47
Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 1 Director’s Baseline Review (Temple Review) April 16-18, 2002 Marcel Demarteau Fermilab D D Ø Ø Run 2b Silicon Tracker’ Run 2b Silicon Tracker’ An overview An overview For the Run 2b Silicon Group For the Run 2b Silicon Group

Director’s Baseline Review (Temple Review) April 16-18, 2002 Marcel Demarteau Fermilab

  • Upload
    oded

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

‘D Ø Run 2b Silicon Tracker’ An overview. Director’s Baseline Review (Temple Review) April 16-18, 2002 Marcel Demarteau Fermilab. For the Run 2b Silicon Group. L xy ~ 3 mm. Run2b Focus: Higgs Boson. Production Dominant production channel gg  H Overwhelmed by background - PowerPoint PPT Presentation

Citation preview

Page 1: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 1

Director’s Baseline Review (Temple Review)

April 16-18, 2002

Marcel DemarteauFermilab

‘‘DDØ Ø Run 2b Silicon Tracker’Run 2b Silicon Tracker’An overviewAn overview

For the Run 2b Silicon GroupFor the Run 2b Silicon Group

Page 2: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 2

Run2b Focus: Higgs Boson Run2b Focus: Higgs Boson

Production Dominant production channel gg H

» Overwhelmed by background Observable production channel qq WH, ZH

» Lepton(s) from W/Z provides trigger Decay

H coupling proportional to mass Dominant decay to bbar

Requirements Excellent b-tagging efficiency

» b > ~65 % per jet at mistag rate < ~1% Robust silicon tracker

» lean but with adequate redundancy

Lxy~ 3 mm

Page 3: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 3

OutlineOutline

Design considerations Boundary conditions

» Space » DAQ constraint» Silicon track trigger» Radiation damage

Brief overview of proposed detector Anticipated performance Project overview

Organization Cost: M&S Schedule Resources

Conclusion

Page 4: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 4

Design ConsiderationsDesign Considerations

Do not compromise on the performance of the Run2a silicon tracker Choose design adequate to achieve physics goals but do not over-

design (no 90-degree stereo),

Provide stand-alone tracking up to || < 2.0 Fiber tracker has full coverage only up to || < 1.6

Modular design, minimize the number of different elements Use established technologies

Use single sided silicon only Due to harsh radiation environment, divide tracker in two radial

groups: Inner layers

» Design to withstand integrated luminosity of 15 fb-1, with adequate margin

» Provide path for possible replacement of innermost layers Outer layers

» Design to last a long time

Page 5: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 5

Boundary ConditionsBoundary Conditions

Z=0

Spatial Installation within existing fiber tracker, with inner radius of 180 mm Installation in collision hall

» Tracker will be built in two independent half-modules, split at z=0

Data Acquisition Retain all of the downstream readout electronics Re-use current cable plant

» allows for ~912 readout modules Total number of readout modules cannot exceed 912

Silicon Track Trigger Respect 6-fold symmetry

Page 6: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 6

Radiation DamageRadiation Damage

Sensors will be subjected to fluence of 2 1014 1 MeV neutron equiv./cm2

Parameters for detector Vdepl after irradiation Signal to Noise ratio

Requirements S/N ratio > 10 after 15 fb-1

Vdepl « Vbreak to allow for over-depletion for full chargecollection

Signal to noise ratio for layer 0

88.5

99.510

10.511

11.512

0 5 10 15 20 25

luminosity (fb-1)

S/N

L0 T=-10C

L0 T=-5C

L0 T=0C

L0 T=+5C

Depletion Voltage Prediction Layer 0

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600

days

Vd

epl (

V)

Days

Layer 0 12.9 fb-

1 +10 0C

0 0C

-10 0C

Layer T_silicon ( C )

Layer 0 -10

Layer 1 -5

Layer 2 0

Layer 3 >0

Layer 4 >0

Layer 5 >0

Page 7: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 7

Basic LayoutBasic Layout

Six layer silicon tracker, divided in two radial groups Inner layers: Layers 0 and 1

» Axial readout only» Mounted on integrated support» Assembled into one unit

» Designed for Vbias up to 700 V Outer layers: Layers 2-5

» Axial and stereo readout» Stave support structure

» Designed for Vbias up to 300 V

Employ single sided silicon only, 3 sensor types

2-chip wide for Layer 0 3-chip wide for Layer 1 5-chip wide for Layers 2-5

No element supported from the beampipe Drilled Be Beampipe with ID of 0.96”, 500m wall thickness

Page 8: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 8

Layer 0Layer 0

Support Structure 12-fold crenellated geometry carbon fiber support possible use of pyrolitic graphite sensors cooled to T=-10 oC Rin = 18.5 mm

Silicon

Analogue cable

Hybrid

Assembly 2-chip wide sensors 25 mm pitch, 50 mm readout Analogue cables for readout Hybrids off-board Staggered in z for 6 readouts per end

per phi-sector Space is extremely tight !

Outside tracking volume

Page 9: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 9

Layer 1 Layer 1

Support Structure 12-fold castellated geometry carbon fiber support Integrated cooling sensors cooled to T=-5 oC Rin = 34.8 mm

Assembly 3-chip wide sensors,

58 m pitch, axial readout Hybrids on-board 6-chip double-ended hybrid

readout

Cooling lines

Silicon

Hybrid

Digital cable

L0

Full view layer 1

Page 10: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 10

Layers 2-5Layers 2-5

12, 18, 24 and 30-fold geometry All layers:

Use the same sensor, 5-chip wide sensor, 30 m pitch, 60 m readout

Hybrids on-board 10-chip hybrid readout Stereo and axial readout Stereo angle obtained by rotating

sensor Support

Modules are assembled into staves Staves are positioned with carbon-

fiber bulkheads

CMS Endplate

Page 11: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 11

Stave StructureStave Structure

Stave is doublet structureof four readout modules

Two layers of silicon » Axial and stereo» Two readout modules each

separated by cooling lines Total of 168 staves

Stave has carbon fiber cover Protect wirebonds Provide path for digital cables

Staves are mounted in end carbon fiber bulkheads

Cooling manifold similar to bulkhead design

Layer 4-5 stave

Page 12: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 12

Outer Layer Readout ModulesOuter Layer Readout Modules

Staves are assembled from readout modules Readout modules:

6 types » 10-10 (axial, stereo)» 10-20 (axial, stereo)» 20-20 (axial, stereo)

Stereo angle determined by mechanical constraints

» 10cm readout: = 2.5o

» 20cm readout: = 1.25o Ganged sensors will have traces aligned

Module configuration

Each readout module serviced by double-ended hybrid Each hybrid has two independent readout segments

Layer 4-5

Layer 2-3

10-10 10-20

20-20

Page 13: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 13

Readout SchematicsReadout Schematics

Layer 0: due to cooling requirements hybrids off-board Fine pitch flexible cables to bring analogue signals out of tracking volume

Layers 1-5: Hybrids mounted on silicon; digital cable connects to hybrid» Provides chip control signals» Power for chip and bias voltage

SVX4 chip employed in SVX2 readout mode to readout silicon MOSIS submission of FE 06/04/01 MOSIS submission of full chip 03/28/02

» Submission delay of ~5 months; both projects will get about 500 chips from this run

Project assumes in its schedule that second full chip submission is needed» Second submission: October ’02» Production submission: April ’03;

SVX4 drives the schedule

Sensor8’ Twisted Pair Cable

Interface with current DAQ system

Adapter Card

Junction Card

2’ Digital Cable

Hybrid

AnalogueCable

Hybrid

Layer 0

Layers 1-5

Page 14: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 14

Testing and Quality AssuranceTesting and Quality Assurance

First pass database exists to track all components for detector Fields for data entry being defined for first parts received

» Sensors, hybrids and cables Relations for proper queries being defined

Test stands for testing first components being setup at SiDet Two hybrid burn-in test stands, 16 channels each Two module burn-in test stands, 32 modules each

Devices under test

Page 15: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 15

Parameters of Proposed DetectorParameters of Proposed Detector

Few Characteristics: Sensors: 2184; Silicon area of 8.3 m2

888 hybrids, i.e readout cables (Run2a: 912) 7440 SVX4 chips for a total of 952320 channels (Run2a: 792576)

Layer 0A Layer 0B Layer 1A Layer 1B Layer 2A Layer 2B Layer 3A Layer 3B Layer 4A Layer 4B Layer 5A Layer 5B TotalStrip orientation A A A A A+S A+S A+S A+S A+S A+S A+S A+S# sectors 6 6 6 6 6 6 9 9 12 12 15 15# sensors in z 12 12 12 12 10 10 10 10 12 12 12 12Total # sensors 72 72 72 72 120 120 180 180 288 288 360 360 2184Pitch (m) 25 25 29 29 30 30 30 30 30 30 30 30Readout Pitch (m) 50 50 58 58 60 60 60 60 60 60 60 60Sensor Active Width 12.8 12.8 22.3 22.3 38.4 38.4 38.4 38.4 38.4 38.4 38.4 38.4Sensor Cut Width 15.5 15.5 25.0 25.0 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1Sensor Active Length 76.4 76.4 76.4 76.4 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0Sensor Cut Length 79.4 79.4 79.4 79.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0Radius Axial 17.8 24.7 34.8 39.1 53.2 68.9 89.3 103.4 116.9 130.6 150.1 163.6Radius Stereo --- --- --- --- 56.3 72.0 86.2 100.3 120.0 133.7 147.0 160.5Axial Coverage (%) 65.9 48.5 59.1 53.1 66.1 51.9 60.7 52.6 62.2 55.8 60.8 55.8Stereo Coverage (%) --- --- --- --- 62.7 49.8 62.8 54.2 60.6 54.5 62.0 56.8

Silicon Area (m2) 0.09 0.09 0.14 0.14 0.49 0.49 0.74 0.74 1.18 1.18 1.48 1.48 8.26dphi/dz for stereo Positive Positive Negative Negative Positive Positive Negative Negative# RO segments in z 12 12 12 12 8 8 8 8 8 8 8 8# SVX4 chips per RO 2 2 3 3 5 5 5 5 5 5 5 5# Hybrids in z 12 12 6 6 4 4 4 4 4 4 4 4Total # Hybrids 72 72 36 36 48 48 72 72 96 96 120 120 888# SVX4 chips 144 144 216 216 480 480 720 720 960 960 1200 1200 7440# RO channels 18,432 18,432 27,648 27,648 61,440 61,440 92,160 92,160 122,880 122,880 153,600 153,600 952,320

Page 16: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 16

Performance of Proposed DetectorPerformance of Proposed Detector

Performance studies based on full Geant simulation Full model of geometry and material Model of noise, mean of 2.1 ADC counts Single hit resolution of ~10 m Longitudinal segmentation implemented Pattern recognition and track reconstruction

Benchmarks (pT)/PT ~ 3% at 10 GeV/c

(d0)2 = 5.22 + (25/pT)2

» (d0) < 15 m for pT > 10 GeV/c

2b 2a

Impact Parameter (cm)

Page 17: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 17

Performance of Proposed DetectorPerformance of Proposed Detector

B-tagging Loose b-tag algorithm: signed impact parameter, Eb > 20 GeV

» Track selection within cone R < 0.5 of b-jet pT > 0.5 GeV/c, good 2, hits in silicon 2

» Impact parameter significance 2 tracks: d0/(d0) > 3

3 tracks: d0/(d0) > 2

b-jet tagging efficiency of ~ 65% per jet » Compare to Higgs working group assumptions

Based on WH-events, with b’s falling within acceptance

TDR

P(nb1) 76%

P(nb2) 29%

Mistag Rate < 1.5 %

ET (GeV)

Page 18: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 18

OrganizationOrganization Major commitments from various groups

Mechanical design and fabrication» University of Washington: Layer 0, 1

Sensor Testing» Kansas State University» Stony Brook» Cinvestav, Moscow Stave University

Electronics» Kansas State University

Digital cables; Adapter card, Junction card, Test card

» University of Kansas, Fresno University Hybrid testing

» Louisiana Tech Digital cable testing

QA» UIC, Northwestern University

Monitoring» Radiation monitoring, NIKHEF» Temperature Monitoring, Rice

Trying to strengthen group further

SiliconM. Demarteau

A. Bean, Deputy

Sensor Accounting, TestingR. Demina, F. Lehner

ElectronicsA. Nomerotski, W. Reay

QA, Testing, & Burn-inC. Gerber, TBA

MechanicalW. Cooper, K. Krempetz

Radiation MonitorS. de Jong

ProductionTBA

Simulation L. Chabalina, F. Rizatdinova

Page 19: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 19

Cost and NSF FundingCost and NSF Funding

Cost drivers Silicon sensors Cables: analogue, digital and twisted pair in near equal amounts Hybrids

Project has secured Major Research Instrumentation (MRI) Grant from NSF $1.6M of NSF equipment funds and $800k of Cost Share by participating

universities» 10 participating universities; University of Kansas grant administrator

M&S ITEM CONTINGENCY LABOR HRS

1.1 SILICON TRACKER M&S TOTAL

TOTAL % Cost Cost

1.1.1 Silicon Sensors 2,678,531 25 681,640 3,360,171

1.1.2 Readout System 4,029,215 45 1,797,590 5,826,805

1.1.3 Mechanical Design and Fabrication 1,340,696 51 679,818 2,020,514

1.1.4 Detector Assembly and Testing 445,250 37 165,415 610,665

1.1.5 Monitoring 55,000 45 24,500 79,500

1.1.6 Installation 90,000 47 42,500 132,500

1.1.7 Computing 101,000 11 11,400 112,400

1.1 SILICON TRACKER 8,739,692 39 3,402,863 12,142,555

Page 20: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 20

Approach to Cost EstimateApproach to Cost Estimate

Strongly relies on Run2a experience Estimates for assembly, fixturing Initial quotes for equipment

General philosophy regarding contingency Uniform 50% Areas with little experience: 70% Quote in hand, or previously purchased commercial items: 30% Spare count part of production cost, never included in contingency Items already purchased: 0%

MRI contribution MRI contribution is fixed dollar amount When identified as such in M&S cost estimate, assumed no contingency Permits to verify overall level of contingency

Page 21: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 21

Cost ProfileCost Profile

We are in the process of setting up budget tracking tools Tracking of MRI and Fermilab encumbrances

Obligations and spending profile match to good degree

Silicon Spending Profile

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Oct-0

0

Jan-0

1

Apr-0

1

Jul-0

1

Oct-0

1

Jan-0

2

Apr-0

2

Jul-0

2

Oct-0

2

Jan-0

3

Apr-0

3

Jul-0

3

Oct-0

3

Jan-0

4

Apr-0

4

Jul-0

4

Oct-0

4

Jan-0

5

Apr-0

5

Jul-0

5

Oct-0

5

CY Quarters

Co

st

(k$

)

Total Fixed Cost

Cumulative Cost

Sensor purchase

Page 22: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 22

ScheduleSchedule

Project broken down in subtasks at level 9 using MSProject Project resource loaded, manpower estimates follow from resource loading Broken down into over 800 subtasks

» No stand alone tasks; all tasks in reference to successors or predecessors Some Key tasks:

SVX4 production and testing 4/11/03 – 3/10/04 Outer layer sensor production and probing 1/21/03 – 5/14/04 Outer layer hybrid production and testing 6/23/03 – 6/10/04 Outer layer module production and burn-in 1/14/04 – 8/30/04

Some key milestones SVX4 chip released for production 4/11/03 Last outer layer sensor received 4/30/04 South silicon complete 11/17/04 Shutdown starts 3/14/05 Silicon Ready to move to DAB 5/31/05

An explicit 8 weeks contingency is built in at the end of the project

Page 23: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 23

MilestonesMilestones

Major task have associated milestones, which are evenly distributed in time

Page 24: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 24

Sensitivity AnalysisSensitivity Analysis

Using current schedule, added (equivalent of) third prototype run for various critical items and looked at the effect on the schedule

Task Description

additional

duration (wks) End Date Shift (days)

Nominal Schedule 5/ 31/ 2005

89 Third SVX4 prototype 28 12/ 19/ 2005 202

156 Third L2-5 Hybrid prototype 28 12/ 12/ 2005 195

176 Third Analogue Cable prototype 24 5/ 31/ 2005 0

209 Third Digital Cable prototype 40 5/ 31/ 2005 0

239 Second J unction Card prototype 20 5/ 31/ 2005 0

252 Third Twisted Pair prototype 24 5/ 31/ 2005 0

266 Third Adapter Card prototype 28 5/ 31/ 2005 0

285 Second Test Card prototype 26 5/ 31/ 2005 0

364 Fabrication L0 South structure 32 5/ 31/ 2005 0

368,502 L0 North+South sensor mounting 20 (each) 6/ 22/ 2005 22

399 Fabrication L1 South structure 32 5/ 31/ 2005 0

403,512 L1 North+South sensor mounting 20 (each) 5/ 31/ 2005 0

76 Production f aults at HPK (600 sensors) 12 6/ 27/ 2005 27

All of the above: the unpredictable 1/ 20/ 2006 234

Page 25: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 25

Approach to Labor EstimateApproach to Labor Estimate

Blanket assumption for labor: 1456 hrs/yr or 364 hrs/quarter, which corresponds to 70% efficiency

» 52 weeks/yr * 5 days/week - 39 days vacation, sick, holidays = 221 days, which corresponds to 85% efficiency

» Efficiency of use of those available hours 82% (meetings, coffee break, bathroom break, …)

When converting hours of labor into FTE’s, this number is applied

In addition, there’s an efficiency factor folded in task by task Example: 10-10 axial Module production

» Duration: 8 weeks, 2.1 modules/day» Resources: 0.5 CMMT, 0.5 MTF

In production mode, module assembly should take about 1 hour/module Needs some setup time, cleanup time, and things may go wrong

Manpower estimates come from resource loaded schedule

Page 26: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 26

Total SiDet Manpower NeedsTotal SiDet Manpower Needs

Comparison of total manpower needs for SiDet where laboratory has given guidance

Total SiDet Manpower

0

5

10

15

20

25

30

35

1Q01

2Q01

3Q01

4Q01

1Q02

2Q02

3Q02

4Q02

1Q03

2Q03

3Q03

4Q03

1Q04

2Q04

3Q04

4Q04

1Q05

2Q05

3Q05

4Q05

Calendar Quarters

FT

Es

CMMT

CMMP

WBNDRT

ETSF

MTSF

DESF

MEF

Lab Guidance: 18 FTE’s

Page 27: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 27

Selected Fermilab Manpower NeedsSelected Fermilab Manpower Needs

Projected needs for mechanical engineers and designers

FNAL Engineering and Designing Manpower

0

2

4

6

8

10

12

14

16

1Q01

2Q01

3Q01

4Q01

1Q02

2Q02

3Q02

4Q02

1Q03

2Q03

3Q03

4Q03

1Q04

2Q04

3Q04

4Q04

1Q05

2Q05

3Q05

4Q05

Calendar Quarters

FT

Es

DESF

MEF

Available manpower for engineers and designers So far has matched more or less project needs Worry about second quarter: if not matched, project will fall behind

current schedule

Lab Guidance for SiDet: 5 FTE’s

Page 28: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 28

Selected SiDet Manpower NeedsSelected SiDet Manpower Needs

Comparison of technical manpower needs for SiDet where laboratory has given guidance

SiDet Selected Technical Manpower

0

5

10

15

20

25

30

35

1Q01

2Q01

3Q01

4Q01

1Q02

2Q02

3Q02

4Q02

1Q03

2Q03

3Q03

4Q03

1Q04

2Q04

3Q04

4Q04

1Q05

2Q05

3Q05

4Q05

Calendar Quarter

FT

Es

CMMT

CMMP

WBNDRT

ETSF

MTSF

Lab Guidance: 13 FTE’s

Peak production Really need people with the right skills. Finding people with the right skills has been

a problem in the past. We are optimistic that we can try to recruit CMMT’s from the collaboration as was done for Run2a

Page 29: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 29

Total Fermilab Manpower EstimateTotal Fermilab Manpower Estimate

Add all Fermilab manpower and all physicists from Fermilab and Universities

All Fermilab Manpower with all Physicists

0

10

20

30

40

50

60

70

80

1Q01

2Q01

3Q01

4Q01

1Q02

2Q02

3Q02

4Q02

1Q03

2Q03

3Q03

4Q03

1Q04

2Q04

3Q04

4Q04

1Q05

2Q05

3Q05

4Q05

Calendar Quarters

FT

Es

PhysTot

COMPF

ETF

MTF

EEF

CMMP

CMMT

WBNDRT

ETSF

MTSF

DESF

MEF

FNAL Resources Person-yrsCMM Prog 0.8CMM Tech 5.9Computing Prof. 3.4Designer/Drafter 9.1Electrical Engineer 10.2Electrical Tech 5.9Electrical Tech - SiDet 5.9Mechanical Engineer 13.3Mechanical Tech 6.3Mechanical Tech - Sidet 16.6Wire Bonder 2.2Total 79.7Physicist (FNAL) 34.9Physicist (Other) 46.1

Page 30: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 30

Concluding RemarksConcluding Remarks

The Run2b upgrades will allow us to exploit the unique opportunity for discovery available to the Laboratory; however, it is only available within a limited time frame

The silicon detector proposed is well suited to address the physics issues of Run2b

Emphasis on impact parameter measurement at small radii The design is not overextended A lot of progress has been made in all areas

Some significant issues and risks remain Schedule Manpower needs Funding

We are looking for your advice and help trying to get the project on a solid footing for a possible future baseline review.

Page 31: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 31

NomenclatureNomenclature

MEF Mechanical Engineer, Fermilab DESF Designer, Fermilab MTSF Mechanical Technician, SiDet, Fermilab ETSF Electrical Technician, SiDet, Fermilab WBNDRT Wirebonder Technician CMMT Coordinate Measuring Machine Technician CMMP Coordinate Measuring Machine Programmer EEF Electrical Engineer Fermilab MTF Mechanical Technician, Fermilab (non-SiDet) ETF Electrical Technician, Fermilab (non-SiDet) COMPF Computing Professional, Fermilab

Page 32: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 32

Run 2bRun 2b

Although we just built a major silicon detector, construction of a new silicon detector is planned

Current silicon detector designed for ~ 2 fb-1; will most likely survive 4-5 fb-1

The most appropriate rad-hard technology used at that time Laboratory:

Supports extended running to ~ 15 fb-1 / exp

» Unique window of opportunity for Fermilab to be the sole laboratory with possibility to find the Higgs boson

Asked both collaborations to study options for replacing Si detectors

» Choice of exp’s is full replacement Suggested a time scale and asked for

submission of TDR by fall ’01 Field of High Energy Physics

Higgs search is highest priority of the laboratory and perhaps the field

LHC: turn on of LHC sets clear end date for window of opportunity

Page 33: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 33

Overall Plan ViewOverall Plan View

Junction cards

Cooling bulkheads

Positioning bulkhead

Page 34: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 34

Designed the detector to have uniform coverage in pseudorapidity Layers 0/1: 6 sensors per half-module; sensor length 79.4 mm Layers 2/3: stave populated by 5 sensors only; sensor length 100 mm

» reduction of sensor count by 120 sensors Layers 4/5: stave populated by 6 sensors; sensor length 100 mm

Longitudinal segmentation Determined by

» Number of allowed readout cables» Occupancy, cluster sharing » Configuration

L0, L1: each sensor readout L2, L3: 10-10-10-20 readout L4, L5: 10-10-20-20 readout

Hybrids are all double-ended Services two readout segments

Longitudinal SegmentationLongitudinal Segmentation

Z=0 Z (mm)0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Layer 0 S S S S S SLayer 1 1/2D 1/2D 1/2D 1/2D 1/2D 1/2D

Layer 2 1/2D 1/2D 1/2D 1/2D

Layer 3 1/2D 1/2D 1/2D 1/2D

Layer 4 1/2D 1/2D 1/2D 1/2D

Layer 5 1/2D 1/2D 1/2D 1/2D

Readout segment #

Page 35: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 35

SVX4 ChipSVX4 Chip

Nov ’00 decision to employ common readout chip for CDF and DØ SVX4 in deep sub-micron, 0.25 m technology, intrinsically rad-hard

» Brand new chip with own personality/features Commercial foundries used (TSMC)

Test chips MOSIS submission of FE 06/04/01

» Decided on pre-amp and pipeline design» ENC = 450e + 43.0e/pF (optimum)

MOSIS submission of full chip 03/28/02 » Submission delay of ~5 months» Two versions of chip (same padring)

On chip bypassing employed (DØ) On chip bypassing not used (CDF)

» Both projects get ~300 chips each» Projects need working chips to certify all readout electronics components

Project assumes in its schedule that second full chip submission is needed Second submission: October ’02 Production submission: April ’03 SVX4 drives the schedule

LBL Pre-amp

FNAL Pre-amp

Pip

elin

e

Page 36: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 36

Sensitivity AnalysisSensitivity Analysis

Using current schedule, removed second prototype run for various critical items when appropriate and looked at the effect on the schedule

Close coupling SVX4 chips and hybrids Sensors third driving schedule

Task Description

reduction in

duration (wks) End Date Shift (days)

Nominal Schedule 5/31/2005

89 No second SVX4 prototype -28 5/ 23/ 2005 -8

156 No second L2-5 Hybrid prototype -28 5/ 31/ 2005 0

176 No second Analogue Cable prototype -24 5/ 31/ 2005 0

209 No second Digital Cable prototype -24 5/ 31/ 2005 0

252 No second Twisted Pair prototype -20 5/ 31/ 2005 0

266 No second Adapter Card prototype -24 5/ 31/ 2005 0

76 Production gain at HPK (600 sensors) -12 5/ 31/ 2005 0

All of the above 4/ 25/ 2005 -36

Page 37: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 37

Expenditures to DateExpenditures to Date

MRI Layer 1 sensors ELMA

$6.0k Layer 1 sensors HPK$65.0k Standalone Seq. $70.0k Analogue Flex cables

» Prototype 1 $6.0k» Prototype 2 $6.0k

Layer 1 hybrids $16.1k» Connectors $2.4» Components $1.6

Mexico setup $80.0k Stony Brook setup $80.0k KSU setup

$80.0k Mexico HV

$200k

FNAL Carbon fiber $5.5k Digital Jumper Cables

» Honeywell $21.5k» Basis Electronics $3.9k» Material $2.0k

Standalone Seq. $10.0k Layer 1 Hybrids

» Layout $2.0k

SiDet CMM$35.0k

SVX4 $54.0k Beampipe $98k

MRI Matching UIC $4k Fresno $7k KU (Ledford) $10k KU Logic analyzer $8k UW $35.5k

Total of ~$910k

Page 38: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 38

Near Term Start DatesNear Term Start Dates

Selected near- term start dates Start Dates

Produce L0 sensor prototypes 9/ 11/ 01

Procure L1 hybrid prototypes 11/ 29/ 01

Prepare adapter card prototypes 11/ 29/ 01

Prototype support cylinder 11/ 29/ 01

Order L1 preproduction sensors 12/ 12/ 01

Order L2-L5 preproduction sensors 12/ 12/ 01

Beam Tube Order Placed 12/ 19/ 01

Perf orm L0 sensor irradiation testing 1/ 14/ 02

Fabricate prototype stave cores 1/ 16/ 02

Prepare digital jumper cable prototypes 1/ 21/ 02

Produce L2-L5 preproduction sensors 1/ 25/ 02

Produce pre-production analog cables 3/ 27/ 02

Complete resource loaded schedule being prepared Some near term start dates / milestones

Submitted to ELMA

Ready for submission

Page 39: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 39

Boundary Conditions: spatialBoundary Conditions: spatial

Silicon tracker to be installed within existing fiber tracker, with inner radius of 180 mm

Full tracking coverage Fiber tracker up to || < 1.6 Silicon stand-alone up to || <

2.0 Installation in collision hall

Tracker will be split at z=0 Two independent half-modules Reproducible mount at z=0 Alignment verified at SiDet Installation of beampipe

after tracker installation There will be a 3mm gap from

sensor to sensor at z=0

Page 40: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 40

Luminous RegionLuminous Region

Addresses uncertainty on evolution of beam size over the course of a store Assumed beam crossing centered at z=0; no uncertainties folded in

Coverage of inner layers of 100 cm results in loss of < ~2% of integrated luminosity

Length of inner layer set at 96 cm

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200

Silicon Fiducial Length (cm)

Lu

min

osi

ty A

ccep

tan

ce

3 eV-s40E10/hr

2 eV-s40E10/hr

3 eV-s60E10/hr

2 eV-s60E10/hr

From M. Church

Luminosity acceptance of detector in Run2b running conditions

Longitudinal emittance 2, 3 eV-sec

Stacking rate 40, 60 E10/hr Assumptions:

* = 35 cm Trans. .mm.mrad

0.5 crossing angle 136 rad

Page 41: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 41

Layer 0 Support StructureLayer 0 Support Structure

Prototype support structure made by University of Washington Crenellated mandrel

» Stacking sequences Cylindrical Shell: 3 ply 0º, 90º, 0º laminate Castellated Shell: 6 ply [0º, +20º, -20º]s laminate

RTV pressure strips, vacuum bag Pressured to 85 psi Cured in autoclave at 275 °F

castellated shell

Measurements and comparisons of elastic properties of prepreg. laminates

Page 42: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 42

Irradiation StudiesIrradiation Studies

Irradiation studies carried out with ELMA sensors and CDF layer 00 sensors from Hamamatsu and Micron

Measured Ileak, Vdepl

Measurements agree well with other measurements Calculate Ileak, Vdepl and ENC for various Si temperatures to determine

Si running temperature during operation

T = -10C

R(mm) Mrad Vdep(V) IL/strip(nA) ENCL e-

15 19.98 677.90 883.5 900.020 12.32 425.18 544.9 706.830 6.24 224.29 275.7 502.840 3.85 145.42 170.1 394.850 2.64 105.74 116.9 327.460 1.95 82.72 86.1 280.975 1.34 62.65 59.2 232.9

100 0.83 45.78 36.5 182.9145 0.44 35.60 19.5 133.8165 0.36 36.15 15.7 120.1

Conclude that the design value for Silicon operating temperature at the inner layer should be T= -10 oC

Page 43: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 43

Comparison 2a and 2bComparison 2a and 2b

2a:» Innermost radius 25.7 mm» Outermost radius 94.3 mm

2b:» Innermost radius 17.5 mm » Outermost radius 163.6 mm

End views drawn to scale

Page 44: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 44

Sensor ProcurementSensor Procurement

Sensor procurement funding profileHPK Elma Total

Month Category Quantity Price/unit, $ Cost, $ Contingency, %Cost+contingency, $Category QuantityPrice/unit, $ Cost, $ Contingency, %Cost+contingency, $11/1/01 L1 NRE 1 54,810.00$ 54,810.00$ 20% 65,772.00$ L1 NRE 1 8,000.00$ 8,000.00$ 20% 9,600.00$ 62,810.00$ 12/1/01 L2 NRE 1 76,734.00$ 76,734.00$ 20% 92,080.80$ L0 prototype 20 350.00$ 7,000.00$ 20% 8,400.00$ 83,734.00$ 1/1/02 L0 NRE 1 54,810.00$ 54,810.00$ 20% 65,772.00$ 1 8,000.00$ 8,000.00$ 20% 9,600.00$ 62,810.00$ 2/1/02 -$ 20% -$ L1 prototype 10 700.00$ 7,000.00$ 20% 8,400.00$ 7,000.00$ 3/1/02 -$ 20% -$ -$ 20% -$ -$ 4/1/02 L1 prototype 10 1,223.66$ 12,236.60$ 20% 14,683.92$ 20% 12,236.60$ 5/1/02 L2 prototype 100 712.75$ 71,275.00$ 20% 85,530.00$ 0 -$ -$ 20% -$ 71,275.00$ 6/1/02 L0 prototype 10 1,159.71$ 11,597.10$ 20% 13,916.52$ 20% 11,597.10$ 7/1/02 L1 production 216 469.45$ 101,401.20$ 20% 121,681.44$ L1 production 0 400.00$ -$ 20% -$ 101,401.20$ 8/1/02 L0 production 216 276.01$ 59,618.16$ 20% 71,541.79$ L0 production 0 250.00$ -$ 20% -$ 59,618.16$ 9/1/02 L2 production 0 -$ -$ 20% -$ L2 production 0 -$ -$ 20% -$ -$

10/1/02 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ FY02 576,714.06$ 20% 692,056.87$ 0 -$ 30,000.00$ 20% 36,000.00$ 606,714.06$

11/1/02 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 12/1/02 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 1/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 2/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 3/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 4/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 5/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 6/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 7/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 8/1/03 L2 production 200 671.16$ 134,232.00$ 20% 161,078.40$ L2 production 0 -$ -$ 20% -$ 134,232.00$ 9/1/03 L2 production -$ 20% -$ L2 production 0 -$ 20% -$ -$

10/1/03 L2 production -$ 20% -$ L2 production -$ 20% -$ -$ FY03 1,342,320.00$ 1,610,784.00$ -$ -$ 1,342,320.00$ FY02+FY03 1,919,034.06$ 2,302,840.87$ 30,000.00$ 36,000.00$ 1,949,034.06$

Page 45: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 45

Why no 90-degree StereoWhy no 90-degree Stereo

Issues: Due to multiplexing of signals more difficult pattern recognition; more fakes Large incident angles, large number of strips hit

» Preferentially use thinner silicon to partially compensate

Fraction of tracks that have a close neighbor is rather high

» Need to resort to splitting shared clusters Requires double-metal layer; HPK no experience with

dm layers on 6” wafers No definitive answer yet from Run2a data

We have confidence that we can achieve our physics goals with the current design

Of course, 3d-vertex gives additional information, but has to be compared to additional requirements

Complicates design, more sensor types, more testing, probing, more manpower, … DØ made conscientious decision not to adopt 90-degree stereo readout given

manpower and time constraints

Page 46: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 46

Page 47: Director’s Baseline Review (Temple Review)  April 16-18, 2002  Marcel Demarteau Fermilab

Director's Baseline Review, April 16-18, 2002 - M. Demarteau Slide 47

Sensor8’ Twisted Pair Cable

Interface with current DAQ system

Adapter Card

Junction Card

2’ Digital Cable

Hybrid

AnalogueCable

Hybrid