  cloud  computing.  This  change  

will  allow  them  to  input,  retrieve,  store,  share,  and  access  patient  medical  records  

anywhere  (rural  or  urban  settings)  when  needed  [1,9].  Also,  they  will  be  able  to  remotely  

access  and  use  knowledge-­‐based  tools  at  the  point  of  care  to  support  clinical  decision-­‐

making.  With  this  new  service,  the  patient,  as  the  owner  of  their  personal  medical  record  

and  its  access  code,  can  travel  almost  anywhere  in  the  world  and  find  a  provider  that  can  

access  their  EMR,  thereby  avoiding  the  need  to  reenter  demographic  and  medical  

information  onto  paper  forms.  This  represents  a  potentially  significant  savings  in  time  and  

Page 20: Dissertation EMR WB Saavedra Final 12-10-12

  11  

frustration,  and  improvement  in  health  care  quality  for  patients  who  seek  medical  

attention  while  traveling  or  living  abroad  [18].    

The  application  of  this  project  clearly  challenges  the  current  EMR  paradigm  by  shifting  

away  from  the  fragmented,  difficult-­‐to-­‐use  EMR  system  that  has  been  unable  to  provide  

evidence  that  clinical  practice  is  more  efficient  than  in  the  past  [1,3,4,5].  This  novel  

proposed  design  counteracts  the  predominant  health  care  system  paradigm  that  prioritizes  

the  quantity  of  care  rather  than  the  quality  of  it.  EMR  WB  represents  the  cost-­‐saving  health  

care  innovation  that  drug  companies  and  private  insurers  have  failed  to  provide  [1,4,27].  

EMR  WB  is  patient-­‐centered  rather  than  system-­‐centered,  based  on  the  premise  that  a  

standardized,  easy-­‐to-­‐use,  well-­‐defined,  and  accessible  EMR  that  integrates  best  evidence,  

provider  clinical  expertise,  and  patient  choice  will  improve  health  care.  It  is  a  network  of  

tools  that  recognizes  the  primary  information  in  the  EMR—clinical  documentation—is  the  

keystone  on  which  the  health  care  decision-­‐making  process  is  based.  Provider  interaction  

with  such  an  integrated  system  is  expected  to  be  a  satisfying  experience.  A  system  that  is  

centered  on  efficiency  and  quality  of  information  will  be  one  way  to  reduce  health  care  

costs,  as  the  evidence  points  out  [8,17,27,30,65].  In  addition,  this  model  could  be  

generalized  as  a  valid  frame  of  reference  for  other  similar  populations  (primary  care  

centers  aimed  at  providing  services  in  limited  resource  settings).    

1.2.1.  EMR  WB  project  background    

The  research,  development,  implementation,  and  evaluation  of  EMR  WB  required  

international,  multidisciplinary  collaboration.  This  approach  was  based  on  an  established  

need  to  share  clinical  information  in  a  global  context,  starting  with  specific  populations  on  

Page 21: Dissertation EMR WB Saavedra Final 12-10-12

  12  

both  sides  of  the  US  and  Mexican  borders  as  part  of  a  pilot  project  in  a  well-­‐structured  

primary  care  setting  in  the  city  of  Leon,  Mexico.  A  series  of  progressive  steps  was  carried  

out  that  involved  the  identification  of  specific  problems  with  sharing  information  using  

current  EMR  systems.    

International  collaborative  research  

In  December  2009,  the  University  of  Guanajuato  School  of  Medicine  Department  of  

International  Affairs  in  Mexico,  the  University  of  Pittsburgh  Center  for  Global  Health,4  and  

the  University  of  Pittsburgh-­‐affiliated  community  clinics  in  the  metropolitan  area  (i.e.,  

Squirrel  Hill  Health5)  approached  me  to  participate  in  a  three-­‐day  collaborative  

international  research  conference  titled  “Workshop  of  Transnational  Migration  and  Global  

Health:  The  Case  of  Guanajuato  and  Pittsburgh,  2010.”  The  rationale  for  this  meeting  was  to  

discuss  and  analyze  the  quality  of  health  care  for  migrant  workers  traveling  between  

Pittsburgh,  Pennsylvania,  and  the  urban  community  of  León,  as  well  as  rural  communities  

in  the  state  of  Guanajuato  (Ocampo  and  Los  Lorenzos),  Mexico.    

The  basis  of  this  request  to  participate  in  the  April  2010  global  health  workshop  was  a  

series  of  successfully  implemented  collaborative  research  and  exchange  programs  between  

the  UW  School  of  Medicine  and  University  of  Guanajuato  medical  students  and  faculty  over  

five  years.  When  the  idea  to  develop  a  project  that  would  address  the  issues  raised  at  the  

workshop  was  proposed  to  José  Luis  Lucio-­‐Martínez,  PhD,  President  of  the  University  of  

Guanajuato  Campus  León,  and  Ana  María  Chávez-­‐Hernández,  PhD,  Director  of  the  

                                                                                                               4  University  of  Pittsburgh  Center  for  Global  Health:  http://www.globalhealth.pitt.edu/education/International-­‐scholars.php    5  Squirrel  Hill  Health  Center:  http://www.squirrelhillhealthcenter.org/    

Page 22: Dissertation EMR WB Saavedra Final 12-10-12

  13  

University  of  Guanajuato  Center  for  Health  Services  (CUSS),  both  officially  gave  their  

support  to  the  plan  in  July  2010  with  regard  to  collaboration,  funding,  and  advising.  

My  participation  was  centered  on  researching  the  following  question:  What  would  be  the  

best  approach  to  sharing  clinical  information  across  borders  (i.e.,  between  Leon,  Mexico,  

and  Pennsylvania,  Pittsburgh)?  Initially,  the  plan  was  to  include  the  University  of  

Pittsburgh-­‐affiliated  community  clinics  and  several  free  clinics  in  the  state  of  Guanajuato,  

Mexico.  The  identified  need  for  sharing  clinical  information  on  an  international  scale  was  

born,  primarily  based  on  the  documented  occurrence  of  patients  moving  one  or  several  

times  a  year  between  these  communities,  and  using  the  local  health  clinic  services.  Health  

care  providers  were  isolated  in  terms  of  patient  data  sharing,  and  dependent  upon  what  

patients  could  provide  during  office  visits  to  the  clinics.  Vital  information  was  lost,  such  as  

the  description,  severity,  evolution,  and  prognosis  for  specific  conditions;  medication  types,  

doses,  and  regimens;  responses  to  treatments;  and  the  type  of  and  results  for  laboratory  

and  image  studies  performed—essentially  entire  health  records.  The  preliminary  

conclusions  were  that  rural  and  urban  public  clinics  in  the  state  of  Guanajuato,  Mexico,  lack  

a  modern,  standardized  EMR  system,  open  global  access,  efficient  interface,  and  

knowledge-­‐based  point-­‐of-­‐care  systems  to  efficiently  collect,  store,  share,  manage,  and  

access  patient  files.  As  a  result,  the  vital  information  needs  of  patients,  practitioners,  

administrators,  researchers,  and  policymakers  were  often  unmet,  and  negative  financial  

and  health  outcomes  were  escalating.  The  same  problem  has  to  be  addressed  at  the  

University  of  Pittsburgh-­‐affiliated  clinics,  and  they  have  to  be  prepared  to  access  the  EMR  

WB  to  mitigate  transnational  migration  health  issues  based  on  information  exchange  

between  the  CUSS  and  corresponding  primary  care  settings  in  Pittsburgh.  It  is  expected  

Page 23: Dissertation EMR WB Saavedra Final 12-10-12

  14  

that  University  of  Pittsburgh-­‐affiliated  primary  care  clinics  would  implement  the  EMR  WB  

project  after  the  completion  of  the  pilot  project  at  the  CUSS,  in  particular  the  Squirrel  Hill  

Health  Center.6    

Based  on  these  findings,  combined  with  the  knowledge  that  interlinked  communities  

across  borders  is  a  common  situation  all  over  the  United  States  and  Mexico  as  well  as  in  

other  countries,  the  creation  of  a  research  project  originally  titled  “A  Web-­‐based  EMR  

Regional  Primary  Care  Network  System  for  Urban  and  Rural  Public  Clinics  in  the  State  of  

Guanajuato,  Mexico:  A  Pilot  Project”  was  proposed.  This  international,  multidisciplinary,  

multinstitutional  collaborative  research  effort  involved  Ana  María  Chávez-­‐Hernández,  José  

Luis  Lucio-­‐Martínez,  and  Brigitte  Lamy,  PhD,  Professor  of  Sociology  at  the  University  of  

Guanajuato  Campus  León,  as  the  key  network  collaborators  in  Mexico.  Other  collaborators  

included  1)  Robert  Dickow,  PhD,  Associate  Professor,  University  of  Idaho;  2)  Kathleen  

Musante  DeWalt,  PhD,  Director  of  the  University  of  Pittsburgh  Center  for  Latin  American  

Studies  and  Professor  of  Anthropology  and  Public  Health;  3)  Joanne  L.  Russell,  MPPM,  RN,  

CCRC,  Director  of  the  University  of  Pittsburgh  Center  for  Global  Health  and  Assistant  

Professor  of  Global  Health;  4)  Kenneth  S.  Thompson  MD,  Medical  Director  of  the  Center  for  

Mental  Health  Services  at  the  US  Department  of  Health  and  Human  Services;  5)  Sergio  

Aguilar-­‐Gaxiola,  MD,  PhD,  Director  of  the  Center  for  Reducing  Health  Disparities  at  the  

University  of  California-­‐Davis  and  Professor  of  Internal  Medicine;  6)  Edward  P.  Hoffer,  MD,  

Associate  Clinical  Professor  of  Medicine  at  Harvard  Medical  School  and  researcher  at  the  

Massachusetts  General  Hospital  Laboratory  of  Computer  Sciences;  7)  Andrea  Fox,  MD,  

MHP,  Associate  Professor  of  Family  Medicine  at  the  University  of  Pittsburgh  School  of  

                                                                                                               6  Squirrel  Hill  Health  Center:  http://www.squirrelhillhealthcenter.org/    

Page 24: Dissertation EMR WB Saavedra Final 12-10-12

  15  

Medicine  and  Medical  Director,  Internist,  and  Geriatrician  at  Squirrel  Hill  Health  in  

Pittsburgh;  and  8)  Alfonso  Barquera,  local  Latino  leader  and  active  member  of  the  Hispanic  

Outreach  Project  of  the  Community  Social  Justice  Project  in  Pittsburgh.  The  roles  of  the  

collaborators  were  diverse,  from  direct  clinical  care  of  migrant  patients  on  both  sides  of  the  

border,  to  research  in  fields  such  as  migrant  health,  anthropology,  sociopsychological  

factors  of  migration,  economics,  and  global  biomedical  informatics.    

The  EMR  theoretical  model  that  was  developed  incorporated  a  comprehensive  concept  of  

multidisciplinary  standardized  family  medicine  clinical  history  that  integrates  state-­‐of-­‐the-­‐

art  terminology  (controlled  vocabularies,  syntaxes,  ontologies,  and  semantics)  and  

evidence-­‐based  (EB)7  clinical  protocols  and  guidelines  into  an  ethnically-­‐oriented  and  

culturally-­‐sensitive  English-­‐Spanish  language  EMR  system.  The  goal  was  to  better  address  

not  only  the  current  local  and  public  health  problems,  but  also  transnational  migration  

health  problems  based  on  the  need  for  data  transfer  of  clinical  information  to  improve  

provider  satisfaction  and  health  outcomes  in  the  targeted  populations.  Although  EMRs  

were  being  used  in  many  areas  of  medicine  and  research  indicated  they  had  potential  to  

improve  patient  quality  of  life  and  health  outcomes,  their  implementation,  standardization,  

and  use  in  Latino  populations  was  limited,  particularly  in  underserved  rural  and  migrant  

sectors.    

Due  to  the  international  nature  of  this  research  and  the  need  to  implement  a  pilot  project,  

two  international  summer  independent  research  programs  were  applied  for  through  UW  

International  Programs  and  Exchanges  (IPE)  in  2010  and  2011.  Both  were  accepted  and  

                                                                                                               7  Evidence-­‐based:  Characterized  by  “the  conscientious,  explicit  and  judicious  use  of  current  best  evidence  in  making  decisions  about  the  care  of  individual  patients  and  populations  integrating  individual  clinical  expertise  and  patients’  choice/preference.”  (Sackett  DL.  BMJ.  1996  Jan  13;312(7023):71-­‐2)[28]  

Page 25: Dissertation EMR WB Saavedra Final 12-10-12

  16  

credit  was  granted  to  travel,  begin  a  feasibility  study,  and  implement  a  research  pilot  

project  at  the  University  of  Guanajuato.    

During  visits  to  Mexico,  EMR  WB  was  developed  with  the  intent  to  provide  a  user-­‐friendly  

and  efficient  computerized  system  for  recording  patient  medical  histories  in  a  global  

context.  This  is  a  multidisciplinary,  standardized,  state-­‐of-­‐the-­‐art  EMR  using  cloud  

computing  to  enable  accessibility  anywhere  from  any  platform  (PCs,  Macs,  tablets,  and  

smart  phones  with  their  respective  operating  systems).  Using  this  model,  a  pilot  project  

was  implemented  at  the  University  of  Guanajuato  Center  for  Health  Services  (CUSS),  in  the  

City  of  Leon,  state  of  Guanajuato,  Mexico.  Beginning  in  the  summer  of  2010,  this  pilot  

project  was  led  in  collaboration  with  the  University  of  Washington  Department  of  

Biomedical  Informatics  and  Medical  Education  (UW  BIME)  under  the  supervision  of  Fredric  

M.  Wolf,  PhD,  and  the  University  of  Guanajuato.    

During  the  summer  of  2010,  onsite  work  on  project  feasibility  was  begun  by  setting  up  a  

focus  group  with  CUSS  end  users  (health  care  providers).  The  results  showed  that  potential  

issues  with  EMR  WB  acceptability  would  need  to  be  addressed  because  CUSS  providers  

were  used  to  a  paper-­‐based  system  for  creating  and  maintaining  health  records.  The  new  

system  was  therefore  adapted  to  their  clinical  environment  using  existing  information  

technology  architecture  within  the  University  of  Guanajuato:  in  particular,  the  same  

hardware,  internet  access,  and  local  technical  support  from  their  Information  Technology  

Department.  Modifications  that  made  the  system  unique  to  the  CUSS  included  

computerization  of  the  clinical  data  gathering  and  access  to  it  in  their  own  clinical  context.  

To  achieve  these  basic  features,  the  services  of  several  companies  that  could  potentially  

Page 26: Dissertation EMR WB Saavedra Final 12-10-12

  17  

program  the  EMR  and  provide  cloud  services  were  evaluated.  Based  on  these  preparations,  

research  questions  were  constructed  and  project  feasibility  was  corroborated  with  the  

providers  and  university  administrators.  

After  completing  this  preliminary  work,  the  interface  design  was  begun,  which  included  

standardization  of  clinical  histories  (for  the  domains  of  medicine,  psychology,  nursing,  

nutrition,  and  social  work)  using  shared  terminologies  with  controlled  vocabulary  (terms),  

ontologies  (relations),  semantics  (meaning),  and  syntaxes  (structure).  EB  and  peer-­‐

reviewed  clinical  protocols  and  knowledge-­‐based  diagnostic  decision  support  tools  at  the  

point  of  care  were  also  included.  Next,  a  contract  was  set  up  with  the  most  promising  US  

company  (Arvixe  Web  Hosting)  for  the  cloud  services.  Implementation  and  beta  testing  

began  on  May  25,  2011.  Robert  Dickow,  PhD,  Associate  Professor  at  the  University  of  Idaho,  

with  more  than  30  years  of  truly  exceptional  multi-­‐language  programming  experience,  

executed  and  programmed  EMR  WB  in  its  totality.    

The  next  step  of  the  project  was  conducted  during  a  trip  to  León  in  summer  2011  when  the  

implementation  and  onsite  use  of  the  EMR  WB  system  at  the  CUSS  was  evaluated.  During  

this  second  international  summer  independent  research  program,  use  of  the  actual  

working  system  by  the  CUSS  health  care  providers  in  their  own  settings  was  witnessed,  and  

discussions  were  held  with  them  on  several  occasions  to  discuss  their  experiences.  This  

included  a  series  of  talks  about  the  standardized  EMR  pilot  software  used,  demonstrations  

of  how  EMRs  can  facilitate  the  clinical  workflow,  and  feedback  on  encountered  limitations.  

Several  very  productive  weekly  working  meetings  were  also  conducted  with  Dr.  José  Lucio  

Martínez  and  Dr.  Ana  María  Chávez-­‐Hernández  about  the  project  progress  and  adoption  

Page 27: Dissertation EMR WB Saavedra Final 12-10-12

  18  

specifics.  The  beta  testing  approached  its  final  phase  in  December  of  2011  based  on  

exhaustive  feedback  obtained  from  the  CUSS  health  care  providers.  

Although  the  feedback  from  the  EMR  WB  use  evaluation  at  the  CUSS  was  generally  positive,  

some  onsite  technical  aspects  and  logistics  were  reconfigured  as  part  of  a  risk  management  

approach  and  follow-­‐up  study.  These  included  looking  into  the  internet  access  to  ensure  

that  even  with  some  variants  in  speed,  the  overall  functionality  was  not  compromised.  

Fields  of  free  text  were  added  or  expanded  (in  particular  with  nutrition  and  nursing)  with  

free  text,  made  available  across  all  modules,  and  deleted  if  users  reported  them  as  

duplicates  when  describing  “bugs”  in  the  presentation  and  structure  of  the  record  from  

different  domains  (mainly  psychology  and  social  work).    

Related  EMR  WB  projects  and  recognition  include  the  following:  

• A  paper  based  on  an  observational  study  in  León,  Mexico,  in  collaboration  with  Dr.  

Ana  María  Chávez-­‐Hernández,  which  will  be  submitted  for  publication  to  JAMIA  as  

“Perception  of  implementation  and  use  of  a  standardized  family  medicine  web-­‐

based  system  among  providers  in  urban  clinics  in  the  state  of  Guanajuato,  Mexico.”    

• A  story  of  my  experience  in  Mexico  implementing  EMR  WB  published  by  the  UW  

School  of  Public  Health  at  http://sph.washington.edu/news/fellows.asp.  

• Several  talks,  poster  presentations,  and  seminars  regarding  the  project,  the  field  of  

biomedical  informatics,  and  EMRs  as  a  whole,  in  different  settings  at  the  University  

of  Guanajuato  (in  July  2010,  May  2011,  August  2011,  and  January  and  February  

2012).    

Page 28: Dissertation EMR WB Saavedra Final 12-10-12

  19  

• An  abstract  and  poster  at  the  Symposium  of  the  Program  for  Education  and  

Research  in  Latin  America  (PERLA)  by  the  UW  Department  of  Global  Health  in  

April  2011.    

• A  keynote  speech  at  the  XXVI  National  Congress  in  Medical  Research  in  Monterrey,  

Mexico,  September  2011  (http://www.congresobiomedico.org.mx/).    

• A  poster  at  the  UW  Department  of  Global  Health  Open  House  in  January  2012.    

• The  2011-­‐2012  Thomas  Francis,  Jr.  Global  Health  Fellowship  award  from  the  UW  

Department  of  Global  Health.      

• A  focus  session  presentation  to  represent  the  University  of  Washington  at  the  2012  

National  Library  of  Medicine  (NLM)  Informatics  Training  Conference.    

This  collaborative,  multinstitutional  research  experience  has  been  instrumental  in  the  

overall  research,  development,  implementation,  and  evaluation  of  EMR  WB,  aimed  at  

supporting  the  clinical  services  provided  by  the  University  of  Guanajuato  to  those  who  

need  it  most:  underserved  and  migrant  populations.  This  research  was  intended  to  address  

one  of  the  most  significant  problems  in  migrant  health  by  offering  health  care  providers  in  

the  United  States  and  Mexico  the  ability  to  access  and  transfer  data  to  patients’  medical  

records  across  international  borders.  EMR  WB  collaborative  partners  believe  that  the  

system  has  the  potential  to  be  successfully  applied  anywhere  in  the  world.    

   

Page 29: Dissertation EMR WB Saavedra Final 12-10-12

  20  

The  CUSS  in  the  context  of  Mexican  health  care  

As  with  most  other  middle-­‐income  countries,  Mexico  does  not  provide  universal  access  to  

health  care  for  its  population.  About  half  of  Mexico's  population  does  not  have  health  

insurance  under  the  current  system,  as  reported  by  the  international  Organization  for  

Economic  Co-­‐operation  and  Development  (OECD).8  

Health  care  in  Mexico  is  provided  via  public  institutions,  private  entities,  and  private  

physicians.  Health  care  delivered  through  private  health  care  organizations  and  physicians  

operates  entirely  on  the  free  market  system,  so  it  is  only  available  to  those  who  can  afford  

it.  Public  health  care  delivery,  on  the  other  hand,  is  provided  via  an  elaborate  system  put  in  

place  by  the  Mexican  federal  government.  The  CUSS  is  part  of  the  public  sector  and  

supported  through  the  state  government  as  part  of  the  public  university  system.      

Mexico  has  a  fractionalized  health  insurance  system  with  a  variety  of  public  programs,  but  

coverage  is  restricted  based  on  employment  status  and  if  the  person  works  for  the  

government  or  in  the  private  sector.  There  is  also  a  private  insurance  market,  mostly  used  

by  wealthy  residents.  A  social  security-­‐administered  system  (IMSS)  covers  those  who  are  

employed  unless  they  have  private  employer-­‐sponsored  insurance,  while  the  “Seguro  

Popular”  program,  created  in  2003,  was  set  up  to  help  cover  the  uninsured  population.  

Poor  families  can  participate  in  Seguro  Popular  for  free.  People  who  do  not  participate  in  

the  insurance  program  can  still  access  services  through  the  Ministry  of  Health  free  clinics  

(which  includes  the  CUSS),  though  sometimes  with  difficulty  because  these  clinics  are  

limited  across  Mexico.  An  additional  hurdle  is  that  the  different  public  systems  and  private  

                                                                                                               8  OECD  Reviews  of  Health  Systems  –  Mexico.  OECD  Publishing,  07  Jul  2005.  158  pages.  Language:  EnglishISBN:  9264008934  

Page 30: Dissertation EMR WB Saavedra Final 12-10-12

  21  

insurers  all  use  different  medical  facilities  and  providers,  each  with  a  wide  range  in  service  

quality  at  all  levels  such  as  primary,  secondary,  and  tertiary  care,  as  reported  by  OECD.    

The  social  security-­‐based  insurance  in  Mexico  provides  broad  coverage  for  medical  

services,  including  primary,  acute,  ambulatory,  and  hospital  care,  as  well  as  medications.  

Seguro  Popular  provides  access  to  an  established  set  of  essential  medical  services  and  the  

needed  drugs  for  those  conditions,  as  well  as  17  high-­‐cost  interventions  such  as  breast  

cancer  treatment.  These  services  are  provided  through  government  facilities,  usually  run  

by  the  state.  

Out-­‐of-­‐pocket  payments  by  patients  represent  over  half  of  the  financing  for  the  Mexican  

health  care  system,  according  to  the  World  Health  Organization  (WHO).9  Government  

expenditures  account  for  44  percent  of  health  spending.  The  public  entities,  including  the  

Mexican  Institute  for  Social  Security  and  the  Institute  of  Social  Security  for  Government  

Employees,  are  financed  through  general  taxes.  Payments  are  determined  by  salary  level.  

The  Seguro  Popular  program  is  funded  through  taxes,  contributions  from  state  and  federal  

government,  and  payments  by  families  as  a  percentage  of  income.  Participants  in  Seguro  

Popular  pay  nothing  at  the  time  of  service.  

EMR  WB  in  the  CUSS  workflow  

EMR  WB  was  implemented  at  the  CUSS,  a  multidisciplinary  primary  care  clinic  for  

underserved  and  migrant  populations  in  the  city  of  Leon,  state  of  Guanajuato,  Mexico.  The  

CUSS  is  a  research  and  training  outpatient  clinic  on  the  University  of  Guanajuato  Campus  

Leon  that  employs  a  total  of  50  health  care  providers  in  24  offices  distributed  across  the  

                                                                                                               9  WHO-­‐Mexico:  http://www.who.int/countries/mex/en/    

Page 31: Dissertation EMR WB Saavedra Final 12-10-12

  22  

different  services  offered:  medicine,  psychology,  nursing,  nutrition,  and  social  work.  As  a  

teaching  facility,  students  perform  their  clinical  rotations  under  close  supervision  of  the  

providers  in  their  corresponding  disciplines.    

The  CUSS  can  be  defined  as  a  multidisciplinary  primary  health  care  institution  which  

provides  integrated  and  accessible  health  care  services  by  providers  who  are  accountable  

for  addressing  a  large  majority  of  personal  health  care  needs,  developing  a  sustained  

partnership  with  patients,  and  practicing  in  the  context  of  family  and  community.10  In  this  

context,  the  workflow  of  the  CUSS  is  based  on  a  pattern  of  recurring  procedures  that  

include  notifications,  decisions,  and  actions  to  influence  quality  of  life  and  local  public  

health  outcomes.11    

The  front  office.  When  a  patient  enters  the  CUSS,  they  must  go  directly  to  the  front  desk  and  

ask  for  a  consultation  in  one  of  the  five  areas  of  services  provided,  according  to  their  own  

identified  needs.  The  front  desk  receptionist  provides  information  and  instructs  the  patient  

regarding  the  options.  At  this  time,  the  receptionist  inputs  patient  demographic  

information  into  the  identifying  data—ID  (patient  name,  age,  gender,  marital  status,  etc.)  

and  motive  for  consultation—MC  (or  reason  for  the  visit).  The  front  desk  either  creates  (in  

the  case  of  a  new  patient)  a  new  chart  within  the  EMR  WB  system  using  the  initial  data  

input,  or  opens  the  patient’s  existing  chart  within  the  EMR  WB  system  using  the  patient’s  

full  name  and  unique  identifying  number,  and  corroborates  that  the  patient  matches  the  

data.    

                                                                                                               10  Primary  Health  Care.  Care  which  provides  integrated,  accessible  health  care  services  by  clinicians  who  are  accountable  for  addressing  a  large  majority  of  personal  health  care  needs,  developing  a  sustained  partnership  with  patients,  and  practicing  in  the  context  of  family  and  community.  (JAMA  1995;273(3):192)  ;  MeSH-­‐Year  introduced:  1974(1972)  11  workflow  is  defined  as  the  description  of  pattern  of  recurrent  functions  or  procedures  frequently  found  in  organizational  processes,  such  as  notification,  decision,  and  action  [NLM/MeSH,  Year  introduced:  2010].  

Page 32: Dissertation EMR WB Saavedra Final 12-10-12

  23  

The  back  office.  After  the  patient  has  been  registered,  the  nurse  takes  the  patient  to  the  

exam  or  consultation  room,  sits  the  patient  (on  the  examination  table  in  the  case  of  

medicine,  nutrition,  or  nursing),  opens  the  patient’s  chart  within  the  EMR  WB  system,  

verifies  the  MC  with  the  patient,  and  corroborates,  adds,  or  inputs  their  professional  

opinion  about  the  MC.  At  this  point,  the  nurse  also  checks  the  file  for  refills,  screenings,  or  

preventive  services  that  might  be  needed  and  then  flags  the  chart  so  the  primary  health  

care  provider  can  specify  those  services  during  the  visit.  Then  the  nurse  takes  vital  signs  as  

appropriate  for  the  consultation  in  the  fields  of  medicine,  nutrition,  or  nursing  (blood  

pressure—B/P,  pulse/heart  rate—HR,  respiratory  rate—RR,  body  temperature—T,  

height—HT,  weight—WT,  and  head  circumference—HC  in  children,  etc.).  Next,  the  nurse  

asks  the  patient  to  change  into  a  gown  if  needed,  and  informs  him/her  that  the  physician  or  

nutritionist  will  enter  the  room  shortly,  or  the  patient  continues  with  the  nurse  if  it  is  a  

nurse  consultation  or  health  education  session.  In  the  case  of  psychology  and  social  work,  

the  vital  signs  and  physical  preparation  of  the  patient  are  omitted.  During  this  process,  the  

computer  screen  (mainly  desktops)  is  not  in  sight  of  other  personnel  to  safeguard  privacy,  

but  the  patient  is  able  to  see  what  the  clinician  sees.  Next  the  provider  enters  the  room,  

interacts  with  the  patient,  and  opens  the  EMR  WB  system  where  the  ID  and  MC  appear  on  

the  front  page.  If  the  patient  is  new,  the  provider  begins  the  interview  to  gather  the  history  

of  present  illness—HPI,  past  medical  history—PMH,  family  history—FH,  social  history—

SH,  review  of  systems—ROS,  and  health  maintenance—HM,  as  appropriate.  The  final  steps  

are  performing  the  physical  exam  (this  part  is  skipped  by  psychologists  and  social  

workers);  ordering  any  needed  laboratory  or  diagnostic  image  studies;  and  providing  plans  

for  treatment  (e.g.,  prescription  for  medications  or  physical  therapy,  referral  to  another  

Page 33: Dissertation EMR WB Saavedra Final 12-10-12

  24  

provider).  The  provider  also  has  the  option  to  add  clinical  or  follow-­‐up  notes  to  the  

patient’s  EMR  WB.  

The  idea  behind  using  EMR  WB  in  the  clinical  encounter  at  the  CUSS  is  that  the  health  care  

providers  are  able  to  interview  patients  while  simultaneously  inputting  the  clinical  data  

into  the  medical  record;  the  file  remains  open  and  accessible  for  consultation  and  

additional  input  throughout  the  physical  exam,  diagnosis,  prognosis,  treatment,  and  plans.  

When  the  patient  returns  to  the  front  desk,  the  receptionist  or  nurse  uses  EMR  WB  to  

verify/provide  some  piece(s)  of  information  such  as  follow-­‐up  visits,  referrals,  or  payment  

arrangements  (usually  a  suggested  fee  if  the  patient  has  the  financial  means),  and  the  file  is  

then  saved  and  closed.  

In  the  CUSS  context,  the  EMR  WB  design  is  centered  on  a  one-­‐page,  simplified  data  entry  

interface.  This  format  allows  providers  to  see  the  whole  EMR  and  navigate  among  the  

different  fields  without  losing  sense  of  where  they  are  in  the  chart.  Based  on  the  

preliminary  observational  study,  providers  want  and  need  an  easier  way  to  enter  patient  

data  while  they  are  interacting  with  the  patient  without  negatively  affecting  the  patient-­‐

provider  relationship.  EMR  WB  addresses  this  issue  by  providing  an  interface  that  is  easy  

to  use  and  navigate,  does  not  interfere  with  patient  interaction  during  the  clinical  

encounter,  and  facilitates  all  the  steps  of  the  clinical  workflow  as  defined  by  the  clinicians.  

 

   

Page 34: Dissertation EMR WB Saavedra Final 12-10-12

  25  

1.3.  Research  Statements  

1.3.1.  Thesis  statement    

Currently,  EMRs  often  lack  global  access,  standardization,  an  efficient  interface,  and  

effective  knowledge-­‐based  point-­‐of-­‐care  tools.  Consequently,  the  information  needs  of  

patients,  practitioners,  administrators,  researchers,  and  policymakers  often  go  unmet,  

leaving  providers  especially  dissatisfied.    

1.3.2.  Research  questions    

Aim  1.  Will  development  of  a  standardized,  web-­‐based  family  medicine  EMR  WB  system  

that  is  accessible  from  any  platform,  functions  with  an  intuitive  interface,  and  provides  

decision  support  tools  for  the  University  of  Guanajuato  Center  for  Health  Services  (CUSS)  

be  achievable?  

Aim  2.  Will  use  of  the  EMR  WB  system  have  a  positive  effect  on  provider  satisfaction  

compared  with  a  paper-­‐based  system?    

1.3.3.  Objectives  

1.  Develop  a  standardized,  web-­‐based  family  medicine  EMR  WB  system  that  is  accessible  

from  any  platform,  functions  with  an  intuitive  interface,  and  provides  decision  support  

tools  for  the  CUSS.  

2.  Evaluate  CUSS  provider  satisfaction  with  EMR  WB  compared  to  the  paper-­‐based  system  

as  measured  by  a  quantitative  post-­‐implementation  follow-­‐up  survey.  

 

Page 35: Dissertation EMR WB Saavedra Final 12-10-12

  26  

1.4.  Significance  

EMR  WB  is  unique  for  its  global  yet  particularized  approach.  It  was  designed  to  be  highly  

functional  in  a  diverse,  global  context  by  providing  a  familiar  structure  (clinical  core),  

which  was  standardized  to  better  address  the  needs  of  patient  documentation  for  both  

unstructured  and  structured  input  [65].  Because  EMR  WB  was  implemented  in  free  clinics,  

where  services  are  government-­‐funded  and  provided  for  either  low  or  no  cost,  the  coding  

intended  for  billing  and  other  administrative  avenues  does  not  apply.  The  structure  of  EMR  

WB  shifts  the  priority  from  administration  to  the  patient,  thereby  supporting  health  care  

decision-­‐making  processes.    

In  addition,  EMR  WB  provides  support  for  a  thorough  blend  of  multidisciplinary  primary  

care  aimed  to  work  globally.  Primary  care,  in  this  context,  means  the  integration  of  

medicine,  psychology,  nursing,  nutrition,  and  social  work  by  sharing  longitudinal  

collections  of  patient  data  across  these  different  fields.  This  approach  is  ideal  for  the  

primary  care  environment  in  underserved  global  settings,  as  it  covers  the  majority  of  the  

population’s  health  needs  in  a  seamless  environment.    

EMR  WB,  as  a  web-­‐based  system,  is  accessible  from  any  platform  for  its  input  and  output,  

so  providers  in  limited  resource  settings  will  be  able  to  use  it  with  practically  any  device  

they  have  on  hand.  With  the  e-­‐Mobile  technology  (mobile  phones)  currently  used  for  

specific  tasks  (e.g.,  infectious  diseases,  public  health  data  gathering)  in  many  resource-­‐

limited  settings  across  the  world,  EMR  WB  can  provide  comprehensive  access  to  an  EMR  

with  multidisciplinary  primary  health  care  data  gathering  and  sharing  capabilities,  which  is  

not  currently  available  [9,10,41].    

Page 36: Dissertation EMR WB Saavedra Final 12-10-12

  27  

EMR  WB  is  available  in  both  English  and  Spanish,  allowing  the  provider  to  use  the  language  

of  choice.  This  capability  was  incorporated  for  several  reasons:  1)  Mexico  is  the  primary  

place  for  the  pilot  implementation,  where  Spanish  is  the  native  language;  and  2)  Spanish  is  

the  second  most  common  natively-­‐spoken  language  in  the  United  States  and  the  world  

(500  million  speakers)  after  Mandarin  Chinese.12  The  Spanish-­‐language  EMR  WB  system  

will  not  be  a  translation,  but  an  integration  of  linguistics  with  ethnically-­‐oriented  and  

culturally-­‐sensitive  components  that  have  been  incorporated  in  the  clinical  core  to  

facilitate  the  input  of  information.    

 

1.5.  Research  Goals    

The  purpose  of  this  project  was  to  create  and  evaluate  a  novel  multidisciplinary  (medicine,  

psychology,  nursing,  nutrition,  and  social  work)  primary  care  EMR  system  that  includes  

global  access,  standardization,  and  knowledge-­‐based  tools  at  the  point  of  care,  all  with  an  

efficient  interface.  This  project  aims  to  facilitate  structured  clinical  documentation,  

interoperability,  global  access,  and  decision-­‐making  processes  to  better  address  not  only  

local,  clinical,  and  psychosocial  problems  encountered  by  patients  at  the  CUSS,  but  also  to  

prepare  CUSS  to  support  transnational  migration  health  issues  based  on  information  

exchange  among  primary  care  settings  in  the  future.    

1.5.1.  Aim  1.  Develop  a  family  medicine  web-­‐based  EMR  WB  system  that  is  

standardized,  accessible  from  any  platform,  functions  with  an  intuitive  interface,  and  

provides  decision  support  tools.  An  EMR  design  aimed  at  working  with  underserved  

                                                                                                               12  Spanish  language,  facts:    http://en.wikipedia.org/wiki/Spanish_language    

Page 37: Dissertation EMR WB Saavedra Final 12-10-12

  28  

populations  in  a  global  context  will  be  created  that  integrates  four  essential  strategies:  1)  

make  EMRs  accessible  on  a  web-­‐based  system  from  any  platform;  2)  consistently  include  

patient  histories  as  part  of  a  standardized  clinical  core  EMR;  3)  compile  and  condense  an  

all-­‐inclusive  intuitive  EMR  interface  onto  one  navigation  system;  and  4)  create  access  to  

effective  knowledge-­‐based  tools  to  be  used  at  the  point  of  care  to  support  health  care  

decision-­‐making  processes.  The  EMR  WB  design  will  be  based  on  both  a  standardized  

family  medicine  clinical  history  and  the  terminology  outlined  by  the  NLM  for  medical  

subject  headings  (MeSH)  to  index  biomedical  articles.    

  Aim  1.1.  Access:  Make  EMRs  openly  accessible  on  a  web-­‐based  system  from  

any  platform.  A  tool  will  be  created  that  provides  a  response  to  the  needs  for  

information  exchange  and  interoperability  across  institutions,  platforms,13  and  

borders  within  the  medical  care  system.  This  solution  is  integrated  into  an  efficient  

web-­‐based  system  using  cloud  computing.  In  this  setting,  the  provider  will  be  able  

to  access  the  EMR  through  any  platform,  anywhere,  anytime.  Patients  will  be  

empowered  by  guaranteed  ownership  of  their  medical  record  via  its  access  code,  

allowing  them  to  choose  any  provider  anywhere  for  informed  individualized  care.  

This  EMR  code  will  allow  the  provider  to  have  full  privileges  to  access,  retrieve,  and  

add  information  to  the  clinical  file.  The  patient,  as  the  owner  of  the  medical  record,  

will  be  able  to  access  their  file  and  input  information  regarding  demographics,  

family  history,  personal  medical  history  (e.g.,  allergies),  current  prescription  

medication,  and/or  over-­‐the-­‐counter  supplements.  

                                                                                                               13  Computer  platform:  The  basic  technology  of  a  computer  system's  hardware  and  software  that  defines  how  a  computer  is  operated  and  determines  what  kinds  of  software  can  be  used.  Source:  http://www.webopedia.com/search/platform.  For  the  purpose  of  this  project,  the  different  platforms  that  will  be  considered  are  PC,  Mac,  tablets,  and  smartphones,  with  their  corresponding  operating  systems.    

Page 38: Dissertation EMR WB Saavedra Final 12-10-12

  29  

Aim  1.2.  Standardization:  Consistently  record  patient  histories  as  the  EMR  

clinical  core  using  standardized  terminology.  The  use  of  family  medicine  clinical  

history,  treated  here  as  the  clinical  core  of  the  EMR,  will  be  standardized  by  

integrating  state-­‐of-­‐the-­‐art  terminology  (controlled  vocabulary,  ontologies,  

semantics,  and  syntaxes)  with  EB  [28]  and  peer-­‐reviewed  clinical  protocols.  This  

model  will  be  used  to  ensure  patient  histories  are  consistently  recorded  as  the  EMR  

clinical  core  with  structured  and  unstructured  clinical  documentation.  Additionally,  

another  four  primary  care14  domains—psychology,  nursing,  nutrition,  and  social  

work—will  be  included  using  the  same  principles  of  standardization  in  each  

respective  domain.  These  domains  fulfill  the  multidisciplinary  needs  of  patients  at  

the  primary  care  level.  Standardization  of  the  EMR  in  this  project  has  three  specific  

objectives:  to  improve  1)  the  accuracy  of  primary  unstructured  and  structured  

clinical  documentation,  2)  interoperability,  and  3)  information  exchange  within  the  

EMR  WB  system.  

Aim  1.3.  Interface:  Compile  and  condense  an  all-­‐inclusive,  intuitive,  and  

efficient  EMR  interface  into  one  navigation  system.  An  intuitive  EMR  interface  

will  be  created  that  allows  providers  to  see  the  whole  EMR  and  its  different  domains  

in  two  top  menu  bars  while  navigating  among  the  different  fields  and  applications  

without  losing  sense  of  where  they  are  (i.e.,  all  fields  and  applications  are  within  the  

reach  of  one  or  two  clicks).  The  patient  data  entry  portion  will  be  intuitive,  

structured  by  providing  standardized  clinical  histories  for  each  of  the  four  primary  

                                                                                                               14  Primary  health  care:  Integrated,  accessible  medical  services  by  clinicians  who  are  accountable  for  addressing  a  majority  of  personal  health  care  needs,  developing  a  sustained  partnership  with  patients,  and  practicing  in  the  context  of  family  and  community.  (JAMA  1995;273(3):192)  NLM—Year  introduced:  1974(1972)

Page 39: Dissertation EMR WB Saavedra Final 12-10-12

  30  

care  domains  identified  in  Aim  1.2.  Rate-­‐limiting  data  entry  applications  will  be  

created  for  each  different  field  of  the  clinical  history  (e.g.,  history  of  present  

illness—HPI  or  review  of  systems—ROS)  so  that  providers  can  indicate  positive  and  

negative  findings  and  use  either  structured  data  or  free  text.  The  interface  will  allow  

users  to  easily  and  accurately  retrieve,  seek,  gather,  encode,  transform,  organize,  

and  manipulate  pertinent  information  to  accomplish  desired  tasks.    

Aim  1.4.  Decision  support:  Integrate  infobuttons  as  knowledge-­‐based  point-­‐of-­‐

care  tools.  A  decision  support  application  system  will  be  included  that  relies  on  

“infobuttons”  [21-­‐27,36]15  for  access  and  use  of  web-­‐based  point-­‐of-­‐care  systems.  

An  infobutton  interface  will  be  set  up  to  have  direct  access  to  knowledge-­‐based  

point-­‐of-­‐care  systems  in  real  time.  The  provider  will  be  able  to  use  the  infobutton  

functions  to  generate  and  send  queries  to  electronic  health  information  resources  

using  data  manually  extracted  from  the  EMR.  The  infobutton  will  be  displayed  to  the  

right  of  the  top  menu  bar  in  the  EMR  interface.  When  clicked,  the  infobutton  will  

formulate  a  menu  with  three  options:  1)  DXplain,  2)  EB  Medicine  Calculators,  and  3)  

Knowledge  Translation  Tools.      

1.5.2.  Aim  2.  Evaluate  the  family  medicine  web-­‐based  EMR  WB  system  to  determine  if  

it  has  a  positive  effect  on  provider  satisfaction  compared  with  a  paper-­‐based  medical  

record  system.  An  evaluation  of  EMR  WB  will  be  conducted  via  both  qualitative  (pre-­‐

implementation  exploratory  focus  group)  and  quantitative  (post-­‐implementation  survey)  

analyses  centered  on  provider  perceptions  of  its  use  compared  to  other  EMR  systems  and  

                                                                                                               15  Infobuttons:  Decision  support  tools  that  offer  links  to  information  resources  based  on  the  context  of  the  interaction  between  a  clinician  and  an  electronic  EMR  system.  [J  Biomed  Inform.  2008  Aug;41(4):655-­‐66.  Epub  2007  Dec  8]    

Page 40: Dissertation EMR WB Saavedra Final 12-10-12

  31  

paper-­‐based  records.  The  focus  group  will  be  used  as  an  exploratory  pre-­‐implementation  

tool  to  gain  knowledge  of  how  providers  perceive  EMRs  in  general.  This  information  will  be  

used  to  1)  create  a  schema  of  coding  data  to  identify  specific  needs  (needs  analysis);  2)  

establish  the  feasibility  of  the  project  (support  and  willingness  to  use  the  system);  3)  obtain  

input  for  the  EMR  WB  design;  and  4)  create  the  post-­‐implementation  questionnaire  survey  

design.    

The  post-­‐implementation  survey  will  be  focused  on  provider  opinion  of  EMR  WB  use.  A  

tailored  survey  will  be  created  to  evaluate  end  user  satisfaction  based  on  the  themes  and  

codes  obtained  from  the  focus  group.  The  Questionnaire  for  User  Interaction  Satisfaction  

[35,38,39]  (QUIS)16  and  IBM  Computer  Usability  Satisfaction  Questionnaires17  will  be  used  

as  frames  of  reference  for  its  design.  The  survey  will  be  given  to  CUSS  health  care  

providers,  who  will  be  asked  to  make  a  decision  on  their  level  of  agreement  with  

statements  assessing  their  satisfaction  with  EMR  WB  use  compared  to  paper-­‐based  

records.  A  7-­‐point  Likert  scale  will  be  used  to  measure  the  data  obtained.  

 

1.6.  Establishing  Feasibility  

A  focus  group  was  performed  in  August  2010  aimed  at  better  understanding  the  potential  

end  user  (health  care  provider)  of  the  proposed  EMR.  The  participants  indicated  a  

willingness  to  participate  in  the  pilot  project  because  of  its  inherent  potential  to  improve  

their  current  work  using  a  paper-­‐based  system,  and  hence  their  overall  satisfaction  with  

                                                                                                               16  QUIS  Main  page:  http://lap.umd.edu/quis/          17  IBM  Computer  Usability  Satisfaction  Questionnaires:  http://drjim.0catch.com/usabqtr.pdf  

Page 41: Dissertation EMR WB Saavedra Final 12-10-12

  32  

patient  care.  The  focus  group  was  conducted  to  confirm  with  a  high  degree  of  certainty  that  

providers  would  participate  in  the  project.  (See  Chapter  III:  Evaluation,  3.2.  Focus  Group  

and  Survey.)  

In  addition,  a  well-­‐defined  professional  relationship  was  established  with  the  top  

administrator  of  the  University  of  Guanajuato  Campus  Leon,  Dr.  José  Luis  Lucio-­‐Martínez,  

who  has  authority  for  direct  decision-­‐making  related  to  my  project  implementation  and  

evaluation.  An  appointment  was  set  up  in  the  summer  of  2010,  and  several  follow-­‐up  

meetings  were  held  during  my  stay.  He  enthusiastically  welcomed  the  project,  and  agreed  

to  its  implementation  and  evaluation.  By  coincidence,  Dr.  Lucio-­‐Martínez  was  in  the  

process  of  building  the  CUSS,  which  allowed  me  to  set  up  the  implementation  of  EMR  WB  at  

the  same  time  that  they  opened  the  clinic  to  the  public.  

Dr.  Lucio-­‐Martínez  then  introduced  me  to  the  clinic’s  director,  Dr.  Ana  María  Chávez-­‐

Hernández,  who  openly  welcomed  the  concept  and  has  ever  since  been  an  invaluable  

collaborator  and  colleague.  A  Memorandum  of  Understanding  was  established,  in  addition  

to  the  verbal  agreement,  which  allowed  management  of  any  potential  high-­‐risk  aspects  of  

the  proposed  work  such  as  internet  access  and  local  onsite  technical  support  provided  by  

the  University  of  Guanajuato.  In  addition,  coordination  for  the  contracted  services  that  

programmed  the  EMR  and  cloud  computing  was  provided.    

The  project,  from  its  early  stages  in  May  2011  when  the  beta  testing  was  initiated,  has  

gradually  advanced  towards  its  full  completion,  which  included  1)  Set-­‐up  of  the  EMR  home  

page  and  commercial  service  in  the  cloud  to  support  web-­‐based  access,  available  at  

www.emrwithoutborders.com;  2)  Standardization  and  programming  of  the  clinical  core,  

Page 42: Dissertation EMR WB Saavedra Final 12-10-12

  33  

including  the  domains  of  medicine,  psychology,  nutrition,  nursing,  and  social  work;  3)  

Establishment  of  an  interface  using  one  navigation  system;  and  4)  Access  to  knowledge-­‐

based  decision  support  tools  at  the  point  of  care  such  as  an  EB  medicine  calculator,  

knowledge  translation  tools,  and  the  decision  support  system  DXplain,  all  of  which  are  

currently  available  online.  

 

1.7.  Resource  Sharing  Plans  

Funding  for  the  development  and  implementation  of  EMR  WB  was  provided  by  the  

University  of  Guanajuato  Campus  León,  UW  BIME,  University  of  Pittsburgh,  UW  Office  of  

Financial  Aid,  NLM,  and  a  Thomas  Francis  Jr.  Global  Health  Fellowship.  The  Laboratory  of  

Computer  Sciences  at  Massachusetts  General  Hospital,  Harvard  Medical  School,  offered  

additional  support  in  the  form  of  free  access  and  use  of  the  diagnostic  decision  support  

system  DXplain.  Access  to  the  knowledge-­‐based  tools  used  in  this  proposal  (EB  medicine  

calculator  and  knowledge  translation  tools)  are  free  of  charge.    

 

1.8.  Summary    

Rural  and  urban  public  clinics  in  the  state  of  Guanajuato,  Mexico,  lack  a  modern,  

standardized  EMR  system  with  global  access,  an  efficient  interface,  and  knowledge-­‐based  

point-­‐of-­‐care  tools  that  allow  providers  to  efficiently  collect,  store,  share,  manage,  and  

access  patient  files.  As  a  result,  the  vital  information  needs  of  patients,  practitioners,  

administrators,  researchers,  and  policymakers  often  go  unmet,  which  leads  to  negative  

Page 43: Dissertation EMR WB Saavedra Final 12-10-12

  34  

provider  satisfaction  and  poor  quality  health  care.  Also,  despite  implementation  of  EMR  

systems  in  the  United  States  and  other  countries,  the  same  limitations  and  unmet  needs  

exist.    

To  address  this  multifaceted  problem,  a  novel  EMR  design  was  created  as  a  pilot  project  to  

ensure  that  the  most  vital  pieces  of  patient  EMRs  are  available  to  make  the  best  health  care  

decisions  for  anybody  in  need.  A  bilingual  web-­‐based  EMR  family  medicine  model  was  

developed  with  an  efficient,  intuitive  interface  that  integrates  state-­‐of-­‐the-­‐art  terminology  

(controlled  syntaxes,  ontologies,  and  semantics),  EB  clinical  protocols  centered  on  a  

patient’s  clinical  history,  and  knowledge-­‐based  point-­‐of-­‐care  tools  that  provide  real-­‐time  

access  to  a  diagnostic  decision  support  system.  The  newly  designed  EMR  system,  EMR  WB,  

was  implemented  in  a  public,  multidisciplinary  family  medicine  clinic  at  the  University  of  

Guanajuato  in  an  underserved  urban  community  in  the  city  of  Leon,  Mexico.  The  CUSS  is  

equipped  with  computers  and/or  mobile  devices  with  access  to  the  internet.    

The  objectives  of  this  independent  research  project  are  to  1)  Highlight  the  importance  of  

and  need  to  better  understand  the  logistics  of  bringing  patient  records  out  of  the  ink-­‐and-­‐

paper  era  and  into  the  state-­‐of-­‐the-­‐art  computer  age,  and  2)  Learn  about  provider  

satisfaction  with  EMR  WB  use  in  comparison  with  the  paper-­‐based  system.  During  this  

onsite,  hands-­‐on  experience,  the  focus  was  on  answering  “why”  and  “how-­‐to”  questions  

regarding  the  definition,  design,  implementation,  interoperability,  and  evaluation  of  EMR  

WB.    

The  focus  group  was  used  to  establish  the  feasibility  of  implementing  EMR  WB  at  the  CUSS.  

Evaluation  of  the  system  was  conducted  via  the  EMR  WB  Questionnaire  for  User  

Page 44: Dissertation EMR WB Saavedra Final 12-10-12

  35  

Satisfaction  (EMR  WB  QUS)  survey  focused  on  provider  satisfaction.  It  was  hypothesized  

that  EMR  WB  use  would  have  an  overall  positive  measurable  effect  on  provider  

satisfaction.    

 

   

Page 45: Dissertation EMR WB Saavedra Final 12-10-12

  36  

Chapter  II:  Methods—Designing  the  Solution  

The  possibility  that  technology  can  help  providers  accurately  capture  unstructured  and  

structured  data  from  the  clinical  encounter,  transfer  it  into  the  medical  record,  and  then  

share  and  retrieve  it  offers  a  solution  to  the  current  EMR  design  that  represents  a  paradigm  

shift  in  health  care.  This  change  means  moving  away  from  the  fragmented,  difficult-­‐to-­‐use  

EMR  system  [1,4]  towards  well-­‐defined,  standardized,  easy-­‐to-­‐use  processes  with  decision  

support  and  universal  access.    

The  overall  strategy  used  to  accomplish  the  specific  aims  of  the  project  as  described  in  

Section  1.5  was  focused  on  building  a  system  from  the  beginning,  without  borrowing  codes  

from  open  sources  or  extending  existing  open  EMR  systems  (e.g.,  OpenMRS18  and  

OpenEMR19).  This  decision  was  made  because  the  open-­‐source  software  available  carried  

the  same  functional  limitations  in  their  design  that  most  EMRs  have  as  outlined  in  this  

study:  1)  Minimal  accessibility,  2)  Incomplete  and  inconsistent  clinical  documentation,  3)  

Lack  of  connectivity  between  medical  record  categories,  and  4)  Limited  or  no  decision  

support  tools  at  the  point-­‐of-­‐care.  The  focus  of  most  original  EMR  developers  and  users  

was  to  solve  specific  administrative  problems,  which  included  providing  service-­‐related  

functions  for  admission,  discharge,  and  billing.  The  central  idea  of  the  EMR  WB  design  is  a  

system  with  a  well-­‐structured,  standardized  foundation  that  will  support  taking  accurate  

data  from  the  clinical  encounter  into  the  medical  record,  sharing  and  retrieving  it,  and  

integrating  it  into  the  practice  of  medicine  and  biomedical  research.      

   

                                                                                                               18  OpenMRS  offical  website:    http://openmrs.org/    19    OpenEMR  ofical  website:  http://www.open-­‐emr.org/    

Page 46: Dissertation EMR WB Saavedra Final 12-10-12

  37  

2.1.  Access  

A  tool  was  created  to  provide  a  response  to  needs  for  information  access,  exchange,  and  

interoperability  across  an  unlimited  number  of  institutions,  communication  platforms,  and  

political  borders.  This  solution  was  integrated  into  a  web-­‐based  system  using  cloud  

computing,  which  refers  to  subscription-­‐based,  fee-­‐for-­‐service  utilization  of  computer  

hardware  and  software  over  the  internet  [20].  The  model  is  gaining  acceptance  for  

business  IT  applications  because  it  allows  capacity  and  functionality  to  increase  on  the  fly  

without  major  investment  in  infrastructure,  personnel,  or  licensing  fees  [5,9].  Large  IT  

investments  can  be  converted  to  a  series  of  smaller  operating  expenses.  Cloud  

architectures  could  potentially  be  superior  to  traditional  EMR  designs  in  terms  of  economy,  

efficiency  and  utility.  Also,  the  cloud  computing  model  can  achieve  acceptable  privacy  and  

security  through  cloud  providers  that  specify  compliance  requirements,  performance  

metrics,  and  liability  sharing  [9,20].  In  the  CUSS  setting,  providers  were  able  to  access  EMR  

WB  through  any  platform  (mostly  desktop  PCs),  anywhere,  anytime  through  internet  

access  provided  by  the  University  of  Guanajuato  and  local  cell  phone  network  using  cloud  

computing.  

2.1.1.  Strategy  

The  ability  to  approach,  enter,  exit,  communicate  with,  and  make  use  of  EMRs  across  

diverse  computer  and  smart  phone  platforms  was  created  by  contracting  with  commercial  

services  to  securely  host  EMRs  “in  the  cloud,”  an  efficient  web-­‐based  system.  Providers  

were  thus  able  to  access  EMRs  through  any  platform  anywhere,  anytime.    

 

Page 47: Dissertation EMR WB Saavedra Final 12-10-12

  38  

2.1.2.  Server  hosting  

The  hosting  company  maintaining  the  web  server  software  and  computers  was  selected  

based  on  the  provision  of  reliable  and  low-­‐cost  web  services  24  hours  a  day,  seven  days  a  

week.  Arvixe  Web  Hosting  (http://www.arvixe.com)  also  provides  data  backup  and  

technical  servicing  of  the  software  and  hardware  in  a  large  facility  with  state-­‐of-­‐the-­‐art  

equipment  and  staffing.  Arvixe.com  is  currently  considered  one  of  the  best  hosting  services  

available  worldwide  and  has  received  numerous  web  hosting  awards  

(https://www.arvixe.com/awards.php).    

2.1.3.  Cloud  computing  

The  concept  of  the  “cloud”  is  an  extension  of  existing  computing  practices,  but  places  more  

content  and  program  code  in  the  hands  of  remote  servers  rather  than  the  user’s  local  

computer  [20].  In  the  case  of  the  EMR  WB  system,  the  web  server  is  providing  the  storage  

for  medical/clinical  records  and  the  principal  software  application  (the  web  application  

software  on  the  site’s  server)  that  manages  these  records  for  users.    

2.1.4.  Administrative  management  

Access  to  the  application  is  via  the  World  Wide  Web.  This  makes  the  application  open  to  

patients,  providers,  and  administrators  through  simple  use  of  web  browsers.  The  user  roles  

are  defined  as  follows:  1)  Patient:  view  clinical  records  and  notes,  but  may  only  change  

certain  personal  information  such  as  phone  numbers  and  addresses;  2)  Administrator  

(Admin):  create  and  edit  patient  records,  but  cannot  access  deeper  levels  of  system  control.  

Admin  cannot  edit  or  create  other  user  roles,  for  example,  nor  can  they  change  system  

Page 48: Dissertation EMR WB Saavedra Final 12-10-12

  39  

configuration  settings  or  delete  patient  records;  3)  SuperAdmin:  edit,  view,  delete  patient  

records,  and  have  similar  control  over  other  Patient,  Admin,  and  SuperAdmin  user  

accounts;  4)  SuperDooperAdmin:  manage  problems  that  may  appear  in  the  system  to  

modify,  update,  and  develop  the  software  and/or  help  other  roles  recover  lost  accounts  or  

other  information.    

The  EMR  WB  site  automatically  sends  different  page  data  according  to  specific  user  roles,  

access  devices,  and  browsers.  Testing  indicates  that  most  devices  such  as  iPhones  and  

iPads  are  able  to  scale  the  page  or  arrange  it  in  the  display  appropriately  enough  to  use.  

The  emulators20  are  more  valuable  at  this  point  for  developing  applications  that  are  

targeted  to  run  on  those  particular  devices.  So  far,  no  device-­‐specific  codes  have  been  

necessary.  At  this  stage  of  version  1.5,  monitoring  indicates  that  EMR  WB  is  working  

appropriately.  Users  have  access  to  the  electronic  mail  addresses  of  technical  support  as  

well  as  the  project  supervisor  at  the  EMR  WB  front  page  (by  clicking  “About  Us”).    

2.1.5.  Privacy  

Security  and  privacy  of  the  role-­‐based  account  system  relies  on  the  Microsoft  (Active  

Server  Pages)  ASP.NET  membership  classes  in  the  Common  Language  Runtime  (CLR)21  of  

the  .NET  system.  It  uses  encrypted  cookies  and  other  methods  that  ensure  a  malicious  user  

cannot  forge  or  decode  information  to  access  someone  else’s  account.  Using  secure  socket  

layers  (SSL)  protects  user  privacy  on  the  internet  by  encoding  the  information  sent  back  

                                                                                                               20  In  computing,  an  emulator  is  hardware  or  software  or  both  that  duplicates  (or  emulates)  the  functions  of  a  first  computer  system  (the  guest)  in  a  different  second  computer  system  (the  host)  so  that  the  emulated  behavior  closely  resembles  the  behavior  of  the  real  system.  This  focus  on  exact  reproduction  of  behavior  is  in  contrast  to  some  other  forms  of  computer  simulation  in  which  an  abstract  model  of  a  system  is  being  simulated  (http://en.wikipedia.org/wiki/Emulators).    21  The  CLR  is  a  special  runtime  environment  that  provides  the  underlying  infrastructure  for  Microsoft's  .NET  framework.  This  runtime  is  where  the  source  code  of  an  application  is  compiled  into  an  intermediate  language  called  CIL,  originally  known  as  MSIL  (Microsoft  Intermediate  Language).  When  the  program  is  run,  the  CIL  code  is  translated  into  the  native  code  of  the  operating  system  using  a  just-­‐in-­‐time  (JIT)  compiler  (http://en.wikipedia.org/wiki/Common_Language_Runtime).      

Page 49: Dissertation EMR WB Saavedra Final 12-10-12

  40  

and  forth  from  a  user’s  browser  [37].  Consequently,  EMR  WB  is  fully  compliant  with  the  

Health  Insurance  Portability  and  Accountability  Act  (HIPAA)  and  privacy  standards  

recommended  by  the  United  States  and  Mexico  [60].  

2.1.6.  Concurrency  

Achieving  concurrency  of  information  requires  managing  information  in  the  data  set  that  

may  undergo  modification  from  multiple  users  in  different  locations.  In  the  case  of  EMR  

WB,  usage  is  typically  limited  to  a  single  health  practitioner  modifying  a  record,  such  as  

during  a  consultation  or  shortly  afterward.  In  the  rare  instance  another  user  is  modifying  

the  same  record,  the  last  record  entered  will  overwrite  the  other  user’s  input.  A  more  

complicated  scenario  is  if  user  1  uploads  a  document  that  was  modified  by  user  2  while  

user  1  was  disconnected  from  the  internet,  then  user  1’s  upload  could  be  labeled  as  a  

conflicted  copy.  Further  research  into  concurrency  will  be  needed  to  address  this  problem.    

Concurrency  is  a  difficult  issue  in  all  multi-­‐user  environments.  Solutions  vary,  depending  

on  the  context  and  requirements.  Database  tables  can  be  locked,  or  a  given  patient  record  

could  be  locked  for  exclusive  use  by  the  user  who  opens  the  patient  record.  However,  on  

the  web,  it  is  difficult  to  assess  when  the  “owner”  has  closed  the  need  for  a  reservation  on  

the  patient  record.  An  open  or  locked  record  might  exist  if  a  user  walks  away  from  a  

terminal  for  some  reason  and  forgets  to  close  the  patient  account.  This  would  prevent  

another  legitimate  user  from  modifying  that  record.    

Page 50: Dissertation EMR WB Saavedra Final 12-10-12

  41  

An  “atomic”22  update  for  any  given  page  is  currently  being  used  to  achieve  concurrency  for  

EMR  WB  use.  This  includes  a  tracking  method  that  identifies  who  modified  a  record  most  

recently,  which  allows  secondary  users  to  communicate  about  patient  records  directly  with  

the  user  who  was  responsible  for  recording  the  information  in  question.  Ways  to  improve  

this  method  are  being  considered,  such  as  notifying  users  if  a  record  was  updated  after  they  

opened  it.      

2.1.7.  Scalability  

The  EMR  pilot  project  runs  on  a  single  server  machine.  In  a  production  environment  with  

many  thousands  or  millions  of  records,  the  system  would  need  to  be  expanded  using  server  

farms.  Web  requests  would  be  routed  to  machines  with  the  capacity  to  accept  additional  

load.  The  appearance  of  the  system  for  the  public  would  be  that  of  a  single  website  entity,  

and  the  access  speed  would  remain  unchanged.    

2.1.8.  Expandability  

In  addition  to  the  adaptations  mentioned  above,  other  features  could  be  added  to  expand  

the  practical  application  of  the  EMR  WB  system.  For  example,  the  web  has  the  disadvantage  

that  some  people  may  not  have  consistent  access  to  it.  The  system  may  also  be  subject  to  

failures  of  various  kinds,  such  as  temporary  outages  due  to  hardware  or  software  failures,  

electric  storms,  etc.  One  proposed  solution  is  to  provide  multiple  methods  to  access  the  

database.  A  stand-­‐alone  software  application  running  on  a  user’s  local  machine  could  serve  

as  a  proxy  for  the  web  application,  allowing  temporary  local  storage  of  patient  data.  When  

                                                                                                               22  Atomicity  (database  systems):  It  is  an  operation  during  which  a  processor  can  simultaneously  read  a  location  and  write  it  in  the  same  bus  operation.  This  prevents  any  other  processor  or  I/O  device  from  writing  or  reading  memory  until  the  operation  is  complete.  Atomic  implies  indivisibility  and  irreducibility,  so  an  atomic  operation  must  be  performed  entirely  or  not  performed  at  all.  Source,  Webopedia:  http://www.webopedia.com/TERM/A/atomic_operation.html    

Page 51: Dissertation EMR WB Saavedra Final 12-10-12

  42  

access  to  the  central  database  becomes  available,  the  local  application  could  synchronize  

the  records,  for  example.  This  application  would  allow  the  provider  to  work  offline  when  

internet  access  is  interrupted  or  otherwise  not  accessible  temporarily,  to  continue  their  

work  uninterrupted  when  offline,  and  reconnect  automatically  when  internet  access  is  

reestablished.  Applications  such  as  these  will  also  be  designed  for  tablet  computing  

platforms  or  smart  phones  to  allow  for  data  entry  in  remote  or  undeveloped  locations.      

The  EMR  WB  design  supports  the  development  of  ideas  about  how  practical  application  of  

the  software  can  be  expanded  to  be  more  comprehensive,  including  meaningful  use  of  

certified  EMR  technology  as  defined  by  the  US  Department  of  Health  and  Human  Services  in  

the  Health  Information  Technology  for  Economic  and  Clinical  Health  (HITECH)  Act.  

“Meaningful  use”  of  HIT  is  an  umbrella  term  for  rules  and  regulations  that  hospitals  and  

physicians  must  follow  to  qualify  for  federal  incentives  under  the  American  Recovery  and  

Reinvestment  Act  of  2009  (ARRA).  ARRA  authorizes  the  Centers  for  Medicare  and  Medicaid  

Services  (CMS)  to  reimburse  eligible  professionals  and  hospitals  that  meet  meaningful  use  

criteria  for  certified  EMR  technology.  This  includes  using  an  EMR  for  functions  that  both  

improve  and  demonstrate  the  quality  of  health  care,  such  as  e-­‐prescribing,  electronic  

exchange  of  health  information,  and  submission  of  quality  measures  to  CMS.23  Also,  

international  health  care  informatics  interoperability  standards  developed  by  Health  Level  

Seven  International  (HL7)  that  are  recommended  by  the  America  Academy  of  Family  

Physicians  (AAFP)24  will  be  incorporated.  Based  on  these,  for  example,  EMR  WB  could  

interface  to  or  incorporate  billing  and  accounting  record-­‐keeping  systems,  appointment  

                                                                                                               23  http://www.gpo.gov/fdsys/pkg/FR-­‐2010-­‐01-­‐13/html/E9-­‐31217.htm        24  AAFP  2011  HL7  list  of  EHR  functions:  http://www.centerforhit.org/online/chit/home/cme-­‐learn/tutorials/ehrcourses/ehr120/basicfunctions/hl7.html    

Page 52: Dissertation EMR WB Saavedra Final 12-10-12

  43  

management,  scheduling,  and  other  record  management  as  part  of  the  mainstream  

administrative  capabilities  of  most  EMRs  in  use  today.  

 

2.2.  Programming  Language  

The  application  for  EMR  WB  was  written  using  Microsoft  ASP.NET  C#  programming  

language  for  server  software.  It  runs  under  the  Microsoft  IIS  7  web  server  and  relies  on  the  

.NET  platform,  version  4.0,  at  this  time.  The  easiest  way  to  understand  what  the  .NET  

platform  does  is  to  think  of  it  as  a  standard  set  of  functions  that  are  available  for  various  

programming  languages  to  call  up  when  needed.  It  was  intended  to  be  multi-­‐platform,  like  

the  Java  Virtual  Machine,  and  can  therefore  allow  the  same  programs  to  run  without  

change  on  various  operating  systems  and  devices.  The  .NET  now  runs  on  Microsoft  

Windows  and  MONO  operating  environments.  The  EMR  WB  application  also  relies  on  

client-­‐side  software,  which  runs  directly  in  a  user's  browser  software  on  their  local  

computer.  For  this,  the  system  uses  jQuery  javascript  and  Ajax.  The  specific  programming  

model  used  is  the  Microsoft  Web  Application  model.  In  this  scenario,  the  executable  code  

resides  in  a  central  dynamically-­‐linked  library  (DLL).  The  code  supports  the  functionality  in  

the  various  pages,  and  is  executed  on  demand  when  pages  are  requested  from  a  web  

server.  The  programming  code  is  compiled  during  the  software  development  stage  and  

then  stored  on  the  server  in  the  DLL  file  storage  area.  In  this  model,  known  as  a  “code-­‐

behind”  model,  the  C#  programming  logic  is  separated  from  the  page  scripts,  which  are  

principally  responsible  for  visual  presentation  of  content  to  the  user.    

 

Page 53: Dissertation EMR WB Saavedra Final 12-10-12

  44  

The  programming  for  EMR  WB  was  based  on  the  following  process:  

(1)  Initial  Planning.  Define  the  problem  and  general  goals  of  the  project.  

(a)  Consider  the  advantages  and  disadvantages  of  possible  approaches  to  arrive  at  a  

solution.  It  was  at  this  stage  where  a  web  application  was  chosen  over  third-­‐party  

cloud-­‐based  and  client  software  application  solutions,  for  example.  

(b)  Consider  the  goals  for  user  interaction.  At  this  stage  user  interactions  were  

considered  in  terms  of  certain  desirable  functional  goals.  Avoiding  problems  with  

existing  software  due  to  complex,  multi-­‐layered  user  navigation  was  an  important  

goal,  as  was  ease  of  use  based  on  an  intuitive  interface  approach.  

(2)  Application  Design  Assessment.  What  would  be  the  best  way  to  solve  the  problem?  

  (a)  Consider  the  platform,  programming  language,  and  development  tools.  

  (c)  Consider  the  needs  for  multi-­‐language  functionality.  

(d)  Consider  the  data  storage  requirements  and  database  platform.  MySql  was  

chosen  due  to  performance,  ease  of  use,  low  cost,  and  availability.  

(e)  Consider  the  development  time-­‐line.  How  long  would  the  project  take?  Set  dates  

for  phased  testing,  deployment,  and  assessment.  

(3)  Development.  For  this  a  mix  of  top-­‐down  and  bottom-­‐up  programming  strategies  were  

used.  The  top-­‐down  approach  involved  sketching  out  a  rough  framework,  including  setting  

up  web  pages  for  editing  patient  records,  administrative  management,  and  user  account  

access.  This  framework  was  then  gradually  fleshed  out  with  user  interface  details  and  code-­‐

Page 54: Dissertation EMR WB Saavedra Final 12-10-12

  45  

behind  logic  to  support  functional  behaviors.  The  bottom-­‐up  approach  involved  doing  

some  detailed  functionality  at  a  low  level,  including  developing  software  object  classes  for  

abstraction  of  database  access  functions.25    

The  following  activities  formed  the  development  process,  mostly  in  a  cyclical  manner  (i.e.,  

the  debugging  process  returned  me  to  the  programming  stage  recurrently).  

  (a)  Programming.    

  (b)  Debugging  and  testing.  

(c)  Deployment  and  user  testing.  This  was  the  beta  testing  phase  in  which  potential  

clients  used  the  software,  and  problems  were  discovered  and  fixed.  

 

2.3.  Standardization    

Standardization  is  the  process  of  establishing  a  technical  specification  that  is  understood  

globally.26  Standardization  is  a  very  relevant  concern  for  EMRs  because  there  has  been  no  

synchronization  of  terms,  relationships,  meaning,  construction  of  sentences,  and  linguistics,  

which  can  compromise  the  quality  of  health  care  [9,50].  

   

                                                                                                               25  Class  (computer  programming):  In  object-­‐oriented  programming,  a  class  is  a  construct  that  is  used  to  create  instances  of  itself  –  referred  to  as  class  instances,  class  objects,  instance  objects  or  simply  objects.  A  class  defines  constituent  members  which  enable  its  instances  to  have  state  and  behavior.  Data  field  members  (member  variables  or  instance  variables)  enable  a  class  instance  to  maintain  state.  Other  kinds  of  members,  especially  methods,  enable  the  behavior  of  class  instances.  Classes  define  the  type  of  their  instances.  Source:  http://en.wikipedia.org/wiki/Class_(computer_programming)#CITEREFGamma.2C_Helm.2C_Johnson.2C_Vlissides1995    26  http://en.wikipedia.org/wiki/Standardization    

Page 55: Dissertation EMR WB Saavedra Final 12-10-12

  46  

2.3.1.  Strategy  

The  strategy  for  standardization  of  EMR  WB  was  based  on  the  premise  that  the  best  quality  

of  service  is  determined  by  a  clear  understanding  of  the  patient,  an  accurate  diagnosis,  and  

treatment  planned  according  to  the  latest  EB  medical  knowledge,  experience,  and  patient  

choice  [27,28].  The  framework  was  based  on  the  belief  that  the  milestone  of  best  quality  of  

service  in  clinical  medicine  can  be  achieved  using  a  standardized  clinical  history  [5,45].  The  

use  of  state-­‐of-­‐the-­‐art  technology  to  computerize  the  clinical  history,  integrate  an  easy-­‐to-­‐

use  interface,  and  access  knowledge  facilitated  achieving  this  milestone.  As  Rector  et  al.  

pointed  out  back  in  1991,  “structure  is  essential  if  the  system  is  to  be  active  in  organizing  

information  for  the  clinician  as  well  as  to  support  valid  aggregation  of  data”  [45].    

The  goal  of  developing  a  standardized  clinical  history  model  was  accomplished  by  creating  

an  architecture  to  guide  unstructured  and  structured  information  pertinent  to  the  process  

of  clinical  care.  The  clinical  core  is  the  guidepost  that  keeps  all  the  different  elements  of  the  

EMR  system  moving  down  the  same  track.  The  family  medicine  clinical  history  consists  of  a  

high-­‐yield  condensing  of  elements  from  other  core  clinical  and  surgical  medical  specialties;  

in  particular,  internal  medicine,  pediatrics,  obstetrics,  gynecology,  geriatrics,  and  general  

surgery.  The  clinical  core  was  thus  structured  to  incorporate  state-­‐of-­‐the-­‐art  terminology  

using  1)  controlled  vocabulary  (terms),  2)  ontologies  (relationships),  3)  semantics  

(meaning),  4)  syntaxes  (constructing  sentences),  and  linguistics  (technical  English  and  

Spanish);  then  two  additional  elements  were  included:  5)  EB  literature  and  6)  peer-­‐

reviewed  clinical  protocols.27  In  this  context,  the  master  problem  list28  is  placed  at  the  

                                                                                                               27    e.g.,  National  Institutes  of  Health  (NIH)  Consensus  Development  Program.  NIH  State-­‐of-­‐the-­‐Science  Conference:  Family  History  and  Improving  Health  (2009,  http://consensus.nih.gov/2009/familyhistorystatement.htm)  

Page 56: Dissertation EMR WB Saavedra Final 12-10-12

  47  

beginning  of  the  clinical  history  because  it  represents  patient  problems  that  serve  as  an  

index  to  their  record.  

2.3.2.  Terminology  

Rector  et  al.  [50,51]  pointed  out  that  clinical  terminologies  are  at  the  center  of  efforts  to  

develop  and  integrate  EMR  systems.  In  the  standardized  EMR  context,  a  terminology  is  a  

set  of  words,  expressions,  designations,  or  symbols  used  in  a  domain  of  knowledge  that  is  

defined  primarily  through  natural  language  [46,47].  A  terminology  describes  the  concepts  

within  a  particular  subject  and  is  oriented  towards  coding  and  annotating  data  rather  than  

inference  [47].  A  terminology  generally  consists  of  the  technical  terms  or  expressions  used  

in  a  specific  field.  The  terminology  may  be  organized  according  to  a  hierarchy29  or  

categories,30  and  terminology  developers  and  curators  may  use  ontology  tools  and  

methods  for  organization  and  management  (see  Table  2  and  Appendix  E).  Although  

terminologies  such  as  the  National  Cancer  Institute  Thesaurus  (NCIt)31  can  be  machine-­‐

readable  and  used  for  inference,  the  ability  to  represent  and  infer  knowledge  is  not  as  

expressive  as  an  ontology.  Terminologies  are  not  necessarily  intended  to  be  machine-­‐

interpretable  or  executable  models  for  inference.  In  this  context,  inference  may  simply  be  

about  properties  in  a  hierarchy  of  relationships  [46,47,48].    

 

                                                                                                                                                                                                                                                                                                                                                                     28  The  MASTER  PROBLEM  LIST  is  an  index  system  of  record-­‐keeping  in  which  a  list  of  the  patient’s  problems  is  made.    All  of  the  problems  are  numbered  and  the  approximate  date  of  onset,  date  problem  recorded,  active  problems,  inactive/resolved  problems,  and  date  resolved  are  documented  for  each  problem  placed  under  the  heading.  29  A  hierarchy  can  be  defined  as  an  arrangement  of  items  (objects,  names,  values,  categories,  etc.)  in  which  the  items  are  represented  as  being  "above,"  "below,"  or  "at  the  same  level  as"  one  another.  Abstractly,  a  hierarchy  is  an  ordered  set  or  an  acyclic  graph.  A  hierarchy  can  link  entities  directly,  indirectly,  vertically,  or  horizontally  (source:  Wikipedia).    30  A  category  is  a  class  or  division  of  people  or  things  regarded  as  having  particular  shared  characteristics  (source:  Oxford  dictionaries).  31  http://ncit.nci.nih.gov/ncitbrowser/      

Page 57: Dissertation EMR WB Saavedra Final 12-10-12

  48  

Standard  medical  terminology  

common  in  primary  medical  

domains  was  used  as  the  

vocabulary  for  accurately  

describing  the  clinical  core  of  

EMR  WB  in  a  systematic,  

science-­‐based  manner.  This  

approach  involved  reviewing  

each  word  and  phrase  

(syntaxes)  of  the  clinical  

histories  and  formats  described  in  the  literature  in  a  comprehensive  and  orderly  fashion  to  

come  up  with  state-­‐of-­‐the-­‐art  clinical  content  for  EMR  WB.  Häyrinen  et  al.  systematically  

reviewed  the  research  dealing  with  EMR  content  in  2008  due  to  increased  concern  about  a  

lack  of  structure  leading  to  ineffective  clinical  documentation  [5,65].  Hence,  one  of  the  most  

important  features  of  the  EMR  WB  clinical  core  standardized  structure  design  is  its  ability  

to  consistently  facilitate  structured  clinical  documentation  to  fill  this  gap  and  mainstream  

limitation.    

MeSH32  were  consulted  as  the  primary  knowledge  source  for  EMR  WB,  along  with  Unified  

Medical  Language  System  (UMLS);33  Systematized  Nomenclature  of  Medicine—Clinical  

Terms  (SNOMED  CT:  English  and  Spanish  versions);34  Generalized  Architecture  for  

                                                                                                               32  http://www.ncbi.nlm.nih.gov/mesh    33  http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html    34  http://www.nlm.nih.gov/research/umls/Snomed/snomed_faq.html#what    

Table  2:  Philosophical  approach  to  standardization.  The  standardized  approach  used  a  multidisciplinary  family  medicine  clinical  history  as  a  backbone,  called  “the  clinical  core”  of  the  EMR  WB  system,  which  integrated  state-­‐of-­‐the-­‐art  terminology  (controlled  vocabulary,  ontologies,  semantics,  and  syntaxes)  with  EB  and  peer-­‐reviewed  clinical  protocols.      Integration  of  State-­‐of-­‐the-­‐art  Terminology    

• Controlled  vocabulary  (terms)    • Ontologies  (relationships)    • Semantics  (meaning)  • Syntaxes  (constructing  sentences)  • Linguistics  (technical  English  and  Spanish)  

 Clinical  History  

• EB  literature  and  guidelines  • Peer-­‐reviewed  clinical  formats  and  protocols    

 

Page 58: Dissertation EMR WB Saavedra Final 12-10-12

  49  

Languages,  Encyclopedias,  and  Nomenclatures  in  Medicine  (GALEN);35  Logical  Observation  

Identifiers  Names  and  Codes  (LOINC);36  National  Cancer  Institute  Thesaurus  Terminology  

(NCIt);37  International  Classification  for  Disease  (ICD)—9  and  10;38  Diagnostic  and  

Statistical  Manual  of  Mental  Disorders,  Fourth  Edition  (DSM-­‐IV);39  Medical  Dictionary  for  

Regulatory  Activities  (MedDRA);40  and  The  Clinical  Care  Classification  (CCC)  System41  to  

check  the  accuracy  of  the  terminology  used  to  construct  the  clinical  core.  In  addition,  

Medpedia,42  Medicalopedia,43  and  the  Merck  Manual  Online  Professional  Edition,44  medical  

textbooks  considered  the  gold  standards  in  the  field  of  clinical  medicine  by  leading  medical  

schools  in  the  United  States  and  Mexico,45  were  consulted  to  verify  the  formal  clinical  

history  and  physical  exam  protocols,  formats,  properties  of  concepts,  and  relationships  for  

consistency  and  accuracy.  Such  leading  textbooks  and  specialized  encyclopedias  provided  

the  best  approach  in  the  context  of  this  EMR  design  to  1)  identify  the  specific  meaning  of  

terms  used  based  on  linguistic  semantics  to  express  meaning  through  natural  languages;  

and  2)  use  syntax  as  a  means  to  apply  principles  and  rules  for  constructing  sentences  in  

English  and  Spanish  (see  Appendix  D-­‐1,2:  Standardization  Process  Sample).                                                                                                                  35  http://www.opengalen.org/      36  http://loinc.org/      37  https://wiki.nci.nih.gov/display/VKC/NCI+Thesaurus+Terminology    38  http://apps.who.int/classifications/apps/icd/icd10online/      39  http://www.psychiatry.org/practice/dsm  (the  fifth  edition  will  be  released  on  May  2013).    40  MedDRA  is  a  medical  terminology  used  to  classify  adverse  event  information  associated  with  the  use  of  biopharmaceuticals  and  other  medical  products  (e.g.,  medical  devices  and  vaccines).  Coding  these  data  to  a  standard  set  of  MedDRA  terms  allows  health  authorities  and  the  biopharmaceutical  industry  to  more  readily  exchange  and  analyze  data  related  to  the  safe  use  of  medical  products.  Source:  http://www.meddramsso.com/        41  The  Clinical  Care  Classification  (CCC)  System  is  a  standardized,  coded  nursing  terminology  that  identifies  the  discrete  elements  of  nursing  practice.  CCC  provides  a  unique  framework  and  coding  structure  for  capturing  the  essence  of  patient  care  in  all  health  care  settings.  Source:  http://www.sabacare.com    42  The  Medpedia  Project  is  a  long-­‐term,  worldwide  project  to  evolve  a  new  model  for  sharing  and  advancing  knowledge  about  health,  medicine  and  the  body  among  medical  professionals  and  the  general  public.  This  model  is  founded  on  providing  a  free  online  technology  platform  that  is  collaborative,  interdisciplinary  and  transparent  (http://www.medpedia.com/).  43  Medicalopedia  is  a  medical  wiki  written  collaboratively  by  healthcare  professionals  all  around  the  world.  It  was  founded  in  December  2010  by  Burhan  Ahmed  with  the  aim  of  collecting  all  medical  information  and  making  it  available  at  a  single  portal  (http://en.medicalopedia.org).  44  http://www.merckmanuals.com/professional/index.html  45  1)  Bates'  Guide  to  Physical  Examination  and  History  Taking  /  Edition  10,  December  2008;    2)  The  Clinical  Encounter:  A  Guide  to  the  Medical  Interview  and  Case  Presentation  /  Edition  2  August  1998,  by  J.  Andrew  Billings,  John  D.  Stoeckle;  3)  DeGowin's  Diagnostic  Examination,  Ninth  Edition  /  Edition  9,  October  2008  by  Richard  F.  LeBlond,  Donald  D.  Brown,  Richard  L.  DeGowin;  4)  Physical  Examination  and  Health  Assessment  /  Edition  6  by  Carolyn  Jarvis;  and  5)  Introduction  to  clinical  medicine.  Janice  L.  Willms,  and  Judy  Lewis.  National  Medical  Series.  January  1991.  Lippincott  Williams  &  Wilkins.  Paperback  ,  260pp.  

Page 59: Dissertation EMR WB Saavedra Final 12-10-12

  50  

Open-­‐source  ontologies,  mostly  BioPortal  of  the  National  Center  for  Biomedical  Ontologies  

supported  by  the  National  Institutes  of  Health  (NIH)46  and  Foundational  Model  of  Anatomy  

(FMA),47  were  also  consulted  because  they  provide  a  shared  understanding  of  a  domain,  in  

this  case  the  clinical  history  and  anatomy,  by  defining  relationships  among  clinical  terms.  

The  terms  denote  important  concepts  (classes  of  objects)  in  the  domain  (e.g.,  History  of  

Present  Illness—HPI;  see  Appendix  E:  Example  of  Standardized  HPI  Content  within  the  

Clinical  Core)  and  the  relationships  that  typically  include  hierarchies  of  classes  (see  

Appendix  C:  The  National  Center  for  Biomedical  Ontology  BioPortal).    

Controlled  vocabularies  were  used  to  build  the  terminology  for  EMR  WB.  First,  a  draft  of  

the  clinical  history  template  was  compiled  from  a  variety  of  protocols  in  leading  US  (e.g.,  

UW  School  of  Medicine,  and  Harvard  Medical  School),  and  Mexican  (Autonomous  

University  of  Nuevo  Leon  School  of  Medicine,  and  the  University  of  Guanajuato  School  of  

Medicine)  medical  schools,  and  the  gold  standard  textbooks  and  peer-­‐reviewed  literature.21  

After  that,  the  terminology  that  represents  the  structure  of  the  clinical  history  was  

systematically  compared  against  the  controlled  vocabulary  tools  outlined  above,  creating  

the  state-­‐of-­‐the-­‐art  clinical  content  of  the  medical  record  and  the  other  key  primary  care  

domains  (psychology,  nursing,  nutrition,  and  social  work)  considered  in  EMR  WB.      

 

   

                                                                                                               46  BioPortal  is  an  open  repository  of  biomedical  ontologies  that  provides  access  via  Web  browsers  and  Web  services  to  ontologies.  BioPortal  supports  ontologies  in  OBO  format,  OWL,  RDF,  Rich  Release  Format  (RRF),  Protégé  frames,  and  LexGrid  XML.    Functionality  includes  the  ability  to  browse,  search  and  visualize  ontologies  as  well  as  to  comment  on,  and  create  mappings  for  ontologies.  http://bioportal.bioontology.org/  47  The  Foundational  Model  of  Anatomy  Ontology  (FMA)  is  a  reference  ontology  for  the  domain  of  anatomy.    http://sig.biostr.washington.edu/projects/fm/AboutFM.html  

Page 60: Dissertation EMR WB Saavedra Final 12-10-12

  51  

2.4.  Interface  

With  the  recent  explosive  growth  of  electronic  medical  information,  the  user  interface  

design  of  EMRs  has  become  a  crucial  issue.  Many  interfaces  in  current  EMRs  are  barriers  

between  users  and  tasks  [4,10].  By  re-­‐implementing  these  interfaces  in  functionally  

equivalent  but  representationally  different  interfaces,  the  barriers  can  be  removed  or  

minimized  via  direct  interaction.    

For  EMR  WB,  the  interface  was  constructed  so  that  users  could  easily  and  accurately  

retrieve,  seek,  gather,  encode,  transform,  organize,  and  manipulate  pertinent  information  

to  accomplish  desired  tasks.  Two  top  menu  bars  are  always  visible  across  the  screen  

regardless  of  where  the  user  is  working.  The  upper  bar  shows  the  different  domains  as  

buttons  (medicine,  psychology,  nursing,  nutrition,  and  social  work).    

The  user  can  click  once  at  the  desired  domain  (e.g.,  medicine),  and  then  the  second  bar  

immediately  below  will  open  to  display  a  series  of  buttons  that  represent  the  subfields  of  

this  specific  domain  (e.g.,  Identifying  data—ID,  Chief  Complaint—CC,  History  of  Present  

Illness—HPI).  In  addition,  the  content  of  the  specific  chosen  subfield  is  displayed  as  

subheadings  across  the  screen  below  the  bars.  Each  subheading  is  executable  with  one  

click  for  input  or  data  gathering.  User  activities  can  direct  interaction  with  the  task  

domains  rather  than  generating  secondary  tasks  that  demand  extra  cognitive  resources  

[13].  All  the  fields  are  readily  accessible  without  having  to  move  up  or  down  a  hierarchy  of  

navigation  menu  items  (see  Figure  2).    

Page 61: Dissertation EMR WB Saavedra Final 12-10-12

  52  

 

2.5.  Decision  Support  

Including  this  function  in  EMR  WB  was  based  on  studies  that  show  providers  have  a  high  

need  for  information  to  answer  the  multitude  of  questions  that  arise  during  clinical  care  

[2,21-­‐27].  These  questions  often  go  unanswered  due  to  lack  of  time  or  readily  available  

resources.  Estimates  of  information  needs  are  as  high  as  four  questions  per  patient  

encounter  [26].  Failure  to  answer  these  questions  may  result  in  patient  care  error  and  

 

 

Figure  2:  The  EMR  WB  interface.  A  screenshot  of  EMR  WB  showing  two  top  menu  bars  that  are  always  visible.  The  upper  bar  shows  the  different  domains  as  buttons  (medicine,  psychology,  nursing,  nutrition,  and  social  work).  The  second  bar  immediately  below  opens  to  display  a  series  of  buttons  that  represent  the  subfields  of  each  specific  domain  (medicine  e.g.,  Identifying  data—ID,  Chief  Complaint—CC,  History  of  Present  Illness—HPI,  etc.).    (Note:  this  is  an  anonymous  sample  for  demonstration  purposes  only).  

 

Page 62: Dissertation EMR WB Saavedra Final 12-10-12

  53  

adverse  outcomes.  Linking  to  knowledge-­‐based  resources  at  the  point  of  care  could  be  an  

effective  means  for  addressing  these  needs  and  supporting  evidence  and  guideline-­‐based  

practice.    

Infobuttons  were  considered  as  a  potential  solution  because  they  have  been  used  to  

provide  context-­‐sensitive  links  between  clinical  information  systems  (e.g.,  EMRs)  and  

online  knowledge  resources  [27,49].  "Context"  in  this  sense  is  what  the  user  is  doing  at  

some  point  in  time  in  the  EMR  during  a  clinical  encounter.  Infobuttons  make  it  easier  for  

providers  to  access  the  information  they  need  at  the  point  of  care  [22].    

One  study  at  Partners  HealthCare  system  showed  the  KnowledgLink  medication  infobutton  

to  answer  84%  of  clinicians’  questions,  thereby  altering  15%  of  patient  care  decisions  [22].  

Another  study  showed  that  74%  of  infobutton  users  responding  to  a  survey  felt  the  system  

had  a  positive  impact  on  their  patient  care  decisions  [23].  A  recent  review  of  several  

methods  for  providing  decision  support  to  nurses  at  the  point  of  care  emphasized  the  need  

to  integrate  such  contextual  information  links  into  clinical  workflow  in  order  to  effectively  

support  EB  nursing  practice  [24].    

Another  recent  study  from  Intermountain  Healthcare  [25]  showed  a  use  of  infobuttons  in  

the  hospital  setting  steadily  increasing  over  a  four-­‐year  period.  Intermountain  Healthcare  

(“Intermountain”)  is  a  not-­‐for-­‐profit  integrated  delivery  system  of  21  hospitals;  over  70  

outpatient  clinics,  more  than  500  physicians,  and  an  insurance  plan  located  in  Utah  and  

southeastern  Idaho  have  access  to  a  web-­‐based  EMR  called  HELP2.  HELP2  offers  access  to  

a  wide  variety  of  data  and  functions,  including  laboratory  results,  clinical  notes,  problem  

lists,  and  medication  order  entry.  Infobuttons  were  first  released  in  HELP2  in  September  of  

Page 63: Dissertation EMR WB Saavedra Final 12-10-12

  54  

2001  in  the  medication  ordering  (outpatient),  problem  list,  and  laboratory  results  modules  

[25].  

The  EMR  WB  system  uses  an  infobutton  interface  for  direct  access  to  knowledge-­‐based  

tools  at  the  point  of  care  in  real  time.  The  infobuttons  feature  three  web  links  that  

providers  need  to  manually  open  to  input  and  tie  clinical  information  to  health  resources  

such  as  knowledge-­‐based  clinical  decision  support  tools.  In  contrast,  automated  systems  

such  as  infobutton  managers  are  capable  of  matching  what  the  user  is  doing  (i.e.,  "context")  

to  appropriate  information  resources  [21-­‐23].  During  the  pilot  project,  EMR  WB  did  not  use  

information  managers  because  a  manual  infobutton  system  provided  practical,  accessible,  

and  useful  decision  support.    

The  three  tools  added  to  EMR  WB  for  decision  support  are:    

1. DXplain:  This  is  a  diagnostic  decision  support  system  tool  that  analyzes  a  patient's  

historical  data,  physical  findings,  laboratory  tests,  and  x-­‐rays,  and  then  generates  a  

ranked  list  of  diseases  that  can  explain  these  findings.  DXplain  is  a  web-­‐based  

system  accessed  in  real  time  through  the  Laboratory  of  Computer  Science  at  

Massachusetts  General  Hospital,  Harvard  Medical  School48  

(http://dxplain.org/dxp/dxp.pl).  DXplain  requires  that  the  provider  open  the  site  

and  enter  their  password  in  order  to  access  and  use  the  site.  

                                                                                                               48  1)  Barnett  GO,  Famiglietti  KT,  Kim  RJ,  Hoffer  EP,  Feldman  MJ.  DXplain  on  the  Internet.  Proc  AMIA  Symp.  1998:607-­‐11;  2)  Bond  WF,  Schwartz  LM,  Weaver  KR,  Levick  D,  Giuliano  M,  Graber  ML.  Differential  Diagnosis  Generators:  an  Evaluation  of  Currently  Available  Computer  Programs.  J  Gen  Intern  Med.  2011  Jul  26;  and  Katie  Hafner.  For  Second  Opinion,  Consult  a  Computer?  Software  Programs  Help  Doctors  Diagnose,  but  Can’t  Replace  Them.  The  New  York  Times.  December  3,  2012.                                    http://www.nytimes.com/2012/12/04/health/quest-­‐to-­‐eliminate-­‐diagnostic-­‐lapses.html?src=me&ref=general&_r=0  

Page 64: Dissertation EMR WB Saavedra Final 12-10-12

  55  

2. EB  Medicine  Calculator:  This  device  helps  providers  make  proper  diagnoses,  

devise  the  best  testing  plan,  choose  the  best  treatment  and  methods  of  disease  

prevention,  and  develop  guidelines  for  patients  

(http://ktclearinghouse.ca/cebm/practise/ca/calculators/statscalc).      

3. Knowledge  Translation  Tools:  These  are  EB,  dynamic,  and  interactive  literature  

access  tools  by  which  relevant  information  is  made  available  to  support  health  care  

decision-­‐making  processes.  They  provide  two  different  sets  of  tools  for  querying  

primary  studies  that  represent  first-­‐generation  and  second-­‐generation  knowledge  

(http://ktclearinghouse.ca/tools/practicing).  

Version  1.5  of  the  EMR  WB  system  doesn’t  include  or  interface  with  medication  catalogs  

(e.g.,  Epocrates),  but  instead  provides  free  text  to  input  treatments  because  free  text  is  a  

familiar  and  easy-­‐to-­‐use  environment  in  a  global  context  and  the  systems  currently  

available  are  costly,  time-­‐consuming,  unreliable  overall,  and  not  offered  in  both  English  and  

Spanish  [36].  In  addition,  because  the  point-­‐of-­‐care  system  concept  is  commonly  defined  in  

the  literature  as  the  use  of  diagnostic  and  laboratory  testing  provided  to  patients  at  their  

bedside  (MeSH),49  it  is  important  to  clarify  that  the  knowledge-­‐based  tools  used  by  EMR  

WB  to  support  the  decision-­‐making  process  are  aimed  at  the  point  of  care  as  distinct  from  a  

patient’s  bedside.    

 

                                                                                                               49  MeSH.  Point-­‐of-­‐Care  Systems.  Laboratory  and  other  services  provided  to  patients  at  the  bedside.  These  include  diagnostic  and  laboratory    testing  using  automated  information  entry.  Year  introduced:  1996  

Page 65: Dissertation EMR WB Saavedra Final 12-10-12

  56  

2.6.  EMR  WB  Definition  

One  of  the  most  relevant  barriers  that  impede  the  development  of  EMRs  is  the  lack  of  a  

clear  definition  [5,9,60].  This  is  why  design  of  EMR  WB  was  delayed  until  a  thorough  

definition  could  be  constructed.    Although  work  on  a  common  definition  of  a  computerized  

medical  records  system  [3],  also  referred  to  in  the  literature  as  EMRs,  CPRs  (computerized  

patient  records),  or  EHRs  [10,60],  is  under  way  by  various  groups,  a  universal  

understanding  of  the  concepts  embodied  in  an  EMR  does  not  exist.  Without  a  clear  

understanding,  users  have  a  difficult  time  selecting  systems  that  will  meet  their  needs  and  

vendors  have  difficulty  supplying  such  systems.    

EMRs  have  been  defined  as  "electronically  stored  information  about  an  individual’s  lifetime  

health  status  and  health  care;"  a  “software  that  allows  you  to  create,  store,  edit,  and  

retrieve  patient  charts  on  a  computer;”  and  “any  information  related  to  the  past,  present,  or  

future  physical/mental  health,  or  condition  of  an  individual  which  resides  in  electronic  

system(s)  used  to  capture,  transmit,  receive,  store,  retrieve,  link,  and  manipulate  

multimedia  data  for  the  primary  purpose  of  providing  health  care  and  health-­‐related  

services”[60].    

Beyond  the  definitions  mentioned  above,  however,  few  details  have  been  worked  out  and  

agreed  upon.  For  example,  there  is  no  common  data  model  for  an  EMR,  no  common  set  of  

data  elements,  no  common  vocabulary,  and  no  common  set  of  scenarios  that  are  supported.  

These  requirements  are  fundamental  if  researchers  and  developers  are  to  create  a  patient-­‐

centered  EMR  that  links  care  across  different  sites,  specialties,  and  circumstances  [5,10].  

Even  the  terms  “meaningful  use”  and  “certified”  in  the  HITECH  Act  are  not  yet  clearly  

Page 66: Dissertation EMR WB Saavedra Final 12-10-12

  57  

defined,  and  they  are  neither  user-­‐friendly  nor  designed  to  meet  the  ambitious  goal  of  

improving  quality  and  efficiency  in  the  health  care  system  as  outlined  by  David  Blumenthal,  

the  former  national  coordinator  of  HITECH  [17].  For  the  purpose  of  this  project,  the  EMR  

WB  has  been  defined  as  the  standardized,  multidisciplinary,  family  medicine  clinical  

history  as  the  EMR  clinical  core  that  provides  the  frame  to  input  structured  and  

unstructured  documentation.      

Based  on  the  need  to  have  a  definition  upon  which  to  base  the  EMR  WB  design,  one  of  the  

strategies  was  to  focus  on  its  clinical  core.  To  do  this,  NLM  MeSH  was  used  because  it  

provides  a  unique  and  comprehensive  systematic  historic  description  of  the  concept,  from  

its  paper-­‐based  roots  to  the  latest  concept  that  involves  the  integration  of  state-­‐of-­‐the-­‐art  

technology.  According  to  MeSH,  medical  records  consist  of  pertinent  information  

concerning  a  patient's  illness  or  illnesses.50  Computerized  medical  record  systems  are  

defined  as  a  computer-­‐based  arrangement  for  input,  storage,  display,  retrieval,  and  printing  

of  information  contained  in  a  patient's  medical  history  (year  introduced:  1991).51  EMR  is  

defined  as  the  media  that  facilitates  transportability  of  pertinent  information  concerning  a  

patient's  illness  across  varied  providers  and  geographic  locations  (year  introduced:  

2011).52  These  definitions  describe  the  natural  evolution  of  the  concept  from  a  paper-­‐based  

version  to  a  computerized  format,  leading  to  sharing  across  platforms  and  distance.  EMR  

WB  is  based  on  the  latest  definition,  and  centered  on  the  clinical  history  that  is  oriented  

towards  primary  health  care  (see  Figure  3).  

 

                                                                                                               50  http://www.ncbi.nlm.nih.gov/mesh/68008499  51  http://www.ncbi.nlm.nih.gov/mesh/68016347      52  http://www.ncbi.nlm.nih.gov/mesh/68057286      

Page 67: Dissertation EMR WB Saavedra Final 12-10-12

  58  

 

EMR  WB  was  designed  with  health  information  exchange  (HIE)  in  mind  in  two  steps:  as  a  

pilot  project  and  as  a  fully  functional  EMR.  During  the  pilot  project,  the  HIE  had  a  similar  

connotation  as  the  meaningful  use  explained  in  Section  2.1.  At  the  moment,  EMR  WB  does  

not  rely  on  Health  Level  Seven  (HL7)  standards  and  hence  Clinical  Document  Architecture  

(CDA)  and  Continuity  of  Care  Document  (CCD)  specifications.  For  the  purposes  of  this  

project,  the  objective  of  EMR  WB  was  not  to  be  interoperable  with  other  systems,  but  

independently  functional.  In  the  future,  however,  EMR  WB  will  adopt  interoperability  

standards  aimed  at  fulfilling  the  meaningful  use  outlined  by  the  US  federal  government  

HITECH  Act  [17].    

 

   

   

Figure  3:  Clinical  core-­‐centered  EMR  definition.    A  definition  of  EMR  WB  was  created  to  reflect  its  structure  and  standardization.  A  series  of  steps  was  followed  that  integrated  the  three  EMR  definitions  available  in  the  NLM  medical  subject  headings  (MeSH),  the  original  description  of  a  medical  record  (1966),  the  first  EMR  definition  (1991),  and  the  latest  EMR  definition  (2011).  This  information  was  then  combined  with  a  description  of  the  clinical  core  used  as  the  design  foundation  for  EMR  WB.      

Page 68: Dissertation EMR WB Saavedra Final 12-10-12

  59  

2.7.  Summary    

EMR  WB  was  implemented  at  CUSS,  a  public,  multidisciplinary  family  medicine  clinic  at  the  

University  of  Guanajuato  in  an  underserved,  urban  community  in  the  city  of  Leon,  Mexico.    

The  central  idea  was  to  address  the  multifaceted  problem  of  the  lack  of  a  modern,  

standardized  EMR  system  with  global  access,  comprehensive  interface,  and  knowledge-­‐

based  point-­‐of-­‐care  tools  to  efficiently  collect,  store,  share,  manage,  and  access  patient  files.  

This  system  enabled  providers  from  multiple  disciplines  (medicine,  nursing,  nutrition,  

psychology,  and  social  work)  at  CUSS  to  create,  share,  and  maintain  records  of  patient  care  

that  were  standardized  (using  controlled  vocabulary—terms,  semantics—meaning,  

ontologies—relations,  syntaxes—construction  of  sentences,  with  EB,  peer-­‐reviewed  

clinical  protocols),  linked  to  diagnostic  decision  support  (DXplain),  and  knowledge-­‐based  

(EB  Medicine  Calculator  and  Knowledge  Translation  Tools)  point-­‐of-­‐care  systems  

functionally  connected  with  an  all-­‐inclusive,  intuitive  interface,  and  accessible  anywhere  

from  any  platform  (PCs,  tablets,  and  mobile  phones)  using  cloud  computing.  This  EMR  WB  

system  aimed  to  better  address  local,  clinical,  and  psychosocial  health  challenges,  as  well  as  

transnational  migration  health  issues  based  on  systematic  documentation,  interoperability,  

and  transfer  of  clinical  information  among  primary  care  providers  in  targeted,  underserved  

communities.        

Page 69: Dissertation EMR WB Saavedra Final 12-10-12

  60  

Chapter  III:  Evaluation    

There  is  a  large  gap  between  the  postulated  and  empirically  demonstrated  benefits  of  

EMRs  [33].  In  light  of  the  scarce  evidence  for  improvements  in  patient  health  outcomes,  

provider  satisfaction,  and  cost  effectiveness,  it  is  vital  that  future  EMRs  are  evaluated  with  

both  quantitative  and  qualitative  tools  [6,32].    

EMR  WB  evaluation  aimed  to  determine  the  level  of  satisfaction  with  use  of  the  system  at  

the  CUSS.  First,  to  understand  the  potential  end  users  of  the  proposed  EMR  system,  a  focus  

group  was  held  on  August  5,  2010,  to  gather  perceptions,  interpretations,  beliefs,  and  

attitudes  towards  EMR  use.  The  focus  group  served  as  an  exploratory  tool  for  creating  a  

schema  of  coding  data  that  provided  the  themes  used  to  develop  the  structure  of  the  

questionnaire  for  user  satisfaction,  the  EMR  WB  QUS  (see  Appendix  B).  Since  one  of  the  

major  aims  of  this  research  project  is  to  evaluate  provider  satisfaction  with  the  

implemented  EMR  system,  an  evaluation  tool  that  examines  end  user  perceptions  was  

necessary.  A  survey  was  formulated  into  a  series  of  15  questions  aimed  at  obtaining  

specific  answers  related  to  the  perceived  satisfaction  of  the  providers  with  EMR  WB  

compared  to  the  CUSS  paper-­‐based  medical  record  system  they  previously  used.  Two  other  

sections  were  added  to  collect  demographic  data,  amount  of  use  of  the  system,  and  

suggestions  for  improvements  (a  total  of  five  questions).  These  questions  reflected  on  the  

definition  of  “user  information  satisfaction”  outlined  by  Ives  et  al.  in1983  [12]  as  “the  

extent  to  which  users  believe  the  information  system  available  to  them  meets  their  

information  requirements.”  A  7-­‐point  Likert  scale  (or  summated  scale)  was  used  to  

quantify  user  satisfaction  with  features  such  as  access,  interface,  standardization,  

Page 70: Dissertation EMR WB Saavedra Final 12-10-12

  61  

knowledge-­‐based  tools,  and  overall  design.  The  scale  was  from  “Much  worse”  to  “Much  

better,”  with  -­‐3  as  the  lowest  rating  and  +3  as  the  highest  rating.  The  total  score  (i.e.,  

evaluation)  was  reported  as  a  sum  of  the  responses.      

The  timeline  criteria  for  administering  the  survey  was  at  least  three  months  after  the  beta  

testing  took  place.  EMR  WB  was  initially  implemented  via  beta  testing  in  May    2011  at  the  

CUSS,  and  version  1.5  was  implemented  at  the  same  facility  in  January  2012  (the  version  

used  to  evaluate  EMR  WB).  Providers  had  the  flexibility  of  answering  the  online  survey  

over  a  three-­‐day  period.  The  web-­‐based,  one-­‐time,  post-­‐implementation  evaluation  survey  

took  between  20  and  30  minutes  to  complete.    

 

3.1.  Testing  EMR  WB  Versions    

Beta  testing  of  the  first  EMR  WB  version  began  at  the  CUSS  on  May  25,  2011,  and  was  

completed  in  December  23,  2011.  Version  1.5  was  implemented  in  January  06  2012  and  

evaluated  in  July  13-­‐16,  2012.    

CUSS  providers  were  informed  about  the  introduction  and  capabilities  of  the  EMR  WB  

system  via  staff  meetings,  e-­‐mail,  and  video  conferencing  (using  Adobe  Connect)  that  

included  step-­‐by-­‐step  scenarios  demonstrating  how  to  use  the  new  system.  In  addition,  a  

web  casting  video  was  created  for  clinicians  to  observe  how  EMR  WB  might  work  in  their  

own  disciplines;  this  included  a  demo  mode  with  fictional  patients  so  providers  could  

familiarize  themselves  with  the  system  to  see  if  it  fit  their  needs.  The  demo  application  is  

currently  available  on  the  EMR  WB  home  page  at  http://www.emrwithoutborders.com.  

Page 71: Dissertation EMR WB Saavedra Final 12-10-12

  62  

The  vast  majority  of  clinicians  at  the  CUSS  used  the  EMR  WB  system  to  support  their  daily  

patient  care  practices  for  seven  months.  In  response  to  demand  for  increased  functionality,  

EMR  WB  was  upgraded  to  its  current  version  1.5.  The  redesign  allowed  providers  to  use  a  

system  without  identifiable  “bugs,”  better  response  time,  more  reliable  and  seamless  

functionality,  and  faster  and  full  access  to  all  available  medical  literature  information  

(infobutton:  Knowledge  Translation  Tools)  while  they  were  in  clinical  encounters  with  

patients  by  using  the  EB  tools  (infobutton:  EB  Medicine  Calculator)  and  fully  incorporated  

diagnostic  decision  support  system  DXplain.    

EMR  WB  is  still  in  operation  at  the  CUSS,  where  it  has  proven  to  be  stable  and  reliable.  EMR  

WB  has  achieved  the  goals  for  Aim  1  as  initially  outlined:    

(1)  It  is  globally  accessible  on  a  web-­‐based  system  from  any  platform  (PCs,  Macs,  tablets,  

and  mobile  phones).    

(2)  It  is  standardized  across  primary  care  multidisciplinary  core  domains  (medicine,  

nursing,  psychology,  nutrition,  and  social  work)  and  uses  shared  terminologies,  data  

models,  controlled  vocabulary,  ontologies,  semantics,  syntaxes,  pragmatics,  and  EB  peer-­‐

reviewed  protocols.  

(3)  It  uses  an  all-­‐inclusive,  intuitive  EMR  interface  into  one  navigation  system.    

(4)  It  uses  knowledge-­‐based,  point-­‐of-­‐care  systems  to  support  health  care  decisions.  

(5)  It  is  completely  bilingual  in  English  and  Spanish.    

(6)  It  is  network-­‐based  (web/cloud).    

Page 72: Dissertation EMR WB Saavedra Final 12-10-12

  63  

(7)  It  is  intuitive,  easy  to  use  and  learn,  and  does  not  require  formal  training.    

(8)  It  supports  underserved  populations  in  the  urban  setting  of  the  city  of  León,  Mexico.  

 

3.2.  Focus  Group  and  Survey    

Evaluations  were  conducted  via  both  qualitative  (pre-­‐implementation  exploratory  focus  

group)  and  quantitative  (post-­‐implementation  survey)  analyses  focused  on  provider  

perceptions  of  EMRs  in  general  and  EMR  WB  in  particular,  respectively.  

3.2.1.  Focus  group  

To  better  understand  the  potential  end  users  of  the  proposed  EMR  system,  a  focus  group  

was  conducted.  This  qualitative  research  tool  facilitated  the  collection  of  perceptions,  

interpretations,  beliefs,  and  attitudes  towards  EMR  use  [34].  As  outlined  by  the  literature,  

an  advantage  of  the  focus  group  methodology  is  that  it  reveals  the  evolution  of  perceptions  

in  a  social  context,  which  tends  to  be  more  objective  than  the  isolation  of  a  typical  survey  or  

individual  interview,  hence  the  results  are  richer,  more  complete,  and  more  revealing  [59].  

However,  there  are  risks  involved  such  as  “group  think”  and  consensus-­‐based  reasoning.    

On  August  5,  2010,  a  group  of  health  care  providers  was  brought  together  from  most  of  the  

primary  care  domains  who  would  be  end  users  of  the  proposed  EMR  system.  They  were  

asked  to  provide  their  opinions  of  EMRs  before  EMR  WB  implementation  and  beta  testing.  

This  same  group  would  also  participate  in  the  post-­‐evaluation  survey.  The  focus  group  was  

held  for  one  and  one-­‐half  hours  with  six  providers,  approximately  12%  (6  out  of  total  of  

50)  of  the  existing  CUSS  providers.  The  participants  were  recruited  by  the  CUSS  director  

Page 73: Dissertation EMR WB Saavedra Final 12-10-12

  64  

and  myself.  The  topic  was  introduced  by  providing  a  brief  description  of  the  EMR  WB  

project.  A  discussion  guide  was  used  to  encourage  an  open  yet  focused  dialogue.  A  focus-­‐

questioning  route  (see  Appendix  A)  was  used  based  on  the  research  aims  that  included  

opening  comments  about  the  topic  of  EMRs,  introductory  open-­‐ended  questions  to  engage  

the  participants  in  the  topic,  transition  questions  related  to  use  of  EMR  WB  in  their  

respective  clinical  settings,  key  questions  regarding  the  perceived  benefits  and  limitations  

of  its  use,  and  ending  questions  to  summarize  the  discussions  and  confirm  the  main  points.  

At  each  stage  of  questioning,  sufficient  time  for  all  the  participants  to  share  their  views  was  

allowed.  The  focus  group  served  as  an  exploratory  tool  more  than  a  data-­‐gathering  tool,  

although  the  results  were  used  to  create  a  schema  of  coding  data  for  modifications  to  EMR  

WB.      

All  six  participant  providers  were  interested  in  using  the  emerging  EMR  technology  in  their  

own  practices.  The  overall  perception  was  that  EMRs  are  the  computerization  of  paper  

records.  They  perceived  this  kind  of  technology  to  be  a  useful  tool  for  both  them  and  their  

patients.  They  expressed  wanting  an  EMR  that  is  easy  to  use  and  read,  accessible  from  

different  places,  supports  accuracy  of  free  text  and  structured  documentation,  and  permits  

sharing  among  members  of  the  primary  care  team.  They  perceived  the  input  of  free  text  as  

quite  useful  based  on  their  paper-­‐based  experience  with  structured  clinical  forms  and  

guidelines.  They  commented  that  a  mixture  of  free  text  with  structured  documentation  

would  bring  about  the  needed  freedom  to  create  accurate  and  individualized  clinical  notes.  

They  also  wanted  a  system  that  provides  continuity  of  care  with  systematic  follow-­‐ups.  In  

addition,  since  EMR  WB  would  serve  in  a  teaching  environment,  they  wanted  it  to  facilitate  

access  to  supervised  work.        

Page 74: Dissertation EMR WB Saavedra Final 12-10-12

  65  

There  were  some  overall  concerns  about  privacy  and  confidentiality,  such  as  how  to  

restrict  unauthorized  access  to  information,  including  the  limiting  of  access  to  other  

providers  when  pertinent  (e.g.,  mental  health-­‐sensitive  issues,  without  compromising  the  

safety  of  others).  EMR  implementation  and  use  was  seen  as  a  challenge,  too,  because  of  its  

demand  for  new  forms  of  thinking,  ethics,  and  work.  A  concern  of  possible  intrusion  of  the  

computer  in  the  patient-­‐provider  relationship  during  the  clinical  encounter  was  also  

expressed.  

Among  the  perceived  benefits,  a  big  savings  of  materials  (paper)  and  time  were  

emphasized.  Although  the  web-­‐based  technology  was  welcomed,  previous  negative  

experience  with  a  local  system  was  used  as  a  frame  of  reference.  Apparently  they  had  been  

unable  to  access  information  from  other  settings  because  of  dependence  on  fixed  desktops.  

Limited  time  spent  onsite  entering  patient  data  in  the  clinical  encounter  was  perceived  as  a  

helpful  feature.  Cross  sharing  of  information  among  other  primary  care  domains  (e.g.,  

social  work  with  psychology)  was  a  feature  that  they  wanted  to  see  for  comprehensive  

management  of  health  care  information.  When  asked,  “What  do  you  think  would  be  the  

most  important  uses  of  the  information?”  they  expressed  interest  in  clinical  decision-­‐

making  as  a  primary  use,  and  supporting  interventions  in  the  community  and  research  

purposes  as  secondary  uses.    

The  data  obtained  from  the  focus  group  was  assessed  using  content  analysis  based  on  

coding,  categorizing,  and  counting  the  types  of  responses.  The  lists  of  codes  with  some  

representative  themes  quoted  from  participants,  recommendations  for  the  design  of  the  

Page 75: Dissertation EMR WB Saavedra Final 12-10-12

  66  

system,  and  suggested  themes  for  the  post-­‐implementation  survey  are  condensed  in  Table  

3.  

Limitations  

The  sample  size  was  small,  but  it  was  representative  of  the  total  end  user  population  

diversity.  The  focus  group  met  just  once.  The  other  limitation  was  inherent  to  the  technique  

itself,  namely  that  providers  might  not  say  what  they  actually  do  or  think  because  of  “group  

think”  (e.g.,  people  expressing  an  opinion  which  is  in  agreement  with  the  rest  of  the  group  

even  if  that  opinion  is  at  odds  with  their  own  personal  perceptions,  interpretations,  or  

beliefs).  This  factor  was  not  perceived  by  the  moderator  to  be  present.  An  additional  

possible  limitation  is  that  respondents  were  inclined  to  give  the  answers  they  thought  their  

recruiter  wanted  to  hear,  which  would  be  consistent  with  her  bias  in  favor  of  EMR  WB.  

3.2.2.  Survey    

Survey  development  

Through  a  series  of  four  well-­‐defined  stages,  an  instrument  was  developed  to  evaluate  end  

user  satisfaction  of  EMR  WB  compared  with  a  paper-­‐based  record  system,  as  tested  by  the  

health  care  providers  at  the  CUSS.  The  central  idea  behind  developing  this  tool  was  to  

create  a  tailored  questionnaire  incorporating  and  optimizing  both  the  accepted  literature  

definition  of  end  user  satisfaction  as  well  as  the  philosophical  approach  of  successfully  

tested  measurement  instruments  [6].  The  instrument  was  used  to  determine  1)  the  onsite  

professional  experiences  and  approaches  associated  with  using  a  paper-­‐based  system;  and  

2)  the  perceptions,  interpretations,  and  beliefs  regarding  onsite  use  of  the  EMR  WB  system.  

Page 76: Dissertation EMR WB Saavedra Final 12-10-12

  67  

Stage  I.  The  Focus  Group  

As  mentioned  in  Section  3.2.1,  the  focus  group  was  used  as  an  exploratory  tool  for  

creating  a  schema  of  coding  data  for  the  themes  that  structured  the  EMR  WB  QUS  

(see  Table  3  and  Appendix  B).  The  paper-­‐based  system  previously  used  by  the  CUSS  

health  care  providers  served  as  a  frame  of  reference  for  comparison  with  EMR  WB.  

Stage  II.  End-­‐User  Satisfaction  Definition  

The  next  step  to  constructing  an  instrument  for  measuring  satisfaction  with  EMR  

WB  involved  examining  “satisfaction”  based  on  how  the  literature  defines  it  [29].19  

According  to  Ives  et  al.  (1983)  [12],  “User  information  satisfaction  is  the  extent  to  

which  users  believe  the  information  system  available  to  them  meets  their  

information  requirements.”  Synonymous  terms  are  “system  acceptance”  (Igersheim,  

1976)  [20],  “perceived  usefulness”  (Larcker  and  Lessig,  1980)  [31],  “management  

information  system  appreciation”  (Swanson,  1974)  [42],  and  “positive  feelings  

about  an  information  system”  (Maish,  1979)  [43].  Ang  and  Koh  (1997)  [44]  

described  user  information  satisfaction  as  “a  perceptual  or  subjective  measure  of  

system  success.”  This  means  that  the  phenomenon  will  differ  in  meaning  and  

significance  from  person  to  person.  In  other  words,  users  who  are  equally  satisfied  

with  the  same  system  according  to  one  definition  or  measure  may  not  be  equally  

satisfied  according  to  another.53  And,  according  to  Brender  et  al.  [29],  “User  

satisfaction  measures  the  end  users’  response  to  the  use  of  the  input  and  output  of  

the  EMR  and  its  attributes.”  The  definition  provided  by  Ives  et  al.  [12]  outlined  

                                                                                                               53  http://en.wikipedia.org/wiki/Computer_user_satisfaction    

Page 77: Dissertation EMR WB Saavedra Final 12-10-12

  68  

above  was  the  primary  basis  for  development  of  the  EMR  WB  satisfaction  

measurement  tool.      

Stage  III.  Frames  of  Reference:  the  QUIS  and  IBM  Computer  Usability  

Satisfaction  Questionnaires  

In  addition  to  the  themes  and  codes  obtained  from  the  focus  group  performed  on  

August  5,  2010  (see  Table  3),  the  University  of  Maryland  QUIS  Version  7.0  and  IBM  

Computer  Usability  Satisfaction  Questionnaires  were  used  as  frames  of  reference  to  

design  the  user  satisfaction  questionnaire  for  EMR  WB.    

In  1988,  researchers  from  the  Human  Computer  Interaction  Laboratory  at  the  

University  of  Maryland  developed  the  QUIS  as  a  standardized  general  user  

evaluation  instrument  for  interactive  computer  systems.  The  QUIS  relies  on  

psychological  test  construction  methods  to  ensure  empirical  validity  and  reliability  

[39].  

The  IBM  Computer  Usability  Satisfaction  Questionnaires54  address  evaluation  at  

both  a  global  overall  system  level  and  a  more  detailed  scenario  level.  The  series  of  

four  questionnaires  rely  on  psychometric  characteristics  (assessment  of  

psychological  variables—thoughts,  feelings,  and  behaviors—using  mathematical  

procedures)  to  measure  satisfaction  with  computer  system  usability.    

 

                                                                                                               54  Lewis,  J.  R.  (1995)  IBM  Computer  Usability  Satisfaction  Questionnaires:  Psychometric  Evaluation  and  Instructions  for  Use.  International  Journal  of  Human-­‐Computer  Interaction,  7:1,  57-­‐78.  

Page 78: Dissertation EMR WB Saavedra Final 12-10-12

  69  

Table  3:  Focus  group.  The  focus  group  served  as  an  exploratory  tool  for  creating  a  schema  of  coding  data  for  EMR  WB  design  recommendations  and  the  themes  to  develop  the  structure  of  the  end-­‐user  satisfaction  survey.    

  Code   Summary  of  Relevant  Themes   Recommendations  for  EMR  Design    

Survey  Themes  

1   Adoption/  Feasibility  

“I  am  very  interested  in  using  the  current  technology.”  “I  believe  that  the  EMR  will  be  a  useful  tool  for  both  providers  and  patients.”    “Implementation  will  be  a  challenge  at  the  beginning.”  

EMR  WB  will  be  implemented  as  a  pilot  project    Providers  will  participate    

Acceptability,  Achievability    

2   Documentation       “I  believe  that  the  EMR  will  be  a  very  useful  technology  to  improve  documentation  in  the  chart.”    “I  would  like  to  have  well  defined  formats…  similar  to  the  ones  that  I  use  in  my  charts  (paper  based).”  “I  would  like  to  have  the  freedom  to  input  both  free  text  and  structured  information.”    “Extensive  typing  not  needed  during  the  clinical  encounter.”  

Structure  Standardization  Documentation  guidelines  Flexible:  use  free  and  structured  data      

Completeness  of  documentation  

3   Ease  of  use   “I  would  like  to  have  a  system  that  is  easy  to  use.”  “I  don’t  want  to  add  more  work.”  

Usable    No  added  work    Friendly  interface    

Easy  to  use  

4   Access     “I  would  like  to  have  an  EMR  that  I  can  access  anywhere.”    “I  welcome  the  web-­‐based  technology.”  

Open  access  Web-­‐based  Accessible    

Ability  to  access  from  any  location  

5   Privacy    

 

“I  am  concerned  about  overall  privacy,  confidentiality,  and  how  the  system  will  restrict  unauthorized  access  to  information.”  “Restrict  access  to  sensitive  information  among  providers  without  compromising  safety.  ”    

Privacy  Confidentiality    Safety  

Safeguards,  privacy  and  confidentiality  

6   Communication   “I  would  like  to  share  information  with  the  primary  care  team.”  

Information  exchange  /  sharing  

Ease  of  communication  with  other  members  of  the  clinical  team    

7   Quality  improvement  

 

“It  could  improve  overall  patient  care.”    “I  am  concerned  about  the  possible  intrusion  of  the  EMR  in  the  patient-­‐provider  relationship.”  “A  system  that  supports  follow-­‐ups.”  

Improve  workflow    Continuity  of  care    Not  intrusive    

Work  Flow  

8   Decision  support  

“Supports  overall  care  decisions.”  “I’d  like  to  have  access  to  literature  or  some  guidelines.”    

Decision  support  tools   Support  care  decisions  

9   Research   “Use  data  from  EMR  as  a  base  for  interventions  in  the  community.”  

“Research  purposes.”  

Secondary  use  of  data     Facilitate  use  of  data  for  quality  and  research  purposes  

Page 79: Dissertation EMR WB Saavedra Final 12-10-12

  70  

Stage  IV:  The  Evaluation  Tool—EMR  WB  QUS  

The  last  set  of  components  used  to  create  the  EMR  WB  QUS  (see  Appendix  B)  were  

the  variables  of  the  study—global  access,  standardization,  interface,  knowledge-­‐

based  access  tools,  and  design—which  were  cross-­‐referenced  with  the  research  

questions  for  consistent  correlation  with  the  aims.  The  CUSS  providers  were  asked  

to  use  a  7-­‐point  Likert  scale  to  assess  agreement  with  what  they  thought  of  EMR  WB  

as  compared  to  the  paper-­‐based  system  on  a  scale  from  much  worse  (-­‐3)  to  much  

better  (+3)  over  a  series  of  15  questions.  Dumas  (1999)  [61]  claims,  “This  is  the  

most  commonly  used  question  format  for  assessing  participants'  opinions  of  

usability  and  satisfaction.”  

In  addition  to  the  15  questions  that  evaluate  user  satisfaction  with  EMR  WB  (Part  2),  

another  two  series  of  questions  (Parts  1  and  3)  explored  demographic  data,  system  

use,  and  recommendations  for  improvement.  Part  1  considered  1)  age,  2)  gender,  

and  3)  CUSS  professional  field  (medicine,  psychology,  nutrition,  nursing  and  social  

work);  while  Part  3  asked  users  to  specify  4)  how  long  they  had  used  the  EMR  WB  

system  and  5)  what  suggestions  they  had  to  improve  it.  In  total,  the  survey  thus  

consisted  of  20  questions  (Appendix  B).  The  web-­‐based,  one-­‐time,  post-­‐

implementation  user  satisfaction  survey  took  approximately  20  minutes  to  

complete,  but  respondents  had  the  flexibility  of  answering  the  questions  over  a  

three-­‐day  period.      

   

Page 80: Dissertation EMR WB Saavedra Final 12-10-12

  71  

3.3.  Subject  Population  

The  population  recruited  for  the  EMR  WB  QUS  was  defined  as  the  total  adult  (aged  18  and  

older)  female  and  male  health  care  providers  from  all  primary  care  domains  (medicine,  

psychology,  nutrition,  nursing,  and  social  work)  identified  from  the  CUSS  that  used  EMR  

WB  for  at  least  one  month  or  20  hours  (i.e.,  inclusion  criteria).  Forty  (out  of  a  total  of  50,  or  

80%)  self-­‐reported  health  care  providers  fulfilled  the  inclusion  criteria,  representing  the  

selected  subset  of  EMR  WB  users  surveyed.  A  total  of  36  subjects  started  the  survey,  with  a  

total  of  33  of  the  40  surveyed  (82.5%)  finishing  the  survey  [62].  The  three  who  did  not  

finish  the  survey  were  unable  to  complete  most  of  the  questions,  including  the  

demographic  information.  They  did  not  make  any  comments;  hence  the  information  

provided  had  very  limited  value  in  the  survey  and  was  not  considered.  The  reasons  why  

they  did  not  finish  the  survey  were  not  stated.  

Inclusion  Criteria:  CUSS  providers  (physicians,  psychologists,  nurses,  nutritionists,  and  

social  workers,  age  18  and  older)  who  used  EMR  WB  for  at  least  one  month  or  20  hours.    

Exclusion  Criteria:  CUSS  providers  (physicians,  psychologists,  nurses,  nutritionists,  and  

social  workers  age,  18  and  older)  who  used  EMR  WB  for  less  than  one  month  or  20  hours.    

Data  representing  all  five  primary  care  domains  at  the  CUSS  were  taken  as  of  equal  

importance  to  match  and  obtain  information  from  each  of  the  EMR  WB  corresponding  

professional  domains.  Each  domain  within  the  overall  CUSS  population  was  not  sampled  

independently  because  there  was  no  control  over  the  respondents  to  make  the  subgroup  

sample  sizes  proportional  to  the  total  population,  but  responses  from  all  professional  

domains  were  obtained.    

Page 81: Dissertation EMR WB Saavedra Final 12-10-12

  72  

3.4.  Analysis    

The  specific  survey  data  analysis  steps  were  1)  making  sure  that  the  surveys  returned  were  

complete  and  valid  (n  =  33);  2)  checking  for  response  bias;  3)  conducting  a  descriptive  

analysis;  4)  condensing  items  into  scales;  and  5)  checking  for  reliability  of  the  scales.  

Interpretation  of  data  was  based  on  respondent  scoring  of  satisfaction  with  EMR  WB  use  

on  a  Likert  scale.  An  overall  satisfaction  score  was  obtained  from  Question  15.    

Descriptive  statistics  were  used  to  quantitatively  explain  the  main  features  of  the  results.  

Descriptive  statistics  are  more  informative  and  appropriate  than  testing  a  hypothesis  in  

this  study,  but  the  results  only  generalize  to  other  populations  similar  to  the  one  studied  

here  [62].  Tables  4  and  5  below  show  the  sample  size,  demographics,  and  proportion  of  

subjects’  satisfaction  with  EMR  WB  use  compared  to  the  paper-­‐based  system.  

Table  4  summarizes  the  demographic  characteristics  of  the  sample:  gender,  age,  and  

profession.  Categorization  of  the  15  survey  questions  is  shown  in  Table  5.  Grouping  the  raw  

data  from  the  study  population  in  a  contingency  table  using  ranges  of  values  reduced  the  

number  of  categories  to  yield  interpretable  results.    

In  Table  5,  the  quantities  that  summarize  the  distribution  of  results  (evaluation  summary  

statistics)  are  expressed  as  measures  of  central  tendency,  representing  a  "typical  value"  for  

a  member  of  a  population.  The  two  measures  considered  are  the  mean  and  median,  in  

addition  to  two  measures  of  dispersion  of  the  distribution,  standard  deviation  (SD),  and  

range.  In  the  statistical  approach  to  the  satisfaction  questionnaire  and  analysis,  a  frequency  

distribution  was  used  to  arrange  all  of  the  variables  (i.e.,  responses)  measured  in  the  

sample  (n  =  33).    

Page 82: Dissertation EMR WB Saavedra Final 12-10-12

  73  

Table  4:  Demographic  characteristics  of  study  participants  (n=33).  

Total  Number  of  Participants  Started  Survey:  36.  Total  Number  of  Participants  Finished  Survey:  33  (91.7%  completion  rate)    

The  rationale  behind  managing  and  operating  from  frequency-­‐tabulated  data  is  that  it  is  

much  easier  to  understand  than  raw  data.  Having  frequency  distribution  data  allowed  the  

calculation  of  central  tendency  via  the  mean  from  the  survey  results,  along  with  measures  

of  variability  or  statistical  dispersion  such  as  the  SD  and  confidence  interval  (CI)  [63].    

The  mean  satisfaction  score  for  each  question  was  reported  as  a  measure  of  central  

tendency.  While  the  categories  are  not  necessarily  equally  spaced,  the  mean  nonetheless  

conveys  information  about  the  positive  or  negative  trend  in  the  responses  for  each  

question.  Hence,  the  middle  of  the  scale  was  coded  as  0  so  that  the  range  was  from  -­‐3  to  3.  

This  made  it  easier  to  interpret  the  results  (i.e.,  by  looking  at  whether  numbers  were  

positive  or  negative),  and  provided  the  needed  symmetry.    

   

1   Gender   n   %     Male   10   30%     Female   23   70%          2   Age         20  –  30   14   42%     31  –  40   7   21%     41  –  50   5   15%     51  –  60   5   15%     61  +   2   7%          3   Profession           Physician     6   18%     Psychologist   14   42%     Nutritionist   3   9%     Nurse   6   18%     Social  Worker   4   12%  

Page 83: Dissertation EMR WB Saavedra Final 12-10-12

  74  

 

 

Page 84: Dissertation EMR WB Saavedra Final 12-10-12

  75  

The  survey  was  sent  to  the  total  population  of  the  study  that  fulfilled  the  inclusion  criteria  

(N  =  40),  followed  by  three  consecutive  electronic  mail  reminders,  to  procure  as  many  

responders  as  possible  and  thus  results  that  would  accurately  reflect  future  prospective  

end  users  [63].  Once  the  data  were  obtained,  missing  responses  were  checked,  which  

revealed  a  total  of  36  subjects  started  the  survey  and  a  total  of  33  finished  the  survey  

(82.5%  of  the  total  population);  91.7%  of  those  surveyed  were  thus  included  in  the  study  

(n  =  33).    

For  the  EMR  WB  QUS  survey,  CIs  were  used  to  determine  the  reliability  of  the  observed  

sample  mean  responses  to  survey  questions  compared  to  the  expected  results  from  the  

population.  On  the  EMR  WB  QUS  survey,  Question  15,  “Overall  Satisfaction,”  the  mean  score  

was  2.4  (95%  CI=2.0,  2.8)  on  a  7-­‐point  Likert  scale  ranging  from  -­‐3  to  +3.  A  skewed  upward  

distribution  was  obtained  because  the  majority  of  health  care  providers  reported  a  higher  

level  of  satisfaction  with  EMR  WB  use  compared  with  the  paper-­‐based  system.  Thus,  for  the  

majority  of  respondents,  the  rating  for  overall  satisfaction  with  EMR  WB  was  higher  than  

the  mean  rating.  

The  information  in  Table  5  summarizes  the  total  scores  given  a  mean  and  standard  

deviation  from  1.8  (0.5)  to  2.8  (1.5).  On  average,  for  most  questions,  the  ratings  were  

“Better”  to  “Much  better,”  indicating  that  a  large  quantity  of  CUSS  health  care  providers  

reported  favorable  levels  of  satisfaction  with  EMR  WB  use  compared  with  the  paper-­‐based  

system.  

A  "not  applicable"  option  was  not  included  in  the  survey  questionnaire  because  all  

questions  were  pertinent  to  all  providers.  This  conclusion  was  based  on  the  research  

Page 85: Dissertation EMR WB Saavedra Final 12-10-12

  76  

conducted  previously  to  prepare  the  survey,  including  the  pre-­‐implementation  focus  group.  

However,  not  all  participants  answered  each  question.  The  rationale  for  including  

questions  such  as  “Facilitating  my  use  of  information  for  quality  control"  (Q.  12)55  and  

"Helping  me  obtain  information  for  research"  (Q.  13)  was  based  on  specific  goals  related  to  

the  local  research-­‐oriented  setting  of  the  University  of  Guanajuato  where  all  providers  are  

required  to  1)  conduct  research  and  2)  provide  the  university  feedback  for  quality  control.        

3.4.1.  Confidentiality  

The  design  of  the  one-­‐time,  post-­‐implementation  evaluation  survey  ensured  the  anonymity  

of  the  respondents  because  their  identities  were  not  linked  to  their  responses,  and  the  data  

was  not  uniquely  identifiable.  Also,  an  internet-­‐based  SurveyMonkey  system  was  used  with  

the  anonymous  setting  to  administer  the  survey.    

Although  some  of  the  CUSS  health  care  providers  who  participated  in  the  survey  met  me,  

the  CUSS  director  was  in  charge  of  organizing  the  survey  participants  onsite,  including  

sending  three  anonymous  email  reminders.  The  online  survey  was  conducted  without  

knowing  the  identities  of  the  individuals  (see  Appendix  B).  The  UW  Institutional  Review  

Board  determined  that  EMR  WB  research  qualified  for  exemption  status  under  45  CFR  

46.101  (b)  (2)  from  all  45  CFR  requirements  (exemption  #42999).  This  is  because  the  EMR  

WB  research  posed  little  to  no  risk  for  those  human  subjects  involved,  and  falls  within  one  

or  more  of  six  federally-­‐defined  categories  deemed  as  “exempt  from  IRB  review.”56    

 

                                                                                                               55  The  “Q.”  means  “Question”  of  the  survey  used  to  evaluate  end  user  satisfaction.    56  Office  for  Human  Research  Protections  (OHRP)  -­‐  Categories  of  Research:  http://www.hhs.gov/ohrp/policy/expedited98.html    

Page 86: Dissertation EMR WB Saavedra Final 12-10-12

  77  

3.5.  Results    

3.5.1.  Participants    

Part  I  of  the  EMR  WB  QUS  is  presented  in  a  tabular  form  as  a  data  set  representing  the  

demographic  information  (Table  4).  The  first  column  represents  the  particular  variables  of  

the  sample,  including  age,  gender,  and  all  the  professional  fields  considered  at  the  CUSS.  

Each  row  corresponds  to  a  given  member  of  the  data  set  in  question.  It  lists  values  for  each  

of  the  variables  expressed  as  datum  in  quantity  of  occurrences  and  its  corresponding  

percentages.  

Participant  characteristics  are  summarized  in  Table  4.  The  mean  age  of  the  respondents  

was  35.5  years  (SD  4.5)  and  ranged  from  31  to  40  years  old.  The  distribution  of  sexes  was  

10  males  (30%)  and  23  females  (70%).  Respondents  were  frequent  users  of  the  previous  

paper-­‐based  system  (4–10  hours/week)  for  at  least  one  year  prior  to  the  study.  Of  the  five  

different  professional  fields,  psychologists  represented  the  majority  with  14  (42%),  

followed  by  6  (18%)  physicians,  6  (18%)  nurses,  3  (9%)  nutritionists,  and  3  (9%)  social  

workers.  On  average,  participants  saw  6.5  patients  per  week  and  used  EMR  WB  for  at  least  

20  hours  (4–6  hours  a  week)  to  assist  with  clinical  encounters  with  new  patients,  multiple  

visits  with  the  same  patients,  and  follow-­‐ups  (reported  as  the  most  common  encounter,  

especially  among  psychologists).    

Table  4  indicates  high  proportions  of  females,  younger  subjects,  and  psychologists.  There  

are  several  possible  explanations  for  these  findings.  According  to  current  trends  in  

demographics  and  education  in  Mexico,  women  represent  more  than  50%  of  those  

graduating  from  college,  and  are  especially  prevalent  in  the  field  of  psychology.  In  terms  of  

Page 87: Dissertation EMR WB Saavedra Final 12-10-12

  78  

age,  Mexico  has  a  predominantly  young  population  that  impacts  the  young  age  overall  

among  professions.57  Of  the  total  of  50  health  care  providers  at  the  CUSS,  psychologists  

represent  40%  (n=20).  Thus,  it  was  expected  that  a  high  proportion  of  participants  would  

be  psychologists  because  they  represent  the  largest  proportion  of  health  care  providers  at  

CUSS,  following  by  physicians  (n=10),  nurses  (n=9),  nutritionists  (n=6),  and  social  workers  

(n=5).    

Table  6:  User  satisfaction  question  groupings.  

 

 

                                                                                                               57  Source:  Index  Mundi—Mexico  Demographics  Profile  2012:  http://www.indexmundi.com/mexico/demographics_profile.html.    

Categorization  of  15  EMR  WB  user  satisfaction  questions  into  8  different  clusters.  The  questions  (Q)  described  below  are  grouped  based  on  the  similarity  of  their  mean  satisfaction  scores,  and  were  organized  in  hierarchical  order  from  the  highest  (1)  to  the  lowest  (8).    

Hierarchy   Questions    x̅    

1   Q7.  Sharing  patient  information  with  my  fellow  clinical  team  members     2.8  

2   Q13.  Helping  obtain  information  for  research     2.7  

3   Q8.  Ease  of  access  to  files,    Q10.  Improving  the  continuity  of  patient  care    

2.6  

4   Q1.  Helping  me  complete  my  tasks  Q9.  Improving  workflow  Q11.  Helping  make  effective  evidence-­‐based  care  decisions    

2.5  

5   Q5.  Effectively  review  patient  problems    Q15.  Overall  satisfaction    

2.4  

6   Q2.  Facilitating  my  input  of  information  Q6.  Safeguarding  patient  privacy,  Q2  Facilitating  my  input  of  information    Q12.  Facilitating  use  of  information  for  quality  control  Q14.  Appropriateness  for  use  in  my  care  setting    

2.3  

7   Q4.  Ease  of  use     2.2  

8   Q3.  Learning  how  to  use     1.8  

Page 88: Dissertation EMR WB Saavedra Final 12-10-12

  79  

3.5.2.  User  satisfaction  with  EMR  WB  

The  survey  results  described  below  are  based  on  the  percentage  of  the  survey  respondents  

for  each  question  (Q),  along  with  the  average  score  of  the  mean  and  the  CI  in  a  hierarchy  

from  the  highest  (1)  to  the  lowest  (8).  (See  Table  6.)  

 (1)  In  the  area  of  "Sharing  patient  information  with  my  fellow  clinical  team  members"  (Q7),  

82%  of  survey  respondents  indicated  that  EMR  WB  was  “Much  better”  than  the  paper-­‐

based  system,  which  had  an  average  score  of  2.8  (95%  CI:  2.6–3.0).  Open-­‐ended  comments  

from  participants  on  the  survey  included  “EMR  WB  allows  for  effective  interdisciplinary  

work,  as  each  health  care  professional  can  access  the  information  when  needed;”  “Yes,  

because  it  compiles  the  information  from  the  health  care  team  in  different  interventions;”  and  

“I  have  been  practicing  professionally  in  several  institutions,  and  this  is  the  first  time  that  I  

have  seen  the  work  for  the  end  user  performed  in  an  integral  manner,  across  disciplines,  and  

including  the  field  of  social  work.  I  am  very  pleased  to  see  that  the  same  importance  has  been  

incorporated  to  include  all  fields  (medicine,  psychology,  nutrition,  nursing,  and  social  work).  I  

have  carried  out  several  consultations  with  the  same  patients  many  times  across  different  

fields  in  the  EMR  WB  system,  and  in  this  same  way,  other  professionals  from  different  fields  

have  also  consulted  my  patients  many  times.”    

(2)  In  the  area  of  "Helping  obtain  information  for  research"  (Q13),  77%  of  survey  

respondents  indicated  that  EMR  WB  was  “Much  better”  than  the  paper-­‐based  system,  

which  had  an  average  score  of  2.7  (95%  CI:  2.4–2.9).  This  rating  can  be  correlated  to  

comments  such  as  “With  this  kind  of  platform,  we  can  have  quick  access  to  specific  data  and  

Page 89: Dissertation EMR WB Saavedra Final 12-10-12

  80  

information  for  research”  and  “Yes,  because  basically  we  have  the  recording,  evidence,  and  

other  fundamental  data  that  are  necessary  to  perform  research,  epidemiology,  and  

prospective  and  retrospective  studies.”  Because  the  CUSS  is  a  teaching  and  research  facility  

in  a  university  setting,  these  reactions  seem  especially  meaningful.    

 (3)  In  the  areas  of  a)  "Ease  of  access  to  files"  (Q8),  and  b)  "Improving  the  continuity  of  

patient  care"  (Q10),  69–76%  of  survey  respondents  indicated  that  EMR  WB  was  “Much  

better”  than  the  paper-­‐based  system,  which  had  an  average  score  of  2.6  (95%  CI:  2.3–2.9).    

3a)  Related  comments  for  "Ease  of  access  to  files"  (Q8)  were  “Quite  convenient  accessing  

files  from  any  place  and  platform;”  “As  we  commented,  knowing  the  access  codes  and  

password;”  and  “When  the  system  has  been  designed  perfectly.”  This  is  consistent  with  the  

opinion  stated  by  various  clinical  system  designers  over  the  years  that  "ease  of  use"  is  the  

single  most  important  determinant  of  user  satisfaction  [12,38,58].  

3b)  Some  supporting  comments  for  "Improving  the  continuity  of  patient  care"  (Q10)  

included  “Only  with  EMR  WB  can  health  care  providers  document  and  therefore  support  the  

continuity  of  integral  care;”  “Yes,  because  absolutely  no  intervention  is  lost;”  and  “If  we  use  

the  system  appropriately,  other  health  care  professionals  can  provide  further  care.”  Since  the  

CUSS  provides  continual  health  care  beginning  with  the  initial  contact  following  the  patient  

through  all  phases  of  multidisciplinary  care  (medicine,  psychology,  nutrition,  nursing,  and  

social  work),  the  continuity  of  patient  care  is  one  of  the  elements  that  providers  value  the  

most,  as  they  also  outlined  during  the  focus  group.    

 (4)  In  the  areas  of  a)  "Improving  workflow"  (Q9),  b)  “Helping  me  complete  my  tasks”  (Q1),  

and  c)  “Helping  make  effective  evidence-­‐based  care  decisions”  (Q11),  63–67%  of  survey  

Page 90: Dissertation EMR WB Saavedra Final 12-10-12

  81  

respondents  indicated  that  EMR  WB  was  “Much  better”  than  the  paper-­‐based  system,  

which  had  an  average  score  of  2.5  (95%  CI:  2.2–2.8).    

4a)  With  regard  to  "Improving  workflow"  (Q9),  some  related  comments  were  “Yes,  based  

on  the  availability  from  any  space,  city,  clinic,  etc.;”  “Yes,  as  soon  as  the  system  becomes  

ubiquitous  with  all  health  care  professionals,  better  access  to  the  internet,  and  becomes  a  

standard  of  care;”  and  “Although  the  first  visit  could  be  a  time-­‐consuming  task  inputting  all  

required  information,  but  this  also  happens  with  the  paper-­‐based  system,  anyway.”  Such  

feedback  represented  a  positive  response  to  the  design  of  EMR  WB  as  all-­‐inclusive  and  

multidisciplinary  across  the  most  important  primary  care  domains  that  parallel  the  same  

workflow  in  use  at  the  CUSS.    

4b)  Some  of  the  favorable  comments  for  “Helping  me  complete  my  tasks”  (Q1)  included  

“The  EMR  WB  allows  for  working  easily  with  the  information  resources  provided  in  the  

system,  and  you’re  aware  of  the  work  of  the  other  health  care  providers;”  “It's  all  there  with  a  

few  clicks,  available  anytime,  anywhere;”  “It  simplifies  the  visit,  documentation  and  storage;”  

and  “I  was  dependent  upon  the  training  of  how  to  efficiently  manage  the  EMR.”    

4c)  Regarding  “Helping  make  effective  evidence-­‐based  care  decisions”  (Q11),  some  

supporting  comments  were  “Yes,  because  we  have  access  to  the  evidence  when  we  need  it”  

and  “Yes,  in  particular,  when  we  are  dealing  with  uncertainties,  we  need  to  be  better  

informed.”    

 (5)  In  the  areas  of  a)  "Overall  satisfaction"  (Q15),  and  b)  "Effectively  review  patient  

problems"  (Q5)  67–68%  of  survey  respondents  indicated  that  EMR  WB  was  “Much  better”  

than  the  paper-­‐based  system,  which  had  an  average  score  of  2.4  (95%  CI:  2.0–2.8).    

Page 91: Dissertation EMR WB Saavedra Final 12-10-12

  82  

5a)  With  regard  to  "Overall  satisfaction"  (Q15),  it  was  associated  with  the  following  survey  

comments:  “After  working  with  EMR  WB,  I  realized  that  this  is  an  excellent  tool  in  order  to  

have  a  better  control  of  the  clinical  files,  working  in  a  multidisciplinary  environment  in  a  

timely  manner,  and  facilitating  our  contact  with  supervisors;”  “EMR  WB  is  an  excellent  system  

to  provide  the  users  of  the  system  with  complete  care.  I  truly  congratulate  the  creators  of  this  

project;”  and  “I  believe  that  this  is  an  excellent  project.  It  would  contribute  to  the  appropriate  

management  of  health  information  to  establish  an  appropriate  control  of  health  care  

interventions.  It  would  establish  a  guarantee  of  overall  quality.”  

5b)  Some  related  comments  for  "Effectively  review  patient  problems"  (Q5)  included  

“Definitively,  only  with  EMR  WB  is  it  possible  to  work  in  an  integral  and  multidisciplinary  

manner  because  the  information  is  accessible  when  it’s  needed”  and  “Yes,  because  after  we  get  

into  the  system,  we  can  review  all  fields.”  This  reflects  the  potential  benefit  that  health  care  

providers  could  receive  from  using  EMR  WB  to  gather  data  from  patients  to  review  

problems  and  support  diagnoses  and  treatment  plans.  

(6)  In  the  areas  of  a)  “Appropriateness  for  use  in  my  care  setting”  (Q14),  b)  “Safeguarding  

patient  privacy”  (Q6),  c)  “Facilitating  my  input  of  information”  (Q2),  and  d)  “Facilitating  use  

of  information  for  quality  control”  (Q12),  55–67%  of  survey  respondents  indicated  that  

EMR  WB  was  “Much  better”  than  the  paper-­‐based  system,  which  had  an  average  score  of  

2.3  (95%  CI:  2.0–2.7).    

6a)  With  regard  to  “Appropriateness  for  use  in  my  care  setting”  (Q14),  they  expressed  that  

EMR  WB  would  be  appropriate  for  use  in  the  CUSS  due  to  its  primary  care  multidisciplinary  

approach  that  permits  sharing  among  members  of  the  primary  care  team.  Some  related  

Page 92: Dissertation EMR WB Saavedra Final 12-10-12

  83  

comments  were  “Yes,  because  it  facilitates  the  accessibility  of  the  needed  health  

interventions”  and  “Yes,  but  we  all  are  dependent  upon  internet  connectivity.”    

6b)  With  regard  to  “Safeguarding  patient  privacy”  (Q6),  some  related  comments  included  

“This  has  to  be  reinforced,  in  particular  with  multidisciplinary  health  care  professionals’  

access”  and  “This  is  fundamental  because  everyone  in  the  world  can  have  access  to  it.”    

6c)  With  regard  to  “Facilitating  my  input  of  information”  (Q2),  some  favorable  comments  

were  “EMR  WB  offers  options  to  fill  out  information  that  facilitates  the  time  and  coverage  of  

the  documentation”  and  “Yes,  it  facilitates  the  input  of  information  because  you  have  clear  

options  at  your  disposal.”  Such  responses  lend  support  to  success  with  the  design  of  EMR  

WB  to  better  address  the  need  for  standardized  patient  documentation  using  both  

unstructured  and  structured  input.    

6d)  With  regard  to  "Facilitating  use  of  information  for  quality  control"  (Q12).  Some  

favorable  comments  were  “Yes,  because  it’s  possible  to  compare  with  health  indicators,  

standards  of  care,  etc.  that  could  be  useful  as  quality  control”  and  “Yes,  we  can  use  the  data  

from  the  system  as  we  have  previously  envisioned,  to  perform  statistical  analysis  based  on  

diverse  pathologies  and  treatments.”    

(7)  In  the  area  of  "Ease  of  Use"  (Q4),  55%  of  survey  respondents  indicated  that  EMR  WB  

was  “Much  better”  than  the  paper-­‐based  system,  which  had  an  average  score  of  2.2  (95%  

CI:  1.7–2.6).  This  contrasted  with  the  opinion  that  various  clinical  system  designers  have  

stated  over  the  years  that  "ease  of  use"  often  is  the  single  most  important  determinant  of  

user  satisfaction  [12,38,58].  Some  related  comments  were  “Only  if  I  can  learn  how  to  access  

Page 93: Dissertation EMR WB Saavedra Final 12-10-12

  84  

it;”  “It  requires  more  time  to  create  a  new  file,  as  with  following  up  with  the  patient;”  and  “As  

soon  as  you  get  to  use  it,  it’s  easy  to  manage.”      

(8)  In  the  area  of  "Learning  how  to  use"  (Q3),  48%  of  survey  respondents  indicated  that  

EMR  WB  was  “Much  better”  than  the  paper-­‐based  system,  which  had  an  average  score  of  

1.8  (95%  CI:  1.2–2.3).  This  was  the  eleventh  and  lowest  scored  response.  Some  users  

commented  that  “It  takes  time  to  learn  how  to  use  the  EMR”  and  “To  become  competent  in  its  

management  is  an  achievable  but  time-­‐consuming  task.”      

Suggested  improvements  for  EMR  WB  

Provider  feedback  to  Q20  (“Do  you  have  any  comments  or  suggestions  to  improve  EMR  

WB?”)  is  summarized  here,  immediately  followed  by  related  verbatim  comments:  

1. Include  a  button  for  additions  to  patient  problems:  “Have  a  button  ‘add  to  problem  

list’  on  progress  notes  to  facilitate  updating  the  problem  list  when  a  new  diagnosis  is  

made.”  

2. Expand  the  variables  that  are  specific  to  the  nursing  clinical  file:  “In  the  field  of  

nursing,  the  variables  that  are  specific  to  the  nursing  clinical  file  need  to  be  expanded.  

These  additions  would  impact  the  nursing  side  of  the  management  of  the  patient.”    

3. Add  some  guidelines  or  a  tutorial  on  the  home  page:  “I  consider  it  important  to  add  

some  guidelines  on  the  home  page  to  show  how  to  use  EMR  WB.”    

4. Expand  to  hospital  settings:  “I  think  if  physicians  could  access  EMR  WB  in  a  private  

hospital  setting  it  would  be  a  great  asset.”  

5.  Add  Spanish-­‐language  EB  sources  of  information:  “Have  access  to  sources  of  

information  in  Spanish  because  not  all  of  us  have  mastered  English.”  

Page 94: Dissertation EMR WB Saavedra Final 12-10-12

  85  

6. Use  better  hardware:  “I  don’t  have  any  suggestions  for  improving  EMR  WB,  but  

having  better  hardware  would  facilitate  the  speed  of  inputting  information  into  the  

system.”    

 

3.6.  Discussion  

As  W.E.  Hammond  pointed  out  in  2009  [9],  “For  much  of  the  world,  truly  productive  and  

functional  EMRs  remain  an  elusive  goal  of  the  future.”  However,  opportunities  for  

improvement  abound  from  the  availability  of  HIT  funding  in  the  United  States,  Mexico,  and  

other  countries.  EMR  WB  underscored  the  importance  of  and  need  to  better  understand  

the  logistics  of  bringing  patient  records  out  of  the  ink-­‐and-­‐paper  era  and  into  the  state-­‐of-­‐

the-­‐art  computer  age  in  a  global  context.  This  project  focused  on  answering  the  “why”  and  

“how-­‐to”  questions  regarding  the  basic  functions  needed  to  ensure  user  satisfaction  with  

EMRs.  

The  EMR  WB  QUS  evaluation  tool  shed  light  on  the  system’s  interface,  standardization,  

access,  and  offering  of  knowledge-­‐based  tools  compared  to  the  paper-­‐based  system.  The  

results  showed  that  a  majority  of  respondents  found  the  EMR  WB  system  overall  more  

satisfying  than  the  paper-­‐based  system  with  regard  to  these  aspects  by  indicating  “Much  

better”  on  the  “Overall  satisfaction”  question  of  the  survey.  The  novelty  effect  was  

considered  as  a  possible  explanation  for  this  finding  at  the  CUSS,  where  providers  may  

have  initially  reacted  favorably  to  the  institution  of  new  technology  rather  than  to  any  

actual  improvement  in  workflow  with  EMR  WB  in  comparison  with  the  paper-­‐based  

system.  While  it  is  possible  that  the  higher  satisfaction  reported  with  the  use  of  EMR  WB  

Page 95: Dissertation EMR WB Saavedra Final 12-10-12

  86  

via  the  EMR  WB  QUS  can  be  attributed  to  a  novelty  effect,  informal  monitoring  of  user  

satisfaction  after  one  year  indicates  the  level  of  interest  in  EMR  WB  is  still  greater  than  that  

in  the  paper-­‐based  system.  CUSS  providers  continue  to  display  effort  and  persistence  with  

the  new  system,  which  demonstrates  the  novelty  effect  is  no  longer  applicable.  

Implementation  of  EMR  WB  in  the  CUSS  primary  care  setting  was  associated  with  

perceived  overall  improvements  and  satisfaction  in  data  sharing  across  all  five  primary  

care  domains,  as  indicated  by  both  the  survey  responses  specifying  the  highest  level  of  

satisfaction  reported  (Table  5)  and  associated  comments.  Respondents  believed  that  EMR  

WB  data  sharing  allowed  them  to  deliver  more  effective  patient  care.  These  findings  were  

not  particularly  surprising  for  two  reasons.  First,  during  the  focus  group  CUSS  health  care  

providers  had  expressed  great  interest  in  multidisciplinary  collaborative  work  where  all  

different  professionals  (physicians,  psychologists,  nutritionists,  nurses,  and  social  workers)  

are  able  to  input  and  review  all  available  information  for  the  same  patient.  Second,  EMR  

WB  was  designed  to  be  all-­‐inclusive  and  multidisciplinary  across  the  most  important  

primary  care  domains  that  parallel  the  same  workflow  in  use  at  the  CUSS,  where  the  

professional  health  care  provider  could  input  and  share  information  as  a  member  of  a  

patient’s  health  team,  as  was  done  with  the  paper-­‐based  system.    

Perhaps  the  most  revealing  findings  from  the  survey  were  that  the  second  and  third  highest  

scored  areas  (out  of  14),  “Helping  obtain  information  for  research”  (Q13),  followed  by  

“Ease  of  access  to  files”  (Q8),  contrasted  with  the  score  for  "Ease  of  use"  (Q4,  13th  overall  

place).  Various  clinical  system  designers  have  stated  over  the  years  that  "ease  of  use"  is  the  

single  most  important  determinant  of  user  satisfaction  [12,38,58].  However,  our  findings  

Page 96: Dissertation EMR WB Saavedra Final 12-10-12

  87  

indicated  that  overall  user  satisfaction  correlated  best  with  the  questions  that  related  to  

the  health  care  providers’  ability  to  use  the  system  to  carry  out  their  assigned  tasks  in  

terms  of  access  to  the  clinical  information  they  needed  “from  any  place,  any  time,  and  any  

platform,”  as  one  respondent  added  in  the  comments  at  the  end  of  this  question.    

A  possible  explanation  for  the  high  rating  for  "Improving  the  continuity  of  patient  care"  

(69%,  Q10,  and  4th  overall  place)  is  that  health  care  providers  at  the  CUSS  found  that  the  

capabilities  of  the  EMR  WB  system  (e.g.,  electronic  data  storage,  access,  sharing  

information  electronically,  etc.)  offered  better  support  than  the  paper-­‐based  system  when  

following  the  patient  through  all  phases  of  health  care.  

One  of  the  possible  explanations  for  the  relatively  low  rating  for  "Helping  me  complete  my  

tasks"  (63%,  Q1)  is  that  health  care  providers  at  the  CUSS  found  the  content  of  EMR  WB  to  

be  very  familiar  and  therefore  similar  to  the  paper-­‐based  system  previously  used.  Another  

related  possibility  is  that  the  paper-­‐based  system  was  perceived  as  very  efficient  at  CUSS  

clinical  documentation,  and  therefore  there  was  no  need  to  replace  it.  As  outlined  above  in  

Section  2.2  on  standardization,  EMR  WB  was  specifically  designed  to  simulate  the  structure  

and  clinical  contents  of  the  CUSS’  paper-­‐based  system,  so  these  results  can  be  positively  

interpreted  (i.e.,  correlated  with  ease  of  use).    

The  explanation  for  the  low  satisfaction  reported  for  "Facilitating  use  of  information  for  

quality  control"  (55%,  Q12)  may  be  similar  to  that  for  "Helping  me  complete  my  tasks"  

(Q1)  since  CUSS  health  care  providers  already  had  used  the  paper-­‐based  system  (for  at  

least  one  year)  for  this  purpose,  as  requested  by  the  CUSS.  In  this  context,  EMR  WB  

Page 97: Dissertation EMR WB Saavedra Final 12-10-12

  88  

represented  an  investment  of  time  needed  to  obtain  all  the  information  that  users  could  

previously  see  and  corroborate  easily  on  paper  for  quality  control.  

In  contrast,  the  overall  weak  support  for  decision  support  tools  (61%,  Q11)  may  be  due  to  

their  newness  to  the  clinical  workflow.  However,  there  were  enough  positive  responses  to  

confirm  previous  reports  demonstrating  favorable  acceptance  of  decision  support  tools  in  

global  adult  primary  care  and  support  continued  adoption  in  this  environment  [9,55,  58].    

Computer  experience  was  not  evaluated  because  all  providers  reported  being  

knowledgeable  in  basic  computer  skills,  such  as  the  ability  to  use  electronic  mail  and  a  

word  processor,  as  expressed  in  the  initial  focus  group.  Due  to  the  assumed  simplicity  of  

the  EMR  WB  interface,  its  similarity  with  the  paper-­‐based  system,  and  user  familiarity  with  

the  clinical  contents,  no  training  was  considered  necessary.  However,  it  seems  there  is  a  

clear  need  for  training,  as  only  48%  (the  lowest  rating)  of  respondents  indicated  EMR  WB  

was  “Much  better”  than  the  paper-­‐based  system  with  regard  to  ”Learning  how  to  use”  (Q3).  

This  negative  rating  might  be  attributed  to  the  short  time  period  (about  two  hours)  in  

which  health  care  providers  had  to  become  familiarized  with  the  new  system.  The  

introduction  of  EMR  WB,  with  its  documentation  functions  and  new  interface,  brought  a  

radically  changed  interaction  structure  and  represented  a  new  challenge  in  terms  of  

learning  a  different  system  for  regular  clinical  work.  A  demo  is  available  upon  request,  but  

it  requires  the  user  to  spend  some  time  becoming  familiar  with  the  system,  and  it  does  not  

include  step-­‐by-­‐step  instructions.  

Although  specific  aspects  of  system  speed  were  not  addressed  in  the  EMR  WB  QUS,  users  

were  asked  about  this  during  follow-­‐up  onsite  visit  seven  months  after  EMR  WB  

Page 98: Dissertation EMR WB Saavedra Final 12-10-12

  89  

implementation.  None  of  the  CUSS  health  care  providers  expressed  concerns  about  speed,  

and  the  majority  considered  the  system  to  be  adequately  fast  to  accomplish  needed  tasks  

such  as  information  input  and  retrieval,  and  to  take  advantage  of  decision  support  tools.    

The  data  indicates  that  relative  to  other  system  features,  respondents  were  the  least  

satisfied  with  learnability  (48%,  Q3),  and  most  satisfied  with  information  sharing  (82%,  

Q7).  EMR  WB  facilitation  of  research  (77%,  Q13),  file  access  (76%,  Q8),  and  continuity  of  

patient  care  (69  %,  Q10)  were  also  highly  rated.  Thus,  the  system  may  be  difficult  to  learn  

for  some  professionals,  but  once  the  user  is  familiar  with  the  system,  its  biggest  payoffs  

appear  to  be  information  sharing,  research,  ease  of  access  to  files,  and  continuity  of  care.    

 

3.7.  Summary    

Apart  from  the  effort  to  build  an  all-­‐inclusive  interface  using  one  navigation  system  and  the  

standardization  of  the  clinical  core  to  facilitate  the  input  of  structured  and  unstructured  

(free  text)  information,  what  remains  one  of  the  greatest  challenges  to  achieving  a  highly  

rated  EMR  WB  user  interface  is  balancing  the  providers’  requirements  with  an  integrated  

and  fully  functional  system  in  the  global  context.  In  many  instances,  difficulties  in  learning  

how  to  use  the  system  prevented  health  care  providers  from  gaining  a  rapid  knowledge  of  

the  system  capabilities.  Too  much  information  and  too  many  functions  on  a  single  screen  

may  impede  task  efficiency  rather  than  improve  it.  However,  less  information  and  fewer  

functions  on  a  single  screen  require  more  screens  and  thus  lead  to  a  more  complex  user-­‐

interaction  structure.  Fortunately,  minor  changes  in  screen  design  and  interaction  

structure  (e.g.,  making  the  all-­‐inclusive  main  menu  bars  visible  all  the  time)  addressed  all  of  

Page 99: Dissertation EMR WB Saavedra Final 12-10-12

  90  

these  issues  and  had  a  positive  impact  on  usability  based  on  direct  observation  during  the  

onsite  visits  and  comments  gathered  from  the  providers.  This  was  achieved  with  version  

1.5,  which  required  an  in-­‐depth  review  focused  on  interface  and  documentation  structure.      

The  issues  discovered  in  this  project  related  to  the  primary  care  context.  Interaction  with  

the  system  among  diverse  professions  treating  the  same  patient  can  be  linked  back  to  the  

importance  of  user-­‐centered  system  design.  For  the  interaction  structure  to  be  effective,  

the  tasks  and  procedures  that  users  may  perform  with  the  EMR  WB  system  need  to  be  

organized  in  a  logical  and  consistent  manner  [38].  This  means  that  the  system  functions  

should  specifically  correspond  with  the  goals  that  the  health  care  provider  sets  for  

performing  tasks,  including  the  order  in  which  the  provider  wants  to  attain  these  goals.  

Also,  the  order  of  information  presented  should  match  the  order  in  which  a  user  processes  

this  information,  which  means  clustering  related  data  elements  on  computer  screens  

across  the  different  primary  care  domains  considered  [38,  51].    

Technical  support  is  another  essential  element  of  successful  EMR  WB  implementation.  

Follow-­‐up  inquiries  indicated  CUSS  users  felt  they  had  adequate  support  from  both  the  

University  of  Guanajuato  Information  Technology  Department,  and  my  team  because  of  the  

quick  response  they  obtained  when  faced  with  onsite  technical  difficulties  such  as  

interrupted  internet  connections  or  changes  in  speed,  as  well  as  the  rapid  and  tailored  

updates  to  their  feedback  during  the  beta  testing  (i.e.,  version  1.5).  User  satisfaction  with  

an  EMR  system  may  obviously  vary  according  to  the  availability  and  delivery  of  associated  

support,  especially  in  global  settings  where  EMR  adoption  has  been  less  prevalent.    

Page 100: Dissertation EMR WB Saavedra Final 12-10-12

  91  

This  project  demonstrates  that  despite  the  associated  challenges,  we  can  move  from  a  

paper  system  to  an  empowering  system  based  on  state-­‐of-­‐the-­‐art-­‐technology  (e.g.,  cloud  

computing  and  cellular  networks  now  widely  available).  EMR  WB  needs  to  be  recognized  

for  its  potential  to  become  an  intelligent,  active  partner  with  the  health  care  provider  and  

patient  to  enhance  health  care  services  globally,  without  borders  [9].      

 

3.8.  Limitations  of  Study  

This  research  has  several  important  limitations.  Probably  the  most  significant  is  that  

because  EMR  WB  was  tested  in  only  one  clinic,  the  CUSS,  post-­‐implementation  user  

evaluations  reflected  the  proposed  system’s  functionality  and  usability  in  only  that  

environment.  A  power  calculation  was  not  performed  with  a  random  sampling  of  EMR  WB  

users  to  determine  the  sample  size  needed  to  be  able  to  claim  support  for  generalizability  

because  the  study  was  focused  on  one  setting  that  represented  local,  clinical,  and  

psychosocial  primary  care  problems  in  targeted  underserved  communities  in  the  state  of  

Guanajuato,  Mexico,  as  well  as  transnational  migration  health  issues  [62].  The  main  

objective  of  the  study  was  to  obtain  information  about  provider  satisfaction  with  the  new  

EMR  WB  system  compared  to  the  old  paper-­‐based  one  by  using  descriptive  statistics  rather  

than  hypothesis  testing.  Therefore,  not  all  conclusions  based  on  how  EMR  WB  worked  in  

the  CUSS  may  be  generalized  to  other  countries  or  institutions.  However,  presenting  

information  on  the  study  setting  may  help  others  apply  lessons  from  the  CUSS  experience  

to  similar  contexts.    

Page 101: Dissertation EMR WB Saavedra Final 12-10-12

  92  

A  related  limitation  is  the  small  size  of  the  pre-­‐implementation  focus  group  (6  health  care  

providers),  but  it  is  representative  of  the  diverse  groups  in  the  total  end  user  population  

included  in  the  study  (i.e.,  CUSS  physicians—1,  psychologists—2,  nutritionists—1,  

nurses—1,  and  social  workers—1).  Another  limitation  in  this  context  is  that  the  focus  

group  met  just  once  (for  90  minutes).  Other  possible  limitations  are  inherent  to  the  

technique  itself,  namely  that  providers  might  not  have  said  what  they  actually  think  

because  of  “group  think”  (e.g.,  people  expressing  an  opinion  which  is  in  agreement  with  the  

rest  of  the  group  even  if  that  opinion  is  at  odds  with  their  own  personal  perceptions,  

interpretations,  or  beliefs)  [59].  Similarly,  respondents  may  have  been  inclined  to  give  the  

answers  they  thought  their  recruiter  wanted  to  hear,  which  would  be  consistent  with  her  

bias  in  favor  of  EMR  WB.  The  moderator  did  not  perceive  these  factors  to  be  present.    

Despite  these  limitations,  this  was  the  first  study  assessing  user  satisfaction  with  an  

entirely  new  multidisciplinary,  standardized  web-­‐based  EMR  system  compared  to  a  paper-­‐

based  record  system  in  a  global  primary  care  setting.  At  a  time  when  governments,  health  

care  organizations,  and  stakeholders  are  focused  on  efficacy,  development  of  a  system  such  

as  EMR  WB  that  satisfies  its  users  is  an  important  step  toward  a  design  supported  by  solid  

evidence  showing  it  may  actually  improve  overall  provider  satisfaction,  and  eventually  

patient  quality  of  life  as  well.  Innovations  in  software  technologies,  and  more  particularly  

the  development  of  cloud  and  mobile  computing,  will  increasingly  encourage  the  use  of  

EMR  research  in  similar  global  settings  in  the  future.      

 

 

Page 102: Dissertation EMR WB Saavedra Final 12-10-12

  93  

3.9.  Suggestions  for  Further  Research  

Although  the  study  offered  important  insights  about  the  level  of  satisfaction  with  use  of  

EMR  WB  compared  to  paper-­‐based  records  as  expressed  by  health  care  providers,  several  

related  critical  questions  remain  unanswered.  One  of  these  is  how  patient  satisfaction  is  

affected  during  clinical  encounters  with  health  care  providers  who  use  EMR  WB.  Also,  to  

what  extent  does  use  of  EMR  WB  in  the  same  and  similar  settings  impact  patients’  overall  

quality  of  life,  specific  health  indicators,  and  health  outcomes?  Fortunately,  these  

unanswered  questions  have  become  more  focused  because  of  the  study.  The  next  

suggested  step  for  further  research  is  centered  on  answering  the  level  of  patient  

satisfaction  as  it  relates  to  health  outcomes  and  treatment  of  prevalent  chronic  conditions  

such  as  type  2  diabetes  mellitus,58  hypertension,  cardiovascular  diseases,  and  depression  as  

facilitated  by  EMR  WB.  These  research  initiatives  should  take  place  in  parallel  with  the  

software  updates  and  setting  expansions  in  primary  care  settings  not  only  in  Mexico,  but  

the  United  States  and  other  countries.  Additional  implementation  of  EMR  WB  in  

multispecialty  primary  health  clinics  of  varying  sizes  needs  to  be  done  to  better  understand  

the  functionality  that  is  most  associated  with  high  levels  of  satisfaction  with  its  use.    

Several  ideas  are  already  being  developed  to  update  ongoing  future  improvements:  1)  

Meaningful  use  certification  in  the  United  States;  2)  Information  exchange  and  

interoperability  with  diverse  EMRs;  3)  an  mHealth-­‐based  EMR  WB  system  (mHealth  

unification  initiative);  4)  Global  expansion  (Mesoamerica  Health  Initiative  201559;  United  

                                                                                                               58  Medscape  Outpatient  EHRs  May  Improve  Diabetes  Management  (http://www.medscape.com/viewarticle/775233?src=nl_topic).  Tenforde  M,  Nowacki  A,  Jain  A,  Hickner  J.  The  association  between  personal  health  record  use  and  diabetes  quality  measures.  J  Gen  Intern  Med.  2012  Apr;27(4):420-­‐4.  59  Belize,  El  Salvador,  Guatemala,  Nicaragua,  Honduras,  Panama,  Costa  Rica  and  the  Mexican  state  of  Chiapas  

Page 103: Dissertation EMR WB Saavedra Final 12-10-12

  94  

States—pilot  project  in  Pittsburgh60;  Africa—Tanzania;  and  Europe—the  European  EMR  

WB  model-­‐pilot  project  at  Heidelberg  University,  Germany);  5)  Personalized  medicine  

integration  (e.g.,  genome  infobuttons);  6)  Integration  of  machine  translation  tools  (for  

English  and  Spanish);  7)  EMR  WB  new  modules  (hospital,  medical,  and  surgical  

subspecialties;  public  health;  and  a  surveillance-­‐based  EMR  WB  system);  8)  EMR  WB  Lab-­‐

on-­‐a-­‐chip  (portable  medical  office  lab  project);  and  the  EMR  WB-­‐based  Office  of  the  

Future—Integrating  Information  in  the  Care  System  project  (e.g.,  machine  learning,  

knowledge  discovery,  and  data  mining).    

I  look  forward  to  the  diffusion  and  expansion  of  a  ubiquitous,  state-­‐of-­‐the-­‐art  EMR  system  

to  improve  global  health  outcomes  in  a  cost-­‐effective  manner.    

 

   

                                                                                                               60  Squirrel  Hill  Health  Center  and  the  University  of  Pittsburgh  Center  for  Global  Health.    

Page 104: Dissertation EMR WB Saavedra Final 12-10-12

  95  

Chapter  IV:  Ethical  Dilemmas  

EMRs  are  increasingly  being  used  in  many  developing  countries,  several  of  which  have  

moved  beyond  isolated  pilot  projects  to  mainstream  components  of  their  local  (as  in  the  

case  with  EMR  WB)  and  national  health  strategies.  Despite  growing  enthusiasm  for  

adopting  EMRs  in  middle  income  and  poor  countries,  almost  no  attention  has  been  paid  to  

the  ethical  dilemmas  associated  with  their  implementation  and  use  [52].  These  ethical  

issues  should  be  addressed  now  to  avoid  problems  with  maintaining  appropriate  

application  of  EMRs  and  their  future  adoption.    

The  development  and  implementation  of  EMR  WB  was  guided  by  the  HITECH  Act,  a  widely  

accepted  ethical  framework  currently  in  use  in  the  United  States  and  Mexico.  HITECH  has  

now  extended  some  privacy  and  security  protections  as  described  in  the  Health  Insurance  

Portability  and  Accountability  Act  (HIPAA)  to  EMR  health  care  provider  users.  

Despite  their  promise  as  a  technological  innovation  capable  of  reforming  health  care,  many  

currently  unanswered  ethical  questions  threaten  the  widespread  adoption  of  EMRs.  The  

literature  points  out  that  privacy,  security,  and  confidentiality  issues  appear  to  be  the  most  

common  ethical  concerns  with  EMR  implementation  and  adoption  [37,52,53].  In  addition,  

there  are  other  concerns  that  may  arise  with  respect  to  disclosing  clinical  information  

stored  electronically  [54,56].  One  is  related  to  the  use  of  EB  tools.  By  definition,  EB  implies  

the  use  of  the  best  evidence  available,  the  experience  of  the  provider,  and  patient’s  

preference  or  choice  [28].  The  problem  arises  when  the  evidence  competes  with  the  

patient’s  decision-­‐making  process,  preference,  or  best  interest,  even  with  good  intentions.  

The  lack  of  provider  experience  perhaps  is  a  predisposition  that  has  to  be  considered.  

Page 105: Dissertation EMR WB Saavedra Final 12-10-12

  96  

Imposing  knowledge-­‐based  tools  at  the  point  of  care  over  a  patient’s  best  interest  is  a  

concern  that  remains  to  be  studied,  but  because  EMR  WB  uses  these  tools,  it  is  important  to  

point  out  the  potential  ethical  issues  involved  and  create  the  needed  awareness.  Another  

concern  is  related  to  copying  and  pasting  of  clinical  notes  or  information  from  other  

patients  or  other  sources  that  has  the  potential  to  add  misinformation,  create  mistakes,  and  

build  clinically  unrelated  files  [40,52,  53].61  

Because  the  need  for  access  is  one  of  the  primary  reasons  for  establishing  the  proposed  

EMR  system,  restriction  of  access,  time  of  access,  place  of  access,  and  even  provision  of  

access  remain  sources  of  ethical  concern  when  dealing  with  a  patient’s  data  across  borders.  

To  address  these  critical  areas,  the  system  was  designed  to  be  HIPAA  compliant,  obey  the  

International  Organization  for  Standardization  (ISO)  confidentiality62  and  privacy  rules,  

and  work  seamlessly  for  a  patient’s  best  interest.  An  EMR  culture  of  ethics  was  created  

where  patients’  best  interests  are  the  norm,  which  reflects  the  overall  patient-­‐centered  

design.  Future  plans  include  setting  up  lines  of  research  to  better  understand  the  intricate  

ethical  issues  related  to  the  nature  of  this  project  and  implement  better  ethical  and  

technological  solutions  related  to  overall  clinical  data  management  across  borders.      

                                                                                                               61  Leora  Horwitz.  Shortcuts  in  Medical  Documentation:  Electronic  medical  records  make  some  things  too  easy.  The  New  York  Times.  OP-­‐ED  CONTRIBUTOR.  November  22,  2012.    62  ISO  definition:  Confidentiality  is  a  characteristic  that  applies  to  information.  To  protect  and  preserve  the  confidentiality  of  information  means  to  ensure  that  it  is  not  made  available  or  disclosed  to  unauthorized  entities.  In  this  context,  entities  include  both  individuals  and  processes.  (http://www.praxiom.com/iso-­‐27001-­‐definitions.htm#Confidentiality)  

Page 106: Dissertation EMR WB Saavedra Final 12-10-12

  97  

Chapter  V:  Conclusions  

EMR  WB  attempted  to  highlight  the  importance  of  and  need  to  better  understand  the  

logistics  of  bringing  patient  records  out  of  the  ink-­‐and-­‐paper  era  and  into  the  state-­‐of-­‐the-­‐

art  computer  age  in  a  global  context.  This  project  focused  on  answering  the  “why”  and  

“how-­‐to”  questions  regarding  the  interface,  access,  standardization,  decision  support,  

definition,  and  evaluation  of  the  proposed  concept.  Hence,  it  was  expected  that  EMR  WB  

would  have  a  measurable,  positive  effect  on  provider  satisfaction  compared  with  the  paper-­‐

based  system.    

The  implementation  of  EMR  WB  in  a  primary  care  setting,  the  CUSS,  was  associated  with  

perceived  overall  improvements  in  information  sharing,  research,  access  to  files,  continuity  

of  care,  workflow,  and  primary  documentation  capabilities.  Users  valued  remote  access  and  

secure  sharing  of  clinical  data  across  multidisciplinary  primary  care  disciplines  in  

particular.  These  results  confirm  previous  reports  demonstrating  favorable  acceptance  of  

EMRs  in  adult  primary  care,  and  support  continued  adoption  in  this  environment  [41].    

The  central  idea  of  this  effort  was  to  provide  a  research-­‐based  medical  record  system  with  

state-­‐of-­‐the-­‐art  biomedical  informatics  applications  that  would  improve  provider  

satisfaction  and  health  care  for  populations  in  Mexico  with  limited  resources.  This  included  

efficient  documentation,  the  transfer  and  sharing  of  technical  and  clinical  information,  

decision  support,  technology,  and  organizational  skills.    

 

 

Page 107: Dissertation EMR WB Saavedra Final 12-10-12

  98  

5.1.  Conflicts  of  interest  

One  of  the  priorities  for  EMR  WB  is  to  make  it  available  for  free.  The  intention  after  

completion  of  the  pilot  project  is  to  find  an  institution  in  the  United  States  and/or  abroad  to  

support  its  updates  and  expansion  (e.g.,  migration  to  farm  computing  when  needed)  under  

the  same  “open  source  for  all”  philosophy.  No  current  or  potential  conflicts  of  interest  have  

arisen.  

   

Page 108: Dissertation EMR WB Saavedra Final 12-10-12

  99  

References  

1.  O'Malley  AS.  Tapping  the  unmet  potential  of  health  information  technology.  N  Engl  J  Med.  2011  Mar  24;364(12):1090-­‐1.      2.  Romano  MJ,  Stafford  RS.  Electronic  health  records  and  clinical  decision  support  systems:  impact  on  national  ambulatory  care  quality.  Arch  Intern  Med.  2011  May  23;171(10):897-­‐903.      3.  Jones  SS,  Adams  JL,  Schneider  EC,  Ringel  JS,  McGlynn  EA.  Electronic  health  record  adoption  and  quality  improvement  in  US  hospitals.  Am  J  Manag  Care.  2010  Dec;16(12  Suppl  HIT):SP64-­‐71.    4.  Bewley  S,  Fawdry  R,  Cummings  G,  Perry  H.  Electronic  health  records.  The  naked  truth.  BMJ.  2010  Oct  13;341:c5637.      5.  Häyrinen  K,  Saranto  K,  Nykänen  P.  Definition,  structure,  content,  use  and  impacts  of  electronic  health  records:  a  review  of  the  research  literature.  Int  J  Med  Inform.  2008  May;77(5):291-­‐304.      6.  Doll  WJ,  Torkzadeh  G.  The  measurement  of  end  user  computing  satisfaction.  MIS  Quart.  1988  June;12(2):258-­‐74.      7.  O’Malley  AS,  Grossman  JM,  Cohen  GR,  Kemper  NM,  Pham  HH.  Are  electronic  medical  records  helpful  for  care  coordination?  Experiences  of  physician  practices.  J  Gen  Intern  Med  2010;25:177-­‐85.      8.  Mandl  KD,  Kohane  IS.  No  small  change  for  the  health  information  economy.  N  Engl  J  Med.  2009  Mar  26;360(13):1278-­‐81.      9.  Hammond  WE.  Realizing  the  potential  of  healthcare  information  technology  to  enhance  global  health.  Stud  Health  Technol  Inform.  2009;150:8-­‐13.        10.  Center  for  Enterprise  Modernization.  Electronic  health  records  overview  [Internet].  McLean,  VA:  The  MITRE  Corporation;  2006  Apr.  30  p.  Supported  by  the  National  Institutes  of  Health,  National  Center  for  Research  Resources.  Available  from:  http://www.himss.org/content/files/Code%20180%20MITRE%20Key%20Components%20of%20an%20EHR.pdf      11.  Ball  MJ,  Peterson  H,  Douglas  JV.  The  computerized  patient  record:  a  global  view.  MD  Comput.  1999  Sep-­‐Oct;16(5):40-­‐6.      12.  Ives  B,  Olson,  MH,  Baroudi  JJ.  The  measurement  of  user  information  satisfaction.  Commun  ACM.  1983  Oct;26(10):785-­‐93.    

Page 109: Dissertation EMR WB Saavedra Final 12-10-12

  100  

13.  Cimino  JJ,  Teich  JM,  Patel  VL,  Zhang  J.  What  is  wrong  with  EMR?  Panel  proposal  for:  AMIA  Annu  Symp  Proc.  1999  Nov  6-­‐10;  Washington,  DC.    14.  Hsieh  CT.  Electronic  medical  record  system:  current  status  use  to  support  universal  healthcare  system.  Commun  IIMA.  2010  Aug  1;10(3).      15.  Chen  K,  Hellerstein  JM,  Parikh  TS.  Data  in  the  first  mile.  CIDR  Conf  Proc.  2011  Jan  9-­‐12:203-­‐6;  Asilomar,  CA.      16.  Efthimiadis  EN,  Hammond  KW,  Laundry  R,  Thielke  SM.  Developing  an  EMR  simulator  to  assess  users’  perception  of  document  quality.  HICSS  Conf  Proc.  2010  Jan  5-­‐8:1-­‐9.        17.  Blumenthal  D,  Tavenner  M.  The  “meaningful  use”  regulation  for  electronic  health  records.  N  Engl  J  Med.  2010;363:501-­‐4.      18.  Kush  RD,  Helton  E,  Rockhold  FW,  Hardison  CD.  Electronic  health  records,  medical  research,  and  the  Tower  of  Babel.  N  Engl  J  Med.  2008  Apr  17;358(16):1738-­‐40.      19.  Coiera  E.  Guide  to  health  informatics.  2nd  ed.  New  York:  Oxford  University  Press;  2003.  Chapter  10,  The  EMR;  p.  111-­‐23.        20.  Rosenthal  A,  Mork  P,  Li  MH,  Stanford  J,  Koester  D,  Reynolds  P.  Cloud  computing:  a  new  business  paradigm  for  biomedical  information  sharing.  J  Biomed  Inform.  2010  Apr;43(2):342-­‐53.  Epub  2009  Aug  26.  Review.      21.  Del  Fiol  G,  Haug  PJ.  Infobuttons  and  classification  models:  a  method  for  the  automatic  selection  of  on-­‐line  information  resources  to  fulfill  clinicians'  information  needs.  J  Biomed  Inform.  2008  Aug;41(4):655-­‐66.  Epub  2007  Dec  8.      22.  Maviglia  SM,  Yoon  CS,  Bates  DW,  Kuperman  G.  KnowledgeLink:  impact  of  context-­‐sensitive  information  retrieval  on  clinicians'  information  needs.  J  Am  Med  Inform  Assoc.  2006  Jan-­‐Feb;13(1):67-­‐73.    

23.  Cimino  JJ.  Use,  usability,  usefulness,  and  impact  of  an  infobutton  manager.  AMIA  Annu  Symp  Proc.  2006:151-­‐5.    

24.  Bakken  S,  Currie  LM,  Lee  NJ,  Roberts  WD,  Collins  SA,  Cimino  JJ.  Integrating  evidence  into  clinical  information  systems  for  nursing  decision  support.  Int  J  Med  Inform.  2008  Jun;77(6):413-­‐20.    

25.  Del  Fiol  G,  Rocha  RA,  Clayton  PD.  Infobuttons  at  Intermountain  Healthcare:  utilization  and  infrastructure.  AMIA  Annu  Symp  Proc.  2006:180-­‐4.    

26.  Osherhoff  SA,  Forsythe  DE,  Buchanan  BG,  Bankowitz  RA,  Blumenfeld  BH,  Miller  RA.  Physicians’  information  needs:  analysis  of  questions  posed  during  clinical  teaching.  Ann  Intern  Med.  1991;  114:576-­‐81.  

Page 110: Dissertation EMR WB Saavedra Final 12-10-12

  101  

27.  Cimino  JJ,  Johnson  SB,  Aguirre  A,  Roderer  N,  Clayton  PD.  The  MEDLINE  Button.  Proc  Annu  Symp  Comput  Appl  Med  Care.  1992:81-­‐5.    

28.  Sackett  DL,  Rosenberg  WM,  Gray  JA,  Haynes  RB,  Richardson  WS.  Evidence  based  medicine:  what  it  is  and  what  it  isn't.  BMJ.  1996  Jan  13;312(7023):71-­‐2.    

29.  Brender  J,  Nohr  C,  McNair  P.  Research  needs  and  priorities  in  health  informatics.  Int  J  Med  Inf.  2000  Sep  1;58–59:257–89.  

30.  Hassey  A,  Gerrett  D,  Wilson  A.  A  survey  of  validity  and  utility  of  electronic  patient  records  in  a  general  practice.  BMJ.  2001  Jun  9;322(7299):1401-­‐5.  

31.  Larcker  DF,  Lessig  VP.  Perceived  usefulness  of  information:  a  psychometric  examination.  Decision  Sci  1980  Jan;11(1):121-­‐34.  

32.  Wyatt  JC,  Sullivan  F.  ABC  of  health  informatics:  what  is  health  information?  BMJ  2005  Sep  8;331:566-­‐8.  Clinical  review.  

33.  Black  AD,  Car  J,  Pagliari  C,  Anandan  C,  Cresswell  K,  Bokun  T,  McKinstry  B,Procter  R,  Majeed  A,  Sheikh  A.  The  impact  of  eHealth  on  the  quality  and  safety  of  health  care:  a  systematic  overview.  PLoS  Med.  2011  Jan  18;8(1):e1000387.  Review.    

34.  Yan  H,  Gardner  R,  Baier  R.  Beyond  the  focus  group:  understanding  physicians'  barriers  to  electronic  medical  records.  Jt  Comm  J  Qual  Patient  Saf.  2012  Apr;38(4):184-­‐91.    

35.   Chin   JP,   Diehl   VA,   Norman   KA.   Development   of   an   instrument   measuring   user  satisfaction  of  the  human-­‐computer  interface.  ACM  CHI  Proc.  1988:213-­‐8.  

36.  Cimino  JJ,  Li  J,  Bakken  S,  Patel  VL.  Theoretical,  empirical  and  practical  approaches  to  resolving  the  unmet  information  needs  of  clinical  information  system  users.  AMIA  Annu  Symp  Proc.  2002:170-­‐4  

37.  Peng  C,  Kesarinath  G,  Brinks  T,  Young  J,  Groves  D.  Assuring  the  privacy  and  security  of  transmitting  sensitive  electronic  health  information.  AMIA  Annu  Symp  Proc.  2009:516-­‐20.    

38.   Jaspers   MW,   Peute   LW,   Lauteslager   A,   Bakker   PJ.   Pre-­‐post   evaluation   of   physicians'  satisfaction   with   a   redesigned   electronic   medical   record   system.   Stud   Health   Technol  Inform.  2008;136:303-­‐8.    

39.   Sittig   DF,   Kuperman   GJ,   Fiskio   J.   Evaluating   physician   satisfaction   regarding   user  interactions  with  an  electronic  medical  record  system.  AMIA  Annu  Symp  Proc.  1999:400-­‐4.    

40.   Payne   TH,   Hirschmann   JV,   Helbig   S.   The   elements   of   electronic   note   style.   J   AHIMA.  2003  Feb;74(2):68,  70.    

41.  Klann  JG,  Szolovits  P.  An  intelligent  listening  framework  for  capturing  encounter  notes  from  a  doctor-­‐patient  dialog.  BMC  Med  Inform  Decis  Mak.  2009  Nov  3;9  Suppl  1:S3.    

42.  Swanson,  EB.  Management  and  information  systems:  an  appreciation  and  involvement.  Manage  Sci.  1974;21(2):178-­‐88.  

Page 111: Dissertation EMR WB Saavedra Final 12-10-12

  102  

43.  Maish  AM.  A  user’s  behavior  towards  his  MIS.  MIS  Quart  1979;3(1):37-­‐52.  

44.  Ang  J,  Koh  S.  Exploring  the  relationships  between  user  information  satisfaction  and  job  satisfaction.  Int  J  Inform  Manage  1997;17(3):169-­‐77.    

45.  Rector  AL,  Nowlan  WA,  Kay  S.  Foundations  for  an  electronic  medical  record.  Methods  Inf  Med.  1991  Aug;30(3):179-­‐86.    

46.  Jimeno-­‐Yepes  A,  Jiménez-­‐Ruiz  E,  Berlanga-­‐Llavori  R,  Rebholz-­‐Schuhmann  D.  Reuseof  terminological  resources  for  efficient  ontological  engineering  in  Life  Sciences.  BMC  Bioinform.  2009  Oct  1;10  Suppl  10:S4.    

47.  Gruber  T.  A  translation  approach  to  portable  ontology  specifications.  Knowl  Acquis.  1993;5:199-­‐220.    

48.  Rubin  DL,  Shah  NH,  NF  Noy.  Biomedical  ontologies:  a  functional  perspective.  Brief  Bioinform.  2007;9(1):75-­‐90.    

49.  Cimino  JJ.  An  integrated  approach  to  computer-­‐based  decision  support  at  the  point  of  care.  Trans  Am  Clin  Climatol  Assoc.  2007;118:273-­‐88.    

50.  Rector  AL.  Thesauri  and  formal  classifications:  terminologies  for  people  and  machines.  Methods  Inf  Med.  1998  Nov;37(4-­‐5):501-­‐9.      51.  Rector  AL,  Nowlan  WA,  Kay  S,  Goble  CA,  Howkins  TJ.  A  framework  for  modeling  the  electronic  medical  record.  Methods  Inf  Med.  1993  Apr;32(2):109-­‐19.      52.  Were  MC,  Meslin  EM.  Ethics  of  implementing  Electronic  Health  Records  in  developing  countries:  Points  to  Consider.  AMIA  Annu  Symp  Proc.  2011:1499-­‐505.  Epub  2011  Oct  22.      53.  Sittig  DF,  Singh  H.  Legal,  ethical,  and  financial  dilemmas  in  electronic  health  record  adoption  and  use.  Pediatrics.  2011  Apr;127(4):e1042-­‐7.  Epub  2011  Mar  21.      54.  Balka  E,  Tolar  M.  Everyday  ethical  dilemmas  arising  with  electronic  record  use  in  primary  care.  Stud  Health  Technol  Inform.  2011;169:285-­‐9.      55.  Williams  F,  Boren  SA.  The  role  of  the  electronic  medical  record  (EMR)  in  care  delivery  development  in  developing  countries:  a  systematic  review.  Inform  Prim  Care.  2008;16(2):139-­‐45.  Review.      56.  Cushman  R,  Froomkin  AM,  Cava  A,  Abril  P,  Goodman  KW.  Ethical,  legal  and  social  issues  for  personal  health  records  and  applications.  J  Biomed  Inform.  2010  Oct;43(5  Suppl):S51-­‐5.      57.  Greenhalgh  T,  Potts  HW,  Wong  G,  Bark  P,  Swinglehurst  D.  Tensions  and  paradoxes  in  electronic  patient  record  research:  a  systematic  literature  review  using  the  meta-­‐narrative  method.  Milbank  Q.  2009  Dec;87(4):729-­‐88.  Review.      

Page 112: Dissertation EMR WB Saavedra Final 12-10-12

  103  

58.  Joos  D,  Chen  Q,  Jirjis  J,  Johnson  KB.  An  electronic  medical  record  in  primary  care:  impact  on  satisfaction,  work  efficiency  and  clinic  processes.  AMIA  Annu  Symp  Proc.  2006:394-­‐8.      59.  Brodigan  DL.  Focus  group  interviews:  applications  for  institutional  research.  Tallahassee,  FL:  AIR  Professional  File  No.  43;1992  Win.  6  p.    60.  Institute  of  Medicine.  The  computer-­‐based  patient  record:  an  essential  technology  for  health  care.  Committee  on  Improving  the  Patient  Record,  Division  of  Health  Care  Services.  Washington,  DC:  National  Academy  Press;  1997.  256  p.      61.  Dumas  JS,  Redish  JC.  A  practical  guide  to  usability  testing.  Rev.  ed.  Portland,  OR:  Intellect  Books;  1999.  404  p.      62.  Bartlett  JE  II,  Kotrlik  JW,  Higgins  CC.  Organizational  research:  determining  appropriate  sample  size  in  survey  research.  ITLPJ.  2001;19(1):43-­‐50.    63.  Gardner  MJ,  Altman  DG.  Confidence  intervals  rather  than  P  values:  estimation  rather  than  hypothesis  testing.  Br  Med  J  (Clin  Res  Ed).  1986  Mar  15;292(6522):746-­‐50.      64.  Mandl  KD,  Kohane  IS.  Escaping  the  EHR  trap—the  future  of  health  IT.  N  Engl  J    Med.  2012  Jun  14;366(24):2240-­‐2.      65.  Linder  JA,  Schnipper  JL,  Middleton  B.  Method  of  electronic  health  record  documentation  and  quality  of  primary  care.  J  Am  Med  Inform  Assoc.  2012  Nov  1;19(6):1019-­‐24.        

Page 113: Dissertation EMR WB Saavedra Final 12-10-12

  104  

Appendix  A  

Focus  Group  Study  Outline  of  Question  Sequence  

Opening  comments:  Welcome,  brief  description  of  the  project  EMR  WB,  and  statements  regarding  the  purpose  of  the  study,  focus  group  procedures,  and  ethical  issues.    

Opening  comment:  Please  tell  us  a  little  bit  about  yourself.  

Introductory  question:  The  use  of  EMRs  in  the  clinical  setting  to  collect,  store,  share,  and  access  patient  medical  records  promises  overall  vast  improvements  in  health  care;  many  providers  are  currently  using  them.  In  thinking  about  your  daily  professional  life,  what  does  the  use  of  an  EMR  mean  to  you?  

Transition  questions:  Are  EMRs  a  negative  tool  in  your  clinical  setting?  If  so,  explain  how  they  are  negative.  Are  EMRs  a  positive  tool  in  your  clinical  setting?  If  so,  explain  how  they  are  positive.    

Key  questions  (issues  for  interactive  participation):  How  do  you  define  EMRs?  What  do  you  expect  from  EMRs?  What  do  you  think  are  the  major  differences  between  EMRs  and  paper-­‐based  medical  records?  What  functions  would  you  like  to  see?  What  do  you  think  are  the  major,  current  problems  of  EMRs?  What  fundamental  changes  can  EMRs  make  in  health  care  practice?  How  do  you  describe  the  ideal  EMR  system?  Is  an  ideal  EMR  possible?  Among  the  usability  problems  with  EMRs,  which  is  the  most  serious  one?    Ending  questions:    All  things  considered,  what  would  you  say  is  the  major  potential  benefit  of  EMR  adoption?    Is  there  anything  about  the  implementation  and  use  of  EMRs  that  I  haven’t  talked  about  that  you  would  like  to  raise  before  I  leave?  

 

   

Page 114: Dissertation EMR WB Saavedra Final 12-10-12

  105  

Appendix  B  The  Evaluation  Tool  

EMR  WB  Questionnaire  for  User  Satisfaction  (EMR  WB  QUS)    

SURVEY        PART  1  of  3.  Demographic  Data.    Please  complete:      

 PART  2.  User  Satisfaction  Questionnaire.    For  each  of  the  following  features,  please  mark  the  rating  that  best  describes  how  you  think  of  Electronic  Medical  Record  Without  Borders  (EMR  WB)  in  comparison  with  the  paper-­‐based  system  (PBS).    4)  EMR  WB  in  comparison  with  the  PBS:  (Q1)  Helping  me  complete  my  tasks    

 

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    5)  EMR  WB  in  comparison  with  the  PBS:              (Q2)  Facilitating  my  input  of  information    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________  

1)  Age:   20  -­‐  30   31  -­‐  40   41  -­‐  50   51  -­‐  60   60  +     ☐   ☐   ☐   ☐   ☐              

2)  Gender:   M   F             ☐   ☐                    3)  Field:   Medicine   Psychology   Nutrition   Nursing   Social  Work     ☐   ☐   ☐   ☐   ☐  

    Much  worse  -­‐3  

Worse    -­‐2  

 

Somewhat  worse  -­‐1  

About  the  same  0  

Somewhat  better  1  

Better    2  

Much  better  3  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Page 115: Dissertation EMR WB Saavedra Final 12-10-12

  106  

 6)  EMR  WB  in  comparison  with  the  PBS:              (Q3)  Learning  how  to  use      

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    7)  EMR  WB  in  comparison  with  the  PBS:              (Q4)  Ease  of  use    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    8)  EMR  WB  in  comparison  with  the  PBS:              (Q5)  Effectively  review  patient  problems      

Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    9)  EMR  WB  in  comparison  with  the  PBS:              (Q6)  Safeguarding  patient  privacy    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    10)  EMR  WB  in  comparison  with  the  PBS:              (Q7)  Sharing  patient  information  with  my  fellow  clinical  team  members  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

    Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

    Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Page 116: Dissertation EMR WB Saavedra Final 12-10-12

  107  

 

 Comments:  _____________________________________________________________________________________  ___________________________________________________________________________________________________    11)  EMR  WB  in  comparison  with  the  PBS:              (Q8)  Ease  of  access  to  files      

 Comments:  ____________________________________________________________________________________________  _____________________________________________________________________________________________    12)  EMR  WB  in  comparison  with  the  PBS:              (Q9)  Improving  workflow63      

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    13)  EMR  WB  in  comparison  with  the  PBS:                    (Q10)  Improving  the  continuity  of  patient  care64    

 Comments:  ____________________________________________________________________________________________  _____________________________________________________________________________________________    14)  EMR  WB  in  comparison  with  the  PBS:                                                                                                                    63  Workflow:  Pattern  of  recurrent  functions  or  procedures  frequently  found  in  organizational  processes,  such  as  notification,  decision,  and  action  (NLM-­‐MeSH—Year  introduced:  2010).  64  Continuity  of  Patient  Care.  Health  care  provided  on  a  continuing  basis  from  the  initial  contact,  following  the  patient  through  all  phases  of  medical  care.  [NLM-­‐MeSH—Year  introduced:  1991(1975)]  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

Page 117: Dissertation EMR WB Saavedra Final 12-10-12

  108  

               (Q11)  Helping  make  effective  evidence-­‐based  care  decisions    

 Comments:  ________________________________________________________________________________  ______________________________________________________________________________________________    15)  EMR  WB  in  comparison  with  the  PBS:                    (Q12)  Facilitating  use  of  information  for  quality  control    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    16)  EMR  WB  in  comparison  with  the  PBS:                    (Q13)  Helping  obtain  information  for  research    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    17)  EMR  WB  in  comparison  with  the  PBS:                    (Q14)  Appropriateness  for  use  in  my  care  setting    

 Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________    18)  EMR  WB  in  comparison  with  the  PBS:                  (Q15)  Overall  satisfaction  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

    Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  Much  worse  

Worse    

Somewhat  worse  

About  the  same  

Somewhat  better  

Better   Much  better  

Page 118: Dissertation EMR WB Saavedra Final 12-10-12

  109  

   Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________      PART  3.  Use  of  EMR  WB  and  Recommendations.  19)  Approximately  how  many  patient/client  visits  did  you  have  at  the  CUSS  while  using  EMR  WB?*              *Please  include  total  encounters—new  patients,  multiple  visits/follow-­‐ups  of  the  same  patient.      Comments:  ____________________________________________________________________________________________  ____________________________________________________________________________________________      20)  Do  you  have  any  comments  or  suggestions  to  improve  EMR  WB?    ______________________________________________________________________________________________  ______________________________________________________________________________________________      

☐   ☐   ☐   ☐   ☐   ☐   ☐  

  1  -­‐  2   3  -­‐  5    

6  -­‐  9   10  +    

  ☐   ☐   ☐   ☐    

Page 119: Dissertation EMR WB Saavedra Final 12-10-12

  110  

Appendix  C  The  National  Center  for  Biomedical  Ontology  BioPortal  

Screen  shots  of  an  electronic  medical  record  showing  its  relationships  

 

 

 

 

 

 

 

   

Page 120: Dissertation EMR WB Saavedra Final 12-10-12

  111  

Appendix  D-­‐1  Standardization  Process  Sample  

History  of  Present  Illness  

Here  is  an  example  of  the  standardization  process  to  create  the  medical  history  clinical  core  using  one  of  its  components,  the  History  of  Present  Illness  (HPI).  It  incorporated  a  comprehensive  state-­‐of-­‐the-­‐art  terminology  consisted  in  1)  controlled  vocabularies  (terms),  2)  semantics  (meaning);  3)  ontologies  (relations),  and  4)  syntaxes  (sentences).  In  addition,  the  backbone  of  its  structure  was  based  on  peer-­‐reviewed  evidence-­‐based  clinical  protocols  and  gold  standard  clinical  guidelines  into  an  English  and  Spanish  language  EMR  system.    

 

Page 121: Dissertation EMR WB Saavedra Final 12-10-12

  112  

 

 

Appendix  D-­‐2  Standardization  Process  Sample    

Contents  of  the  History  of  Present  Illness  

This  table  below  shows  the  specific  meaning  of  terms  used  in  the  contents  of  HPI  based  on  linguistic  semantics  to  express  meaning  through  natural  languages,  and  the  syntax  used  as  a  means  to  apply  principles  and  rules  for  constructing  sentences  in  English  and  Spanish.  These  definitions  have  been  applied  to  all  primary  care  fields  (medicine,  psychology,  nutrition,  nursing  and  social  work).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 122: Dissertation EMR WB Saavedra Final 12-10-12

  113  

 

 

 Appendix  E  

Example  of  Standardized  HPI  Content  within  the  Clinical  Core  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                               65  HPI  is  the  logical  continuation  and  detailed  interview  prompted  by  the  chief  complaint  (CC)  or  presenting  symptom,  and  represents  the  central  aspect  of  the  clinical  history  itself.  

HISTORY  OF  PRESENT  ILLNESS—HPI:65  

a. Characterization  of  each  problem  (chronologic  order).    

b. Symptom  modifiers  (or  dimensions  to  characterize  symptoms):  1)  Location;  2)  Quality  or  character;  3)  Quantity  (severity  or  amount);  4)  Chronology  —onset,  duration,  frequency,  periodicity,  temporal  characteristics;  5)  Setting  (under  what  circumstances  it  occurs);  6)  Aggravating-­‐alleviating  factors;  7)  Associated  symptoms  /  manifestations;  8)  Disability  &  Adaptation;  and  9)  Attributions.  

c. Pertinent  positives  &  pertinent  negatives.      

Page 123: Dissertation EMR WB Saavedra Final 12-10-12

  114  

 

 

VITA  

Jose  Francisco  Saavedra  was  born  in  the  city  of  León,  state  of  Guanajuato,  Mexico.  He  has  

lived  in  many  places  in  Mexico,  England  and  the  United  States.  Currently  he  calls  Seattle  his  

home.  He  earned  a  Doctor  of  Medicine  degree  at  the  Autonomous  University  of  Nuevo  León  

(UANL),  a  specialty  in  Family  Medicine  at  the  National  Institutes  of  Health  in  Mexico,  and  a  

fellowship  in  Hospital  Medicine  at  the  UANL.  In  2012  he  earned  a  Doctor  of  Philosophy  in  

Biomedical  Informatics  at  the  University  of  Washington.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 124: Dissertation EMR WB Saavedra Final 12-10-12

  115  

 

 

 

 

 

 

©Copyright  2012  

Jose  Francisco  Saavedra