89
Ecodesign Preparatory Study (Directive 2009/125/EC) ENTR Lot 6: Air-conditioning and ventilation systems Contract No. ENTR / 2009/ 035/ LOT6/ SI2.549494 Service Contract to European Commission, DG Enterprise Service Contract to European Commission, DG Enterprise Sustainable Industrial Policy – Building on the Ecodesign Directive – EnergyUsing Product Group Analysis/2 Main contractor: Armines (FR) Consortium: Armines (FR), Air Conditioning Systems VHK (NL), Ventilation Systems 1 BRE (UK), Market Analysis Support

(Directive 2009/125/EC) ENTR Lot 6: Air-conditioning … ENTR Lot 6 - AC - Tasks...Ecodesign Preparatory Study (Directive 2009/125/EC) ENTR Lot 6: Air-conditioning and ventilation

Embed Size (px)

Citation preview

Ecodesign Preparatory Study (Directive 2009/125/EC)

ENTR Lot 6: Air-conditioning and ventilation systems

Contract No. ENTR / 2009/ 035/ LOT6/ SI2.549494Service Contract to European Commission, DG EnterpriseService Contract to European Commission, DG Enterprise

Sustainable Industrial Policy –Building on the Ecodesign Directive – Energy‐Using Product Group Analysis/2

Main contractor: Armines (FR)Consortium: 

Armines (FR), Air Conditioning SystemsVHK (NL),  Ventilation Systems

1BRE (UK), Market Analysis Support

ENTR  LOT 6 : Air Conditioning productsTasks 1 to 5

30 September 2011

2nd St k h ld ti2nd Stakeholder meeting30 Sept 2011

P. Rivière, Armines

2

Task 1 – Product definition, standards and legislation

3

Air conditioning systems Standards Legislation

Cooling basics

1)Cooling processIn general convective or convective + radiative heat– In general, convective or convective + radiative heattransfer from a cold fluid via a heat echanger• Refrigeration cycle• Vapor compression• Absorption cycle• Direct use of cold water

– Evaporative and desiccant cooling• Evaporative cooling• Desiccant coolinges cca t coo g

2)Main type = refrigeration cycle

4

Air conditioning systems Standards Legislation

Systems and products: main system types

All air systems, made of• a chilled water plant an AHU the water loop that feeds the cooling coil of the• a chilled water plant, an AHU, the water loop that feeds the cooling coil of the 

AHU, ducts for air distribution, terminal units that can supply complementary heating/cooling and possibly additional functions.

Water Air Refrigerant

Expansion

LEGENDAHU

Cooling tower

Cooling towerCondenser Evaporator

Expansion valve Fan Compressor

Building with

diffusers

• Constant air volume (CAV) Vs Variable air volume (VAV)• Zoning (terminal reheat dual duct )

Water cooled chiller Exhaust air

5

• Zoning (terminal reheat, dual duct, ...)

Air conditioning systems Standards Legislation

Systems and products: main system types

Water based systems, made of• a chilled water plant an AHU for ventilation the water loop that feeds the• a chilled water plant, an AHU for ventilation, the water loop that feeds the 

terminal units (and potentially the cooling coil of the AHU), ducts for air distribution, terminal water to air units that can supply heating/cooling and possibly additional functions (like dehumidification and air filtration).

Terminal units Differences depending on terminal unit typeTerminal units

• Fan coil

• Cold beams

• Cooled surfaces (radiative)

Air cooled chiller Building

( )

• Water to air package air conditioners

6

Air conditioning systems Standards Legislation

Systems and products: main system types

DX systems• Direct expansion air conditioners no secondary fluid as water for water• Direct expansion air conditioners, no secondary fluid as water for water 

based units between the refrigerant and the cooled air. Package (includes rooftops), split, multi‐split, VRF systems

Split / multisplitsystem

VRF system with heat recovery

P kPackage- w/wo ventilation

7

Air conditioning systems Standards Legislation

Products in ENTR Lot 6 scope

1. Air conditioners > 12 kW and air conditioning condensing units

Package, split and multi split air conditioner [air‐to‐air > 12 kW, water‐to‐air, evaporatively cooled] and positive temperature air condensing units [air‐cooled, water‐cooled, evaporatively‐cooled], VRF systems (centralized air conditioning systems with refrigerant fluid as the main media to circulate and extract heat from the building) [air‐to‐air and water‐to‐air]to‐air and water‐to‐air]

2. Chillers for air conditioning applications [air‐to‐water, water‐to‐water, evaporatively‐cooled]cooled]

3. Terminal units to extract heat from the space to be conditioned

Fan coilsFan coils

4. Heat rejection units means from the cooling system

Cooling towers Dry cooler

8

Cooling towers, Dry cooler

Air conditioning systems Standards Legislation

Scope limits

1. Cooling generators

Air conditioners < 12 kW, low temperature chillers and refrigeration condensing units

2. AHU and more generally ventilation function of air conditioning products

AHU are studied in ENTR Lot 6 on the ventilation part

BUT cooling systems integrated in AHU are included

3. Motors, fans, circulators, ,

Circulators already covered in ENER Lot 11 study and part of them by regulation

Fans and motors partly covered by regulation

4. Heating function

Heating function of reversible chiller, ENER Lot 1

Heating function of reversible air conditioners, ENER Lot 21

9

Heating function of reversible air conditioners, ENER Lot 21

Air conditioning systems Standards Legislation

Comments regarding the scope

1. Comments regarding the AHU briefing 

Main lines

‐ AHU may supply cooling but this requires a cooling(heating) system

‐ The ventilation/cooling(heating) functions are treated separately (as is done today)

‐ AHU are the subject of the ventilation part of ENTR Lot 6

‐ Cooling generators in in AHU included here

2. Refrigeration and process chillers

Latest comments received: process chillers (ie other than AC) should not be treated herebut in ENTR Lot 1

Main reason – not the same operating conditions

10

Air conditioning systems Standards Legislation

Categories and performance parameters

Cooling generators– Categories

– Performance parameters• Cooling (heating) capacity

• Electricity consumption or EER Eurovent• Sink and source type

• W/wo fan pressure available (or circulator included or not)

• Electricity consumption or EER, EuroventFCEER (FCCOP)

• Noise

H t j ti– Performance parameters: • cooling (heating) capacity and 

SHR 

Heat rejection– Categories

• Dry cooler, closed/open cooling tower,• EER, SEER, COP, SCOP … 

• TEWI

• Noise

Dry cooler, closed/open cooling tower, evaporatively‐cooled dry cooler

– Performance parameters• Cooling capacity

Fan coils– Categories

d ( 0 6 )

• Cooling capacity

• Electricity consumption or EER

• Noise

11

• Ducted or not (50 or 65 Pa) 

• reversibility

Air conditioning systems Standards Legislation

Main standards – cooling generators• Electric- Full load EN 14511, Part load prEN14825, Evaporatively-cooled condenser EN 15218- Sound EN 12102

Safety and environmental requirements EN 378- Safety and environmental requirements EN 378Issues- 14825 Part load of multi-split / VRF systems- 14825 Adaptation of low power modes as for air conditioners < 12 kW ? p p- 14825 Adaptation of climatic/load curve data for larger generators ?- 14825 Part load conditions missing for evaporatively-cooled condensers and dry coolers- Missing information for EPBD application- No standard regarding condensing units for AHU

• Engine driven compressor- No standard identified.

• Gas firedEN 12309 2009

12

EN 12309: 2009Issues: missing temperature levels, part load testing and conditions, electric auxiliaries

(incl head losses for heat exchangers as in EN14511), sound power

Air conditioning systems Standards Legislation

Main standards – terminal units

• Fan coils Testing and rating EN 1397:1998

Issues: - not completely in line with industry standards (e.g Eurovent –ducted / non ducted), speed setting, could be refreshed- sound power ?

• Chilled ceilings Testing and rating EN 14240:2004

• Chilled beams Testing and rating EN 14518:2005

• Active chilled beams Testing and rating EN 15116:2008 • Active chilled beams Testing and rating EN 15116:2008

• Floor cooling Testing and rating EN 1264:2009

13

Air conditioning systems Standards Legislation

Main standards – heat rejection

• Dry cooler Testing and rating EN 1048:1998Issues: - Seasonal performance standard could be useful to show gains of better part load

control- Sound power

• Cooling towers– EN 14705:2005 - Measurement and evaluation of thermal performances of

t li twet cooling towers– EN 13741:2004 - Thermal performance acceptance testing of mechanical

draught series wet cooling towers

Issues: Issues: - Fan power not included- Rating conditions for AC full load and part load not defined- Seasonal performance standard could be useful to show gains of better part load

14

control- Sound power

Air conditioning systems Standards Legislation

Product performance requirements

• Most requirements for electric cooling generatorsBoth f ll load and part load req irements– Both full load and part load requirements

– Air cooled and water cooled (separated requirements)

– Australia included low power modes for AC up to 65 kWp p

• Requirements also forRequirements also for– Absorption (gas or steam) / lower levels than for electric ones

– Engine air conditioners (UK) 

– Heat rejection (US) – at design cooling conditions

15• No requirements for fan coils

Air conditioning systems Standards Legislation

Product performance requirements – Air conditioners EER

3,2

3,4

3

MEPS Australia

MEPS France

MEPS UK

2,6

2,8

EER kW

/kW MEPS China non ducted

MEPS China ducted

MEPS USA Split ‐ Pack CO ‐ VRF

2,4

,E

MEPS USA Split ‐ Pack Rev ‐ VRF HR

MEPS USA SVP

MEPS Japan Split Wall

l h

2

2,2MEPS Japan Split other

MEPS Japan Ducted

MEPS Japan Multi‐split

16

2

0 50 100 150 200 250

Cooling capacity kW

Air conditioning systems Standards Legislation

Product performance requirements – chillers

• Air cooled chillers IPLV

4,80

5,00

4 00

4,20

4,40

4,60

/590

 IPLV

MEPS USA & CANADA

3,40

3,60

3,80

4,00

AHRI 550/

MEPS Australia

MEPS Australia future

3,00

3,20

0 500 1000 1500 2000

C li i (k )

17

Cooling capacity (kW)

Air conditioning systems Standards Legislation

Product performance requirements –water cooled chillers IPLV

6,5 MEPS UK

5,5

6MEPS Taipei Vol comp

Label China grade 1

Label China grade 5 (MEPS)

L b l E t A

4,5

5

ER

Label Eurovent A

Label Eurovent G

MEPS Australia

MEPS Australia futur path A

3 5

4

,5E MEPS Australia futur path A

MEPS Australia futur path B

MEPS USA & CAN pos displ Path A

MEPS USA & CAN pos displ Path B

3

3,5 MEPS USA & CAN pos displ Path B

MEPS USA & CAN cent Path A

MEPS USA & CAN cent Path B

MEPS Taipei Cent comp

18

2,5

0 500 1000 1500 2000

Cooling capacity  (kW)

MEPS Taipei Cent comp

MEPS France

Air conditioning systems Standards Legislation

Product performance requirements

• Heat rejection units: only in the USA

ASHRAE 90.1:2010 Cooling towers MEPS gpm/hp min kWcool/kWelec min

Open‐circuit cooling towersOpen circuit cooling towers

35 °C entering water, 29.4 °C leaving water, 23.9 °C entering wet bulbPropeller or axial fan open‐circuit cooling 

tower 38,2 75,0

Centrifugal fan open‐circuit cooling towers 20 39,3

Closed‐circuit cooling towers

38.9 °C entering water, 32.2 °C leaving water, 23.9 °C entering wet bulbPropeller or axial fan closed‐circuit cooling 

tower 14 33,0

Centrifugal fan closed‐circuit cooling towers 7 16,5

19

Task 2 – Economic and Market AnalysisTask 2 – Economic and Market Analysis

20

Contents

• Overview• Production, imports, exports• Modelling• Overview of stock and sales of products

• Market data per product classChillers• Sales, technology, characteristics, stock, future stock

Air‐conditioners• Rooftops, single‐splits, multisplits, VRFs

Fan‐coil units

• Costs• Country‐scale data concerning chillers and fan‐coil units

P i li f h d

21

• Price lists for other products

Production, Imports and Exports

– PRODCOM data : too aggregated → not very informative

– Chillers• Italy and France significant exporters• Other countries largely importers

– Rooftop units– Rooftop units• Several manufacturers predominantly supply national markets• Production is divided between European and overseas manufacturers (USA)

– Single split, multisplit and VRF systems• Same main manufacturers• Products are mainly manufactured outside Europe

– Fan‐coil units• Mainly domestic production• Except Italy, which is also an exporter

22

• Except Germany and, to a lesser degree, Spain, which are also significant importers

Modelling

Italy Chiller Sales: first-time and replacement

30000

35000

40000

• Data sources– Eurovent EU‐27 product sales data

– BSRIA market research reports for 6 

10000

15000

20000

25000

30000countries

– BSRIA historical product sales

– Other data sources (national i ti h t )

0

5000

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

model first-timesales actual model total sales

associations, research centres …)

• Modelling details– Distinction drawn between first‐time

and replacement sales

– Typical product lifes : known orsupposed

• Work based on sales data, usually from 1992 onwards

supposed

– 10% of sales : countries with no availablehistorical sales figures

– 2010 sales adjusted from 2008 sales

• Market modelling is calibrated to sales data. The market diffusion model is the 

Bass model

23

based on Eurostat forecastsBass model.

Sales of cooling generators

Market share of Cooling 2008

6%

3%

14%

6%

ChillerDucted splitsSingle splits

59%

4%

14%Multi splitsVRFRooftop

• Chillers account for 60% of the cooling capacity sold. About 18.9 GW

• Chillers with process cooling as the main function are not included• Chillers with process cooling as the main function are not included

• VRF systems and non‐ducted single‐split systems > 12kW are also significant. About 2.6 GW each

• Rooftop units : 1.1 GW

• Ducted split systems : 0.8 GW

24

• Multisplit systems : 0.6 GW

Stock of cooling generators

• Continuous growth of the stock

Estimated stock of central air conditioning products (cooling capacity)

400

500

– Continued new installations of chiller‐based systems

100

200

300

400

GW

– Important growth in VRF systems

– Market saturation in 2025 for products

01990 1995 2000 2005 2010 2015 2020 2025

VRF Multisplit Ducted split > 12 kWSingle split >12 kW Rooftop Chillers

Market saturation in 2025 for products other than chillers and VRF systems

– Large number of split systems because 

Estimated stock of central air conditioning products (number)

10.00

of small cooling capacity

2.00

4.00

6.00

8.00

Mill

ions

25

0.001990 1995 2000 2005 2010 2015 2020 2025

VRF Multisplit Ducted split > 12 kWSingle split >12 kW Rooftop Chillers

End‐use by building sectors

End use percentages by installed kW: chillers

ResidentialChillers FCU VAV Other

terminalNew build 39% 48% 48% 60%Retail

OfficeLeisure and hotelsPublicHealth

New build 39% 48% 48% 60%Refurbishment 32% 49% 52% 40%Replacement 29% 3% 0% 0%

R ft D t d lit Single M lti lit VRFHealthEducationPharmaceuticalCommunicationIndustrial

Rooftops Ducted splits Single splits Multisplits VRF

New 38% 24% 36% 38% 55%Refurbishment 38% 59% 49% 50% 41%Replacement 24% 17% 15% 12% 4%

Other

• The main market sectors (65%) • New-build, refurbishment and

Replacement 24% 17% 15% 12% 4%

for central air conditioning are offices, retail, and hotels and leisure

product replacement are all important- Relative importance varies with product

26

Reversibility of products

Product Percentage reversible (by number)

Chillers 47%16% by capacity

Ducted single split systemsDucted single split systems > 12 kW 82%

Non-ducted single split systems > 12 kW 66%

Multisplit systems 64%Multisplit systems 64%VRF systems 88% (includes products with heat recovery)Rooftop units 62% (an additional 11% have gas heating function)

• ChillersChillers– More than 50% of small capacity products (< 50 kW) are reversible

– Reversible products are mainly air‐cooled chillers (if not : ground‐source heat pumps)

• Air‐conditioners– Percentage of reversible products by capacity sold should be close to the figures by number of

units sold

27

Chiller prices

• Available dataChiller Price Euro/kW

200

250

– Average product prices for 6 countries (market research reports) + several price lists

50

100

150

– Decrease in price with an increase in cooling capacity

0France Germany Greece Italy Spain UK

< 100 kW 100 to 350 kW > 350 kW

– Cheaper low capacity products in France in Italy

 

– Water‐cooled chillers 30% to 40% cheaper than air‐cooled chillers

28

Required information and feedback

• Market information – Air‐conditioning condensing units

– Packaged air conditioners other than rooftop unitsPackaged air conditioners other than rooftop units

– Dry coolers / Evaporatively‐cooled dry coolers

– Cooling towers for air conditioning

• Typical product and system pricesM i li fi fi– More price lists to refine current figures

29

Task 3 – User requirementsq

30

IMPACT OF INFORMATION USE PHASE : IMPACTING PARAMETERS END‐OF‐LIFE BEHAVIOUR

Contents

• Impact of information – Choice of a product• Key role of the building manager• Technical data from manufacturers• Noise

• Use phase : impacting parameters• Sizing• Climate• Controls

l d i• Faults and maintenance• Building types• Other parameters

• End‐of‐life behaviour• Decommissioning and recycling• Refrigerant collection

31

• Refrigerant collection

USE PHASE : MAIN PARAMETERS END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION

Building manager

• Main concern : initial capital costs (equipment + installation)

• Lack of information on costs vs. benefits

• Product lifetime → too long time horizon : payback time is minimized

• Building sold or rented to another company/individual : use‐phase costs of negligible importance

• Small/medium companies : investments must be minimized

• Only mature investors from large companies / public sector have a real interest in innovative products if convinced of a cost‐benefit optimizationinnovative products if convinced of a cost benefit optimization

→ Most of the time, energy efficiency is not a driving factor if a premium must be paid for itpaid for it

→ Large‐scale projects with larger cooling capacities benefit from a better cost‐benefit optimization

32

END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION USE PHASE : MAIN PARAMETERS

Technical data from manufacturers

• A large amount of data (off design and part‐load performances) is required butoften not directly provided

• The certification of manufacturers’ data software is not yet fully standardized

• There is a lack of information on the decrease in performance due to differentfault types

• The controls available to the end‐users are poorly understood, concerning themeaning of interface symbols and proper control strategies

→ Pushing for standardization of certified data sets could be an output of ENTRLot 6

33

END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION USE PHASE : MAIN PARAMETERS

Noise

 

• No correlation between the standard noise level of a product and its standard efficiency (here for terminal units)

• End‐users focus more on the noise emitted by air conditioning products in smaller rooms (small offices vs. large open plan offices)

• Greater impact on the decision‐making process in buildings where end‐users can express their concerns → smaller buildings, smaller needed cooling capacities

34

g , g p

END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION USE PHASE : MAIN PARAMETERS

Sizing

• Most systems are oversized. “Rules of thumb” are still widespread

– More time spent at lower capacity ratios and so poorer energy efficiency

– Poorer thermal comfort because of increased cycling → risk of lower indoorPoorer thermal comfort because of increased cycling → risk of lower indoortemperature setpoints to ensure comfort

– Higher initial capital costs and operational costs during the use phase

Si lifi d f th d d t l l t li /h ti l d• Simplified reference methods are used to calculate cooling/heating loads

• Large‐scale projects with larger cooling capacities benefit from a bettercooling/heating load assessment and so system sizing

• Reversible products are generally sized on the basis of their cooling function.

• Heat pump function

– Backed by an additional heating system at low temperatures under coldac ed by a add t o a eat g syste at o te pe atu es u de co dclimates

– Only part of all the installed units are used in warm climates

35

END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION USE PHASE : MAIN PARAMETERS

Heat recovery for reversible products

36

END‐OF‐LIFE BEHAVIOURIMPACT OF INFORMATION USE PHASE : MAIN PARAMETERS

Climate impact 

• Heat island effect : a majority of Lot 6 products installed in densely populated urban areas

→ increased cooling loads and peak demand

• Local climate : parameter with the greatest impact on cooling/heating energy demand

g p

• Climate change : risk of consequently increased cooling loads and peak demand in 2025 

→ i d li l d d d d h ti l d• Climate zones can be distinguished by degree 

days 37

→ increased cooling load and decreased heating load

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Degree days calculation 

• Weather data taken from ASHRAE’s IWEC database

• More than one representative city per country when necessary• More than one representative city per country when necessary

• Sensible cooling degree days : Tbase = 15°C

• Latent cooling degree days : wbase = 0.0106 kgwater/kgair• Heating degree days : T = 15°C• Heating degree days : Tbase = 15 C

38

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Control system 

 

• Common use : constant indoor setpoint temperature over a pre‐defined daily time period (IDA‐C3 in EN 15232:2008)

• Centralized controls believed to be the common situation in buildings equipped with Lot 6 products• Centralized controls believed to be the common situation in buildings equipped with Lot 6 products

• Local controls might be only used in specific cases (small/medium capacity terminal units that cool small rooms)

• Cooling setpoint : generally between 22°C and 24°C but can be as low as 20°C

• Heating setpoint : generally between 20°C and 22°C

39

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Faults and maintenance• Faults

– Soft faults : cause a degradation in performance but allow continued operation of the product 

→ direct impact on energy efficiency  ≠  hard failures

– Examples • Refrigerant leakage/undercharge → most frequent soft fault

• Condenser/Evaporator fouling on the air side

• Reduced condenser/evaporator water flowReduced condenser/evaporator water flow

→ No sufficient statistical data for base‐case modelling in Task 4

• Maintenance issues– Proper maintenance is only cost‐effective in specific conditions (warm climates)

– Information provided for maintenance is only indicative Correct practices are not compulsoryInformation provided for maintenance is only indicative. Correct practices are not compulsory

– Main maintenance tasks reported by the AREA are replacement of components and refrigerant charge checking → no apparent focus on the energy efficiency of the product

→ A main technical improvement : Fault Detection and Diagnosis electronic systems40

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Building types

• Main building sectors using Lot 6 air conditioningproducts described in Task 2

• 8 typical buildings out of the 4 main building sectorsmodelled with a specific software

• Thermal characteristics of building envelopes,occupancy/equipment/lighting scenarios derived fromseveral modelling works at the study team’s disposal

• Air conditioning product in other building sectors (e.g.pharmaceutical, telecommunication) believed to bemainly related to the offices located in the correspondingbuildingsbuildings

41

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Decommissioning and recycling

1400 kW centrifugal chiller 8.8 kW split-system

Mechanical contractorScrap value of equipment 80 € / ton x 7.34 ton = 590 € 80 € / ton x 0.12 ton = 9.6 €Disposal cost to contractor 405 € 3.2 €

Contractor net profit 155 € 6.4 €Scrap metal dealer

Value of unit’s metallic content 4370 € 78 €Scrap dealer cost 1260 € 21 €

Scrap dealer net profit 3110 € 57 €

• Products with high metallic contents (chillers, outdoor units of split/VRF systems, rooftop units) are easilyrecyclable

C d l i i i f i t ti l l l bl• Copper and aluminium pieces of equipment are particularly valuable.

• Large capacity units are more interesting to recycle than small capacity units

• Casings of terminal units (fan‐coil units, indoor units of split/VRF systems, chilled beams) are largely made ofplastics→ recycling issue

• Identifying the constituents of products is a main barrier to an improved recyclingde y g e co s ue s o p oduc s s a a ba e o a p o ed ecyc g

42

END‐OF‐LIFE BEHAVIOURUSE PHASE : MAIN PARAMETERSIMPACT OF INFORMATION

Refrigerant collectionCountry Number of known ODS destruction facilities in

operationAustria 1Belgium 2

Czech Republic 1Denmark 3E t i 1Estonia 1Finland 1France 2

Germany 7Hungary 5

Italy 12Netherlands 6Netherlands 6

Poland 1Slovakia 1

Spain 1Sweden 4

United Kingdom 5

• Refrigerant collected on site ≠ dedicated facility : increased risk of recovery losses

• Disposed air conditioning products might often be left outside buildings, then collected by ordinaryscrap metal recycling facilities→ refrigerant collection is uncertain

• Important discharged refrigerant shipment distances to destruction facilities : between 200 and 1000Important discharged refrigerant shipment distances to destruction facilities : between 200 and 1000km

• HFC refrigerants can fall under numerous restrictions for cross border treatment and transport

→ Some manufacturers are already developing refrigerant recovery machines

43

Questions ?

44

Task 4 – Base case definition

45

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Contents

• Base‐cases and energy modelling• Energy modelling methodology• Product repartitions in available statistical database• Base‐case technical characteristics• Refrigerant use

• Environmental impact• Life cycle analysis per base‐case producty y p p• EU‐total environmental impact

• Life cycle costsy• Methodology and deduced initial investment costs• Ecoreport results

46

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Energy modelling methodology (1/3)

• Main points

A first set of simulations is done on a building modelling software to derive thecooling/heating demand of 8 typical buildings under 3 typical climates (Task 3)

9 typical systems in cooling mode and 4 typical systems in heating mode are thensimulated on a second software. Each system is simulated in each typical building andunder each typical climate

E h i l d f b dEach system includes one or more type of base‐case product

The systems software has been programmed by the study team, on the basis ofi tifi l ith d b d t h t i tiscientific algorithms and base‐case product characteristics

A final step based on matrix calculations allows to derive the EU‐27 electricityconsumption of each base case product from the system simulation resultsconsumption of each base‐case product from the system simulation results

47

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Energy modelling methodology (2/3)

• Technical characteristics of the base‐case products :

Rating characteristics are determined from the analysis of existing database and EU marketg y gshares, when available (Task 2)

Full‐load characteristics of cooling generators are fitted from off‐design data sets displayed bysome main manufacturers Fitted products have nominal characteristics as close as possible tosome main manufacturers. Fitted products have nominal characteristics as close as possible tothe characteristics of the base‐case products

Part‐load characteristics of cooling generators are derived from technical catalogues oravailable database. Concerning chillers, they are calculated to meet the SEER of the base‐cases

The characteristics of other base‐case products and system components are deduced from theanalysis of the Eurovent database, technical catalogues or European standardsanalysis of the Eurovent database, technical catalogues or European standards

The study team chooses standard control strategies

48

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Energy modelling methodology (3/3)• EU‐27 electricity use computations for the different base‐case products :

System simulation outputs : for each product, Electricity Use per installed Cooling Capacity (EUCC)

Per typical building + climate→ Per typical building + climate

For products modelled in several different chiller‐based systems, average EU market shares of water‐based systems(Task 2) are used to weight‐average the electricity consumption of the products

For each product, links between building sectors and modelled typical buildings (Task 3 and Ventilation Task 4) allow toderive electricity consumptions per building sector, under each of the 3 modelled climates

For each product in each building sector, EUCC values are then derived per EU country on the basis of CDDs / HDDsestimated per country (Task 3)

Sales/Stock of installed capacities of chillers and DX‐systems per country and per building sector (Task 2) allow then to/ p y p y p g ( )calculate the total electricity consumption of the products per building sector, for each EU country

For each product, adding up electricity consumptions per country and per building sector allow to estimate a totalelectricity consumption for the EU‐27

49

electricity consumption for the EU 27

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Product repartitions : chillers

• Median EER : no significant variation with• Median EER : no significant variation withthe cooling capacity

• Median scroll and screw chillers :equivalent efficiencies. Centrifugal chillersare more efficient products

• Significant differences in the SEER orSignificant differences in the SEER orwater‐cooled and air‐cooled chillers

50

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Product repartitions : DX systems

• Rooftop units : lack of statistical data on high capacity products

• Split systems : most products have a cooling capacity lower than 20 kW

N i ifi t EER diff b t lti lit d i l lit t• No significant EER difference between multisplit and single split systems

• VRF systems : homogeneous repartition of outdoor units. Great range of coolingcapacities but small differences in EER and part‐load characteristics

51

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Product repartitions : fan‐coil units

• Very large number of certified products (> 1000)

• No significant difference between 2‐pipes and 4‐pipes units

• A majority of certified products with small cooling capacities

• A majority of certified products with a 3‐speeds fan. 5‐speed fans are also frequent

• Changes in rated capacity and efficiency with the fan speed differ greatly from a manufacturer to another onemanufacturer to another one 

52

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Product repartitions : dry coolers

• Modular products. All combinations of coil dimensions, fan number, size and speed can becertified→ 20 000 certified products reported in the database

• High capacity products are less efficient → possibly manufacturers’ choice to reduce the coilsize and so the footprintsize and so the footprint

• Median efficiencies : ranging from 50 to 80

• Lower efficiency reported : 14

• Higher efficiencies reported : more than 200g e e c e c es epo ted : o e t a 00

53

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Base‐case Chillers

Characteristics Air-cooled chillerScrew compressor

Water-cooled chillerScrew compressor

Sales Stock Sales StockPC, nominal 400 kW 900 kWEER 2 72 2 29 4 77 3 82EERnominal 2.72 2.29 4.77 3.82

SEER 3.76 3.16 5.72 4.58τmin 25% 25%

EER (τ = τmin) 1.06 * EERfull-load 0.92 * EERfull-load

• Screw chillers chosen on the basis of Task 2 analysis, rather than scroll chillers

• Low capacity ranges (< 50 kW) represent a too small overall capacity installed to justify p y g p p y j ya supplementary base‐case

• Numerous off‐design data sets are available and allow to model the full‐load behaviour

• Part‐load performances can be fitted from the knowledge of the SEER

54

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Base‐case DX systems : cooling mode

Characteristics Rooftop unit Single split system VRF system

Sales Stock Sales Stock Sales StockP 80 kW 14 kW 50 kWPC, nominal 80 kW 14 kW 50 kW

EERnominal 2.84 2.28 2.81 2.363.43

Outdoor unit

2.45Outdoor

unit

τmin 55% 37% 100%C li 38%τmin 55% 37% Cycling 38%

EER (τ = τmin) 1.05 * EERfull-load1.18 *

EERfull-load- 1.24 * EERfull-load

Capacity Correction Factor - - 0.93

• Rooftop unit chosen on the basis of Task 2 analysis and Eurovent database

Si l lit t h th b i f E t d t b• Single split system chosen  on the basis of Eurovent database

• VRF system chosen on the basis of the ETPL database of UK’s ECA

55

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Base‐case DX systems : heating mode

Characteristics Rooftop unit Single split system VRF system

Sales Stock Sales Stock Sales StockP 80 kW 16 kW 55 kWPH, nominal 80 kW 16 kW 55 kW

COPnominal 3.17 3.01 3.34 2.883.98

Outdoor unit

3.16Outdoor

unit

τ 55% 37% 100% 60%τmin 55% 37% Cycling 60%

COP (τ = τmin) COPfull-load1.09 *

COPfull-load- 1.04 * COPfull-load

Capacity Correction Factor - - 0.96

• Rooftop unit : more efficient in heating mode because of blower‐added heat

VRF t f i h ti d l i i ffi i t t l d

Factor

• VRF system performance in heating mode : lower gain in efficiency at part‐load conditions, according to the statistical analysis of reported products

56

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Base‐case Fan‐coil unit

2-pipes Non-Ducted Fan-coil unit

Cooling modeSales Stock

• 2010 and 2000 Eurovent database toestimate sales and stock base‐case

Sales StockPc FL

(total cooling capacity)2nd speed

3 kW

Ps FL (sensible cooling capacity)

2nd speed2.25 kW

characteristics

• Rated efficiency ratio is takent t f d t th

p

Pc / Pf FL 54 44

Qv AIR (air flow rate)

2nd speed525 m3/h

constant from a speed to another

• Constant water flow rate

Qm WATER (water flow rate) 0.180 kg/s

Heating modeSales Stock

For each fan speed fan consumptions air and

• Air flow rate : depending on theload, the unit is cycling at 1st speed,between 2 speeds or operating

All characteristicsFor each fan speed, fan consumptions, air and

water flow rates are the same as in cooling mode.

between 2 speeds or operatingconstantly at 3rd speed

57

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Base‐case Heat rejection units

Dry coolerSales base-case

PHR, nominal 200 kWPHR nominal / PF All fans 70

• 2010 Eurovent database to estimate thecharacteristics of the base‐case dry cooler(sales)

HR, nominal / F, All fans 0PF, All Fans 2.9 kWQv All Fans 15.3 m3/s

Number of fans 5Water temperature at the inlet of the

condenser : setpoint 25°C

• Baltimore VXT range to estimate thecharacteristics of the base‐case coolingtower (stock)

Cooling towerStock base-case

P ( i l h t j ti

( )

• Constant water flow rate

PHR,nominal (nominal heat rejection capacity) 1000 kW

Number of fan speeds 2PF (electrical power input of the fan)

1st speed 5.6 kW

Qv Air (outdoor air flow rate) 11 3 m3/s

• When possible, the water temperature atthe inlet of the chiller condenser is kept ata setpoint value.

Air ( )1st speed 11.3 m3/s

PF (electrical power input of the fan)2nd speed 18.5 kW

Qv Air (outdoor air flow rate)2nd speed 16.9 m3/s

Water temperature at the inlet of the

• Air flow rate :

• Dry cooler : staged 1‐speed fans

• Cooling tower : one 2‐speeds fan

58

Water temperature at the inlet of the condenser : setpoint 20°C

LIFE CYCLE COSTSBASE‐CASES 

AND ENERGY MODELLING

ENVIRONMENTAL IMPACT

Energy simulation results

• Different product types are not alwaysinstalled, on average, under the same climate

Annual electricity use

Cooling mode

Annual electricity use

Heating mode→ Important differences between split systemsand VRF systems

• Equivalent split system :

Base-case product[kWh/kWcool] [kWh/kWcool]

Sales Stock Sales Stock

N t N t • Equivalent split system :– A non‐ducted single split system is simulated

– Sales of ducted single split and multiplisitsystems are taken into account

– A correction coefficient is used between a non‐

Air-cooled chiller 136 159 Not modelled

Not modelled

Water-cooled chiller 101 116 -Rooftop air-conditioner 165 232 396 457

Equivalent split 165 231 327 434 A correction coefficient is used between a nonducted and a ducted unit

• Equivalent fan‐coil unit :A f lit t t k i t t l f

Equivalent split system 165 231 327 434

VRF system 93 128 367 436Equivalent fan-coil

unit 10.6 13.0 8.84 11.8

– As for split systems, takes into account sales ofducted units

Dry cooler 16.7 - -

Cooling tower - 21.1 -

59

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Refrigerant charge and GWP

• Not all sales or stock products chargedwith the same refrigerant

Base-case d t

Refrigerant h

Equivalent EU-27 GWP100 years

• Important differences in GWP from arefrigerant to another (R‐134a and R‐410A,for instance)

product charge

Sales Stock

Air-cooledhill 0.25 kg / kW for instance)

• An equivalent GWP to take into accountthe different refrigerants on the market

chiller g

1455 1587

Water-cooled chiller 0.20 kg / kW

the different refrigerants on the market

• Greater refrigerant charges per coolingcapacity for split and VRF systems

Rooftop 0.25 kg / kW

1914 1772Split system 0.4 kg / kW p y p y

→ refrigerant distribution piping systemVRF system 0.5 kg / kW

60

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Refrigerant losses scenarios

Refrigerant losses Refrigerant losses

• No statistical data at EU scale

Base-case product

gover product life

Low estimate

gover product life

High estimate

Air cooled chiller 30% of factory 130% of factory

• Comparison between several referencestudies

lAir-cooled chiller charge charge

Water-cooled chiller 30% of factory charge

145% of factory charge

30% of factory 95% of factory

• Two losses scenarios :

– Low estimate : only losses intrinsic to theproduct (mainly technical faults leading to

Rooftop 30% of factory charge

95% of factory charge

Split system 35% of factory charge

170% of factory charge

product (mainly technical faults leading toleakage)

– High estimate : takes also into account

VRF system 35% of factory charge

170% of factory charge

accidental releases, poorly installed field‐interconnecting tube, maintenance issues,end‐of‐life management …

61

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

LCA for 1 unit, scenario 1

• Main sources of emission : use phase and refrigerant losses

• Reversible products consume at least thrice as much electricity as cooling‐onlyproducts

• Refrigerant losses more sensitive for split systems and VRF systems

62

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

LCA for 1 unit, scenario 2

• Life cycle analysis is very sensitive to refrigerant losses

• No distinction in sales data between cooling only and reversible products :→ Cooling‐only products installed in warmer climates : higher electricity consumptionthan estimated here

63

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Fan‐coil and heat rejection units LCA

• Fan‐coil unit : production and recycling phase not negligible. Low electricity consumption andhigh plastics content

• Dry cooler : higher importance of the production phase because of coil manufacturingDry cooler : higher importance of the production phase because of coil manufacturing

64

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

EU‐total environmental impact, scenario 1

• Products with the greatest overall impact : air‐cooled chillers, split systems, VRF

65

systems

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

EU‐total environmental impact, scenario 2

• Products with the greatest overall impact : air‐cooled chillers, split systems, VRF

66

systems

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

EU‐total environmental impact, other products

• Fan‐coil units total environmental impact : more than cooling‐only VRFs and cooling‐only rooftops, less than water‐cooled chillers and reversible rooftops

→ Limited but non‐negligible impact

• Heat rejection units : half of the environmental impact fan‐coil units

→ Limited but non‐negligible impact

67

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Methodology

• No price distinctions between cooling‐only and reversible products

• Costs structure adapted from the reference work RSMeans Mechanical Cost Datap

• Bare material costs calculated from market analysis and price lists reported in Task 2, as wellas other case studies

• Bare labour costs transposed from RSMeans Mechanical Cost Data and case studies

• Information provided by stakeholders on VRF systems

• Overhead & Profit margin taken equal to 20%

• No precise information on maintenance costs→ standard 4% of total investment costs

68

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Initial investment costs

Data Air-cooled chiller Water-cooled chiller

Rooftop Split system VRF system Fan-coil unit Dry cooler

Cooling / Heat rejection capacity 400 900 80 14 50 3 200j p y

[kW]

MSP, unit alone[€] 40000 63000 12000 3500

16000 (outdoor unit) + 11700 (indoor units)

500 13000

Piping Valves, controls, Pumps & piping

MSP, additional equipment

[€]

Control panel, sensors

Control panel, sensors

Ductwork, insulation Piping, wiring kit

Piping, accessories,

remote control

chilled water piping, condensate

drains

Pumps & piping, condenser control

system

9200 14400 400 200 4600 1100 4900

Total MSP 49200 77400 12400 3700 32300 1600 17900[€] 49200 77400 12400 3700 32300 1600 17900

Total bare labour costs

[€]6900 10800 5500 700 11400 1200 4400

Total installation costs,

with O & P[€]

67300 105800 21500 5300 52400 3400 26700

69

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Life cycle costs

70

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Total EU‐27 expenditure

71

BASE‐CASES AND 

ENERGY MODELLINGENVIRONMENTAL IMPACT LIFE CYCLE COSTS

Results interpretation

• Lower relative investment costs : rooftop units, chillers and split systems

• High relative investment costs for VRFs by comparison with other coolinggenerators

• High investment costs for terminal units and heat rejection units because oflow electricity consumptions and associated equipment

• Very high investment costs for fan‐coil units because costs of the waterdistribution system are included

• Maintenance costs probably underestimated

72

Conclusion Task 4

• Energy consumption makes the greater part of the environmental impactsEnergy consumption makes the greater part of the environmental impacts

• The total expenditure in 2010 is estimated to be about 20 billion euros. 

• The stock of cooling products in 2010 is estimated to consume 74 TWh/y, which correspond to about 34 MtCO2eq/y regarding emissions due to electricity Incorrespond to about 34 MtCO2eq/y regarding emissions due to electricity. In addition, it is estimated that between 4 and 15 MtCO2eq/y for direct emissions

• All in all, the energy consumption estimate matches pretty well with the li i ti t i t k 1 f thi t (90 TWh h ti l lipreliminary estimates in task 1 of this report (90 TWh heating plus cooling 

electricity consumption). The global electricity consumption is lower, but the reversible chiller electricity consumption for heating was not taken into account, which can be estimated to about 15 TWhwhich can be estimated to about 15 TWh. 

• Amongst the 4 product groups, the contribution of terminal units and of heat rejection units is relatively low, 2 TWh for fan coils and 1 TWh for heat rejection 

itunits.

73

Task 5 – BAT and BNAT 

74

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Contents

• IMPROVEMENT POTENTIAL UNDER THE ECODESIGN DIRECTIVE

• ELECTRICALLY DRIVEN MECHANICAL VAPOR COMPRESSION CYCLES• ELECTRICALLY DRIVEN  MECHANICAL VAPOR COMPRESSION CYCLES IMPROVEMENT

TERMINAL UNITS• TERMINAL UNITS

• HEAT REJECTION UNITS

75

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

ErP improvement potential

Extended productsExtended products

Multi-function products• Products supplying cooling OR heating• Simultaneous cooling AND heating (or hot water)

- Water based- Refrigerant based

• Cooling, heating and ventilation

Energy efficiency and peak efficiency

76

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Design options for main cooling generators

Refrigerant fluidMotorCompressorHeat exchangers Evaporatively-cooled condenser

ComponentsEvaporatively cooled condenserFansExpansion valveAuxiliary power modes (including Auxiliary power modes (including

controllers)

Air conditionersProducts Air conditionersChillers

Products

Alternatives to electrically driven vapour compression

77

units using grid electricity

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Refrigerant fluid

Refrigerant fluid choice– Present fluids R134a, R407C, R410A (ammonia, propane)– Alternatives: Propane, Ammonia, R32, CO2, HFOs– GWPs lower, but also performance (average and peak)– TEWI analysis required and LCC also

Refrigerant management– Leak from the product and from refrigerant managementp g g– Importance of the 2006/842/EC directive

Refrigerant charge and leakageRefrigerant charge and leakage– micro-channel heat exchangers, leak detection, components

for hermetically sealed products (EN 16084:2011)

78

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Motors and VFD

EC motor regulationEC motor regulation- Not covered motors in (semi-)hermetic compressors and < 750

W

EC motor is a key BATEC motor is a key BAT- BAT motor peak efficiency from 85 % for ~ 100 W till more

than 95 % for 50 kW motor output

EC motor + VFD alsoEC motor + VFD also- VFD also very efficient with EC motors, losses less than 2 %

peak load, and less than 5 % part load 

Source (Barrett, 2011)50 kW rated motor input

79

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

CompressorsDesign efficiency Off design efficiencyg y

- Rotary BAT -> Scroll- Scroll BAT 80 % (Is. eff)- Screw BAT 85 % (Is. eff)

Off design efficiency- Choice of the peak. eff- Variable peak eff- Economizer

- Centrifugal BAT ?

Unloading10

ESEER - Water cooled package chillers

- VFD versus tandem operation for scroll

- VFD + fix scroll for VRFVFD for screw

6

7

8

9

10

- VFD for screw- EC + VFD + magnetic

bearings for centrifugal compressors = oil free 1

2

3

4

5

centrifugal chiller

Oil flooded compression (BNAT)

0

1

1,5 2,5 3,5 4,5 5,5 6,5 7,5EER

(BNAT)80

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Heat exchangers

Increase heat transfer intensity

Increase heat transfer area at Increase heat transfer area at fixed kW (and flow)

Cassette indoor unit (ECCJ, 2008)

Decrease pressure dropReduce heat exchanger Reduce heat exchanger

volume (refrigerant charge)

Minichannel heat exchangers (Carrier 2007)

81

Minichannel heat exchangers (Carrier, 2007)

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Evaporatively‐cooled condensers25,0

r dry 

• Wet pad or direct coil aspersion

• Important potential in dry climates and at peak conditions.

S ill b i i

15,0

20,0

oincident a

verage per

erature bin)

STRASBOURG

• Still may be interesting on a seasonal basis

• The maximum gains range from 15 % to 25 % in average from Helsinki

5,0

10,0

bulb te

mpe

rature (co

bulb te

mpe HELSINKI

ATHENS

MILAN

% to 25 % in average from Helsinki to Athens. In Milan, reputed as a hot and humid climate, performance gains are still about 15 

0,0

0 10 20 30 40

Wet 

Outdoor dry bulb temperature °C

%.

• For one product, simple calculations (California) show that the water consumption to wet the pad isconsumption to wet the pad is lower than the water economized from avoided electricity production form power plants, which are  cedengineering.com

among the largest water consumers. 82

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

FansOutdoor fan Indoor fan

Air cooled chillers Propeller fan ‐Centrifugal fan (ducted outdoor unit) ‐

Split, multi‐split and VRF air conditioners Propeller fan TangentialCentrifugal

Air conditioner integrated in AHUs Propeller fan CentrifugalAir conditioner integrated in AHUs Propeller fan CentrifugalFan coils ‐ Tangential

‐ CentrifugalDry coolers Propeller fan ‐

Cooling tower Propeller fan ‐Centrifugal ‐

Fan coils ‐ Tangential‐ Centrifugal

• Developments on all fan types for AC products, with noise as a primary concern. 

• Plastic fans are gaining popularity

• Tangential fans are reputed to have lowerefficiencies, but information is scarce

(ECCJ, 2008)

83

• Fan drive efficiency, EC + VFD, Belt (up to 97 % efficiency)

(ECCJ, 2008)

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Air conditioners

• Best available productsBest available products– Only the full load is known, 

ex split EER 4 and COP 4.4 6,0

– Other markets may help (AHRI catalogue extract for minisplit)

4,0

5,0

p )

• Size constraints2,0

3,0EER

SEER

0,0

1,0

12 14 16 18 20

• Air conditioners in AHU‐ Free cooling, hybrid

evaporative desiccantkW cooling capacity

evaporative, desiccant

84

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Chillers

• NPLV (for non standard part load value operations) efficient optionsefficient options– High temperature difference chilled water design

– Optimized multiple chiller operationp p p

• Chiller free cooling– Direct operation via the refrigerant cycle

– By addition of a supplementary water/air coil

85

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Alternative cooling solutions

Evaporative coolingEvaporative coolingIntegration of solar/waste heat

- Ab(ad) machines

- Desiccant cooling (possibly hybrid solution with classical air conditioner))

- Stirling free piston (BNAT)(Grossman, 2002)

Other physic priniciples (B?)NAT

- Magnetocaloric, Peltier, Magnetocaloric, Peltier, Thermoacoustics

86source Höfker

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Terminal units

• Fan coil units– Same type of improvement (larger heat exhcnage coefficients 

or/and surface)

– EC motor with VFD

Control consumption– Control consumption

• Chilled beams (BAT ?)( )– Comparison with fan coil is system dependent

– Need to characterize the chillers for higher water temperaturel l ( f )levels (see for instance ENER Lot 1)

87

IMPROVEMENT POTENTIAL

ELECTRIC MECHANICAL VAPOR COMPRESSION CYCLES

TERMINAL UNITS HEAT REJECTION UNITS

Heat rejection units

• Dry cooler units• Dry cooler units– Same type of improvement (larger heat exhcnage coefficients 

or/and surface)

– EC motor with VFD

– Control consumption

• Alternative heat rejection means– Evaporatively‐cooled dry cooler

Open cooling tower– Open cooling tower

– Closed cooling tower

– The comparison would require a product extended approachp q p pp(water cooled generator + heat rejection means)

– Suggestion: improve individual ratings of products before and include the corresponding operating conditions in prEN14825include the corresponding operating conditions in prEN14825

88

Questions ?

89