53
Displacement Method of Analysis Moment Distribution Method Chapter 12

Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

  • Upload
    others

  • View
    2

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Displacement Method of Analysis Moment Distribution Method

Chapter 12

Page 2: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

– In this method, joint rotations & displacements are used as unknowns in carrying out the analysis.

– Unlike the slope deflection method, the moment-distribution method does not require the solution of simultaneous equations, instead answers are obtained by a procedure of successive approximations (iteration technique).

– From the slope deflection equations it is evident that the moments acting on the ends of a member in a frame consist of several distinct parts;• The fixed-end moments, which are the moments caused by the

load acting on the member, with the ends of the member assumed to be fixed.

• The moment due to the rotations that actually take at the ends of the member.

• The moments caused by the translation of one end of the member relative to the other

Introduction

Page 3: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

General Principles

• Sign convention– Same sign as slope deflection equations; clockwise moments are

considered positive & counterclockwise moments are negative.

• Member stiffness factor– If the beam is pinned at one end & fixed at the other

2 2 3 ( )AB A B AB

IM E FEM

L L

2

2 0 0 0AB A

EIM

L

4AB A

EIM

L

For unit A = 1

4AB

EIK

L

It is referred to as the stiffness factor at A and can be

defined as as the amount of moment M required to rotate

the end A of the beam A = 1 radian

Page 4: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

General PrinciplesJoint Stiffness Factor

The total stiffness factor for joint A is

equal to the summation of the stiffness

factor of each member.

A AB AD ACK K K K

1000 4000 5000 10000AK

That means a moment of 10000 needed to

rotate joint A (1 radian)

Distribution Factor (DF)

If a moment M is applied to joint A, that will rotate joint A an amount of

then each member connected to that joint will rotate by this same amount

M

1 i nM M M M 1 i n iK K K K

The distribution factor for ith member is

i ii

i

M KDF

M K

K

DFK

Page 5: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

General Principles• Example; Fined the moment at each side of joint A (MAB, MAD & MAC).

M=2000N.m

The total stiffness factor of joint A

1000 4000 5000 10000K The distribution factors for each members

at joint A

40000.4

10000ABDF

50000.5

10000ACDF

10000.1

10000ADDF

The moment of each member at the joint

0.4 2000 800 .ABM N m

0.5 2000 1000 .ACM N m

0.1 2000 200 .ADM N m

Page 6: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

General Principles

• Member relative-stiffness

– As in the most cases, the frame or the beam, will be made from the same material, same modulus of elasticity, then the 4E is same for all members.

1 1

1 1

1 1

1 1

4

4 4 4i n i n

i n i n

EI I

K L LDF

EI EI EI I I IK

L L L L L L

R

IK

L

Page 7: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

General Principles

• Carry-Over Factor

– The applied moment M at A cause A to rotate A.

– Applying slope deflection;

2 42 3AB A B AB A

EI EIM FEM

L L L

2 22 3BA B A BA A

EI EIM FEM

L L L

1

2BA ABM M

That means that, the moment M at the pin induces a moment 0.5 M at the

fixed end. In this case the carry over factor is +0.5.

The carry-over represent the fraction of M that is carried over from the

pin to the wall.

Page 8: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 1• Determine the internal moment at each support of the beam

1. Calculate the distribution factors at all

joints that are free to rotate 4 (300)

4 (20)15

BA

EK E

4 (600)4 (30)

20BC

EK E

Joint B 4 (20)

0.44 (20) 4 (30)

BA

EDF

E E

4 (30)0.6

4 (20) 4 (30)BC

EDF

E E

For joint A & C the distribution factors = 0. 4 (20)

0.4 (20)

AB

EDF

E

4 (30)0.

4 (30)CB

EDF

E

Page 9: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

2. Calculate the fixed end moment

assuming all joints to be locked

0.AB BAFEM FEM

2240(20)8000 .

12BCFEM lb ft 8000 .CBFEM lb ft

3. Begin the actual moment distribution process

0.60.40. 0.D.F.

80000.0. 8000F.E.M.

480032000. 0.Balancing Joint B

1600 2400Carry over moment

Final Ms 320032001600 10400

Problem 1

Page 10: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-1• Draw the bending moment diagram.

1. The distribution factors

4

12AB

EIK

4

12BC

EIK

Joint B 4 /12

0.54 /12 4 /12

BA

EIDF

EI EI

4 /120.5

4 /12 4 /12BC

EIDF

EI EI

Joint C 4 /12

0.44 / 8 4 /12

CB

EIDF

EI EI

4 / 80.6

4 / 8 4 /12CD

EIDF

EI EI

4

8CD

EIK

2. Fixed end moment

0.AB BAFEM FEM

220(12)240 .

12BCFEM kN m 240 .CBFEM kN m

250(8)250 .

8CDFEM kN m 250 .DCFEM kN m

Page 11: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

1 36

6 0.3

0.05 1.8

6120

Example 12-1

D.F.

2400.0. 250F.E.M.

120Balancing

60 3C.O.M

Final Ms 125.3125.362.5 234.3

0.50.50. 0.0.60.4

250240

4

281.5281.5

2 60

1Balancing

0.5 18C.O.M

24

12 0.5

6Balancing

3 0.15C.O.M

0.2

0.1 3

0.05Balancing

0.02 0.9C.O.M

1.2

0.6 0.02

Balancing 0.30.3 0.010.01

3. Begin the actual moment distribution process

Page 12: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-1

Page 13: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 2• Determine the internal moment at each support.

1. The distribution factors

4

6AB

EIK

8

6BC

EIK

Joint B 4 / 6 1

4 / 6 8 / 6 3BA

EIDF

EI EI

8 / 6 2

4 / 6 8 / 6 3BC

EIDF

EI EI

Joint C 8 / 6

18 / 6

CB

EIDF

EI

2. Fixed end moment23(6)

9 .12

BCFEM t m 9 .CBFEM t m

8(6)6 .

8ABFEM t m 6 .BAFEM t m

A3t/m8t

B C2II

3m 3m 6m

Page 14: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

3. Begin the actual moment distribution process

9

1

1.5

0.17

3

0.34

0.5

2

D.F.

966 9F.E.M.

1Balancing

0.5 1C.O.M

Final Ms 8.938.934.54 0.

2 / 31/ 30. 1.

4.5

1.5Balancing

0.75 1.5C.O.M 0.5

0.16Balancing

0.08 0.17C.O.M 0.75

0.25Balancing

0.12 0.25C.O.M 0.08Balancing 0.060.02 0.25

0.

0.

0.

0.

0.

Problem 2

Page 15: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-2

Page 16: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-2

Page 17: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-2

Page 18: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Stiffness-Factor Modification• Member pin supported at far end.

– Using slop-deflection equations

22 3AB A B AB

EIM FEM

L L

22 3BA B A BA

EIM FEM

L L

0.BAM

2 32 0 0

2

AAB A A

EI EIM

L L

The stiffness factor for this beam is;

3EIK

L

2

0. 2 0 0B A

EI

L

2

AB

To model the case of having the far end pinned or

roller supported

Page 19: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 3• Back to Problem 3- Solution A

1. The distribution factors

4

6AB

EIK

6

6BC

EIK

Joint B 4

0.44 6

BADF

60.6

4 6BCDF

Joint C 8 / 6

18 / 6

CB

EIDF

EI

2. Fixed end moment23(6)

13.5 .8

BCFEM t m

8(6)6 .

8ABFEM t m 6 .BAFEM t m

A3t/m8t

B C2II

3m 3m 6m

4.5

D.F.

13.566F.E.M.

3Balancing

1.5C.O.M

Final Ms 994.5 0.

0.60.40.

0.

1.

Balancing 0. 0. 0.

Page 20: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

• Determine the internal moment at each support.1t/m9t.m

A

B C

12m4m2m4m 2m

D9t.m1. The distribution factors

4

6AB

EIK

4

12BC

EIK

Joint B 4 / 6 2

4 / 6 4 /12 3BA

EIDF

EI EI

4 /12 1

4 / 6 4 /12 3BC

EIDF

EI EI

2. Fixed end moment21(12)

12 .12

BCFEM t m 12 .CBFEM t m

2

9 2(2 4 2)3 .

6ABFEM t m

4

6CD

EIK

Joint C 4 / 6 2

4 / 6 4 /12 3CD

EIDF

EI EI

4 /12 1

4 / 6 4 /12 3CB

EIDF

EI EI

2

9 4(2 2 4)0. .

6BAFEM t m

2

9 2(2 4 2)3 .

6DCFEM t m

2

9 4(2 2 4)0. .

6CDFEM t m

Problem 4

Page 21: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 41t/m9t.m

A

B C

D9t.m

3. Begin the actual moment distribution process

0.67 1.33

0.11 0.22

0.02 0.04

84

D.F.

120.3 3F.E.M.

8Balancing

4 4C.O.M

Final Ms 9.599.591.8 1.8

1/ 32 / 30. 0.2 / 31/ 3

0.12

4

9.599.59

2 2

1.33Balancing

0.67 0.67C.O.M

0.67

0.33 0.33

0.22Balancing

0.11 0.11C.O.M

0.11

0.06 0.06

0.04Balancing

0.02 0.02C.O.M

0.02

Page 22: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Stiffness-Factor Modification

22 3BC B C BC

EIM FEM

L L

2AB B

EIM

L

The stiffness factor is;

2EIK

L

2

2 0 0BC B B

EIM

L

For the center span of Symmetric beam & load

From symmetry of load C = -B

Symmetric beam & loading.– Using slop-deflection equations

Page 23: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Stiffness-Factor Modification

22 3BC B C BC

EIM FEM

L L

6AB B

EIM

L

The stiffness factor is;

6EIK

L

2

2 0 0BC B B

EIM

L

For the center span of Symmetric beam & load

From symmetry of load C = B

Symmetric beam with Anti-symmetric Loading.– Using slop-deflection equations

Page 24: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 5• Back to Problem 4

1t/m9t.mA

B C

12m4m2m4m 2m

D9t.m

1. The distribution factors

4

6AB

EIK

2

12BC

EIK

Joint B 4 / 6

0.84 / 6 2 /12

BA

EIDF

EI EI

2 /120.2

4 / 6 2 /12BC

EIDF

EI EI

2. Fixed end moment

12 .

12 .

3 .

0 .

BC

CB

AB

BA

FEM t m

FEM t m

FEM t m

FEM t m

2.4

D.F.

120.3F.E.M.

9.6Balancing

4.8C.O.M

Final Ms 9.69.61.8 1.8

0.20.80.

9.69.6

Page 25: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-3

Determine the internal moment at the supports for the beam shown. EI is constant

Page 26: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-4

Determine the internal moment at the supports for the beam shown. E is constant

Page 27: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-4

Page 28: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

• Determine the internal moment at each support when support B sinks by 10mm. EI = 200t.m2

1. The distribution factors4

3AB

EIK

3

6BC

EIK

Joint B 4 / 3

0.734 / 3 3 / 6

BA

EIDF

EI EI

3 / 60.27

4 / 3 3 / 6BC

EIDF

EI EI

Joint C 4 / 6

14 / 6

CB

EIDF

EI

2. Fixed end moment

22(6) /8 9 .BCFEM t m

6(3) / 8 2.25 .ABFEM t m

2.25 .BAFEM t m

1.5m

A2t/m6t

B C

3m 6m

2t

Moment developed by the settlements Member AB

2 2

6 6 200 0.01

3AB BA

EIFEM FEM

L

1.33 .AB BAFEM FEM t m

Member BC

2 2

3 3 200 0.01

6BC

EIFEM

L

0.165 .BCFEM t m

Cantilevers moment2 1.5 3 .CM t m

Problem 6

Page 29: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

3. Begin the actual moment distribution process

7.34

1.74

0.165

D.F.

92.252.25F.E.M.

1.33FEM due to

Final Ms 5.65.61.24 3

0.270.730. 1.

0.92

4.68Balancing

2.34C.O.M

1.33

3.58

0.

3

A

B C

3

Total Modified F.E.M.

Problem 6

Balancing joint C 3

1.5C.O.M

Balancing 0.0.

0.

0

Page 30: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 7: Frame with No Sway

• Determine the internal moment at each support. EI constant

4t

C

3t/m

8m3m

3m

A

B

C

A

B 0.5 0.

16 16

5.75

10.25

2.875

18.875

1. The distribution factors

3

6AB

EIK

4

8BC

EIK

Joint B 1/ 2

0.51/ 2 1/ 2

BADF

1/ 20.5

1/ 2 1/ 2BCDF

2. Fixed end moment

23(8) /12 16 .BCFEM t m

16 .CBFEM t m

3

(4) 6 4.5 .16

BAFEM t m

Page 31: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

38.4 13.3326.6757.6

0.

0.

0 013.147.89

-9.9

0

• Determine the internal moment at each support. EI constant

1. The distribution factors

4

5AB

EIK

4

3BC

EIK

Joint B 4 / 5

0.2554 / 5 4 / 3 1

BADF

4 / 30.425

4 / 5 4 / 3 1BCDF

2. Fixed end moment

26.67 .BCFEM kN m

13.33 .CBFEM kN m

38.4 .ABFEM kN m

57.6 .BAFEM kN m

1m 2m

C

60kN

4m

A B

3m 2m

D

80kN

4

4BD

EIK

10.32

4 / 5 4 / 3 1BDDF

0BD DBFEM FEM

0.255 0.425

0.3

2

0. 0.

0.

-4.9

5

3.945 6.57

-4.9

5

42.345 6.7639.8149.71

-9.9

Problem 8

Page 32: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-5

Determine the internal moment at the joints for the frame shown.

There is a pin support at E and D and a fixed support at A. EI is constant

Page 33: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-5

Page 34: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Frames with Sway

Page 35: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6• Determine the moment at each joint. EI is constant

(C) (B)(A)

Moment at A is equal to the moment at B plus the moment at C

Page 36: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

0.32 0.08

0.3

20

.

0.

-0.0

8

Example 12-6• Structure B

DFBA= 0.5

Distribution factors

Joint B

Joint C

Fixed end moment

DFBC= 0.5

DFCB= 0.5

DFCD= 0.5

FEMBC= -10.24 kN.m

FEMCB= 2.56 kN.m

10.24 2.56

0.

0.

0.

0.0.5

0.5

0.5

0.

0.

0.5

5.12 1.28

5.1

20

.

0.

-1.2

8

2.8

8

5.76 2.64

5.7

6

-2.6

4-1

.322

.56

0.

0.64 2.56

-0.6

4

0.

0.32 1.28

0.3

20

.

0.

-1.2

80.64 0.16

0.1

6

-0.6

4

0.

0.

0.1

6

-0.0

4

Page 37: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6

R = HA + HD

Determine the joint resistance RFx = 0.

By taking the moment at C we get

HD = -0.79

B

HA

5.76

2.88A

C

HD

-2.64

-1.32D

R

By taking the moment at B we get

HD = 1.73

R = 1.73 – 0.79 = 0.94 kN

• Structure C0.94

kN

2

6EIModified Fixed End Moment FEM

L

6

25AB BA CD DC

EIMFEM MFEM MFEM MFEM

Assuming all the joints are locked, the

produced by the load R caused a moment M

As is equal in column AB & CD & FEM = 0.

0.BC CBMFEM MFEM

Page 38: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

0.19 0.19

0.1

90.

0.

0.1

9

Example 12-6The final moment produced by the R = 0.94 kN can be determined by;

Take EI = 25 and then fined out the moment on the frame

0. 0.

-6-6

-6-60.5

0.5

0.5

0.

0.

0.5

3 3

30.

0.

3

-4.8

3.6 3.6

-3.6

-3.6

-4.8

1.5

0.

1.5 1.5

1.5

0.

0.75 0.75

-0.7

50.

0.

-0.7

5

0.375 0.375

-0.3

75 -0

.375

0.

0.

0.1

0

0.1

06AB BA CD DCMFEM MFEM MFEM MFEM

0.BC CBMFEM MFEM

Page 39: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6

R’ = H’A + H’D

Determine the joint resistance R’ that produced EI = 25Fx = 0.

By taking the moment at C we get

H’D = 1.68

H’A

B

-3.6

-4.8AH’

D

C

-3.6

-4.8D

R’

By taking the moment at B we get

HA = 1.68

R’ = 1.68 + 1.68 = 3.36 kN

0.94 25

0.94

3.36R EIM M

The moment produced by the reaction R = 0.94 kN would be

1.01 1.01

-1.0

1-1

.34 -1

.34

-1.0

1

Page 40: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6

The final moment would be the moment of B plus the moment of C

5.76 1.01 4.75 .BCM kN m

2.64 1.01 3.65 .CBM kN m

2.88 1.34 1.54 .ABM kN m

5.76 1.01 4.75 .BAM kN m

2.64 1.01 3.65 .CDM kN m

1.32 1.34 2.66 .DCM kN m

Page 41: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

3.125 3.125

3.1

25

0.

0.

3.1

25

Example 12-6 Solution B

0. 0.

-10

0-1

00

-100

-10

0

0.5

0.5

0.5

0.

0.

0.5

50 50

50

0.

0.

50

-80

1.56

0.195

-60

0.1

95

-80

25

0.

25 25

25

0.

12.5 12.5

-12.5

0.

0.

-12.5

6.25 6.25

-6.5

-6.2

50.

0.

1.5

6

1.5

6

100AB BA CD DCMFEM MFEM MFEM MFEM

0.BC CBMFEM MFEM

1.56

-0.7

8-0

.39

0.

0. 0.

0.780.78

0.39

60

0.39

0.195

60

0.

-60

0.

-0.7

80.

0.1

95

-0.3

9

Page 42: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6 Solution B

R’ = H’A + H’D

Determine the joint resistance R’ that produced MFEM=100

Fx = 0.

By taking the moment at C we get

H’D = 28 kN

H’A

B

-60

-80AH’

D

C

-60

-80D

R’

By taking the moment at B we get

HB = 28 kN

R’ = 28 + 28 = 56.0 kN

0.94

0.94100

56.0RM MFEM

The moment produced by the reaction R = 0.94 kN would be

1.01 1.01

-1.0

1-1

.34 -1

.34

-1.0

1

Page 43: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-6

The final moment would be the moment of B plus the moment of C

5.76 1.01 4.75 .BCM kN m

2.64 1.01 3.65 .CBM kN m

2.88 1.34 1.54 .ABM kN m

5.76 1.01 4.75 .BAM kN m

2.64 1.01 3.65 .CDM kN m

1.32 1.34 2.66 .DCM kN m

Page 44: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-7Determine the moment at each joint of the frame shown. E is constant

Page 45: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-7

Page 46: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-7

Page 47: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Example 12-7

Page 48: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Problem 9• Determine the moment at each joint. EI is constant

(C)(B)(A)

Page 49: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

• Structure BDistribution factors

Joint B (symmetry)

Fixed end momentFEMBC = -16.33 kN.m

FEMCB = 16.33 kN.m

4

8,6BA

EIK

2

7BC

EIK

4 / 8.60.62

4 / 8.6 2 / 7BA

EIDF

EI EI

2 / 70.38

4 / 8.6 2 / 7BC

EIDF

EI EI

0.38

16.33

6.21

10.12

0.

Determine the joint resistance R

R = 6 kN (symmetry HA = HD)

Problem 9

Page 50: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

• Structure C

2

6

8.6AB BA CD DC

EIMFEM MFEM MFEM MFEM

Assuming all the joints are locked, the

produced by the load R caused a moment M

2

6 6.98( 1.163 )

7 49BC CB

EI EIMFEM MFEM

6 kN

A

B

D

C

AB

BC

CD

B1

2

2

6EIMFEM FEM

L

0.

take AB =

BC = 2(AB cos) = 2 5/8.6 = 1.163

CD = AB =

Take EI = 8.62 and then fined out the moment on the frame

6AB BA CD DCMFEM MFEM MFEM MFEM

10.53BC CBMFEM MFEM

Problem 9

Page 51: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

0.190.19

10.5310.532.492.49

7.67.6

1.251.25

0.690.69

0.350.35

0.550.55

The joint resistance R’ that produced EI = 8.62

R’ = H’A + H’D

Fx = 0.

Problem 9

Page 52: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

Free body diagram for column AB & taking the moment at B = 0.

A

B

H’A

6.8

7.6

5m

7m

VA

' 7 6.8 7.6 5 0A AH V

Free body diagram for Beam BC& taking the moment at C = 0.

7 7.6 7.6 0BV

' 3.6AH

2.17A BV V

VB

C

7.1B

7.1

VC

C

H’D

6.6

6.8

5m

7m

D

VD

Free body diagram for column CD & taking the moment at C = 0.

' 7 6.8 7.6 5 0D DH V

7 7.6 7.6 0CV

' 3.6DH

2.17D CV V

Free body diagram for Beam BC& taking the moment at B = 0.

Problem 9

Page 53: Displacement Method of Analysis: Moment Distribution Methodsite.iugaza.edu.ps/marafa/files/Chapter-12-2019.pdfDistribution Factor (DF) If a moment M is applied to joint A, that will

R’ = 3.6 + 3.6= 7.2 kN

26 8.6

6

7.2R EI

M M

The moment produced by the reaction R = 6 kN would be

The final moment would be the moment of B plus the moment of C

10.12 6.26 3.79 .BCM kN m

10.12 6.33 16.45 .CBM kN m

5.06 5.67 0.61 .ABM kN m

10.12 6.33 3.79 .BAM kN m

10.12 6.33 16.45 .CDM kN m

5.06 5.67 10.73 .DCM kN m

6.336.33

Problem 9